COMPDYN 2011
Il ECCOMAS Thematic Conference on
Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.)
Corfu, Greece, 2-28 May 2011

DYNAMIC SHAPE RECONSTRUCTION
OF THREE-DIMENSIONAL FRAME STRUCTURES
USING THE INVERSE FINITE ELEMENT METHOD

Marco Gherlone', Priscilla Cerracchio®, Massimiliano M attone', Mar co Di Sciuva®
and Alexander Tessler?

! Department of Aeronautics and Space Engineering — Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
{marco.gherlone, priscilla.cerracchio, massimiliano.mattone, marco.disciuva}@polito.it

ZStructural Mechanics and Concepts Branch — NASA Langley Research Center,
Mail Stop 190, Hampton, Virginia, 23681-2199, U.S.A.
a.tessler@larc.nasa.gov

Keywords: Shape sensing, Frame structures, Inverse Finite Element Method, Strain gauge.

Abstract. A robust and efficient computational method for reconstructing the three-
dimensional displacement field of truss, beam, and frame structures, using measured surface-
strain data, is presented. Known as “shape sensing”, this inverse problem has important im-
plications for real-time actuation and control of smart structures, and for monitoring of struc-
tural integrity. The present formulation, based on tieerse kite Hement Method (iIFEM),

uses a least-squares variational principle involving strain measures of Timoshenko theory for
stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are de-
rived using the interdependent interpolations whose interior degrees-of-freedom are con-
densed out exactly at the element level. In addition, relationships between the order of
kinematic-element interpolations and the number of required strain gauges are established.
As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to
harmonic excitations in the presence of structural damping is modeled using iIFEM; where, to
simulate strain-gauge values and to provide reference displacements, a high-fidelity
MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dy-
namic motion are analyzed and the solution accuracy examined with respect to the increased
fidelity of the IFEM'’s discretization and the number of strain gauges.
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1 INTRODUCTION

Real-time reconstruction of structural deformatjonsing measured strain data, is a key
technology for actuation and control of smart dtrces, as well as for Structural Health Monitor-
ing (SHM) [1]. Known as “shape sensing”, this irseproblem is commonly formulated with
the assumption that multiple strain sensors abuarstructural locations provide real-time strain
measurements. Most inverse algorithms use somedfypéhonov’'s regularization, which is
manifested by constraint (regularity) terms thaduee a certain degree of solution smoothness
(refer to [2-5] and references therein.)

Most of the shape sensing efforts focused excllysme beam-bending problems. Davis et
al. [6] used optimized trial functions and weigtdsreconstruct a simple static-beam response
from discrete strain measurements. To model moneptex deformations, their approach re-
quires a large number of trial functions and stensors. Kang et al. [7] used vibration mode
shapes to reconstruct the beam response due totyarcitation. In their approach, modal co-
ordinates are computed using strain-displacemdatiaieship and measured surface strain
measurements; the method requires the same nuiniverde shapes and strain sensors. Kim et
al. [8] and Ko et al. [9] used classical beam aquatto integrate the discretely measured strains
to determine the deflection of a beam. By regressicexperimental strain data and by account-
ing for the applied loading, Kim et al. [8] obtaitha continuous curvature function, leading to
the evaluation of the beam deflection. Ko et gdldéveloped a load-independent method by ap-
proximating the beam curvature using piece-wisgmahials; the authors demonstrated the va-
lidity of this one-dimensional scheme by evaluating deflection and cross-section twist of an
aircraft wing.

To enable shape-sensing analyses of plates undgrgending deformations, Bogert et al.
[10] examined a modal transformation method thiawel the development of suitable strain-
displacement transformations. The approach make®ia large number of natural vibration
modes. When applied to high-fidelity finite elemenbdels, however, the method requires a
computationally intensive eigenvalue analysis addtailed description of the elastic and inertial
material properties. Jones et al. [11] employeshatisquares formulation for shape sensing of a
cantilever plate, where the axial strain was fitteth a cubic polynomial. The strain field was
then integrated with the use of approximate boyndanditions at the clamped end to obtain
plate deflections according to classical bendirgumptions. Shkarayev et al. [12,13] used a
two-step solution procedure: the first step inveldlee structural analysis of a plate/shell finite
element model, and the second, a least-squaregtagoThe methodology reconstructs the ap-
plied loading first, which then leads to the displaents. In a series of four papers, Main¢on and
co-authors [14-17] developed a finite element fdation that seeks the solution for the dis-
placements and loads simultaneously, requiringaai ganowledge of a subset of applied loading
and the material properties. The solution proceduremizes a cost function consisting of un-
known loads and differences between the measuestimated quantities (displacements or
strains); the cost function is regularized by wayequilibrium constraints. The number of un-
knowns is three times the number of the degredseetiom in the finite element discretization.
Importantly, the accuracy of the solution strondgpends on the choice of suitable weights;
these are computed from a complex procedure im@lihe probability distributions of the un-
known loads and measured data. In [16,17], seitgiimalyses were carried out for truss struc-
tures, investigating variations in the input dataneell as the modeling errors. Nishio et al. [18]
employed a weighted-least-squares formulation ¢onstruct, on the basis of measured strain
data, the deflection of a composite cantileverepl@he weighting coefficients in the least-square
terms were adjusted in order to account for therht errors in the measured strain data. The
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weights were computed for the given data-acquisidipparatus, load case, and test article, with
the consequent difficulties in generalizing thegedure.

Many of the aforementioned inverse methods eithek generality with respect to structural
topology and boundary conditions, or require sigfily accurate loading and/or elastic-inertial
material information — the kind of data that atéesi unavailable or difficult to obtain outside the
laboratory environment; for these reasons, suchoappes are generally unsuited for use in on-
board SHM algorithms. An algorithm that is welltegi for SHM should be: (1) able to model
general structural topologies and boundary conditi®.g., built-up aircraft structures), (2) ro-
bust, stable, and accurate under a wide rangeadirigs, material systems, inertial/damping cha-
racteristics, and inherent errors in the strainsuesments, and (3) sufficiently fast for real-time
applications.

An algorithm that appears to fulfill the aforemened requirements, labeled tinwerse -
nite Hement Method (iIFEM), was recently developed by Tessler@pangler [1,19]. The meth-
odology employs a weighted-least-square variatiguraiciple which is discretized by °C
continuous finite elements that accommodate ariytrpositioned and oriented strain-sensor
data. The iIFEM framework, providing accurate arablst solutions of the displacement and
strain fields for the discretized structural dom#@ramenable to any type of structural modeling
including frame (truss and beam), plate, shell, aolid idealizations. Because only strain-
displacement relations are used in the formulaboth static and dynamic regimes can be mod-
eled without any a priori knowledge of the mateii@rtial, loading, or damping structural prop-
erties. To model arbitrary plate and shell strieguiessler [20] developed, using the first-order
shear-deformation theory, a three-nateerse shell elemembrmulation. The numerically gen-
erated [20] and experimentally measured-strain [Rd#2] were used to assess the formula-
tion’s robustness and accuracy.

This paper consolidates the authors’ recent efiar{23-25], presenting the development
and assessment of simple and efficient inversedrianite elements. The methodology permits
effective and computationally efficient shape-segsanalyses to be performed on truss, beam,
and frame structures instrumented with strain gaugle kinematic assumptions are those of
Timoshenko shear-deformation theory [26]; they ipooate stretching, torsion, bending, and
transverse shear deformation modes in three dim@nsirhe formulation uses a least-squares
variational principle that is specialized from [X8} three-dimensional frame analysis. The vari-
ational framework, in conjunction with suitableifenelement discretizations involving inverse
finite elementsyields a system of linear algebraic equationsgtiigations are efficiently solved
for the unknown displacement degrees-of-freedonfiggdhus providing the deformed struc-
tural-shape predictions.

In the remainder of the paper, the kinematic assiompfor a three-dimensional frame are
discussed, followed by the description of the leagtares variational principle suitable for
three-dimensional deformations of frame structufédss is followed by a discussion of two
CP-continuous, inverse-frame elements that use tHeesblished interdependent interpola-
tions that resolve the shear locking effect. Findth examine the predictive capabilities of the
inverse elements for a given set of distributedistgauges, shape-sensing studies are carried
for a cantilevered beam undergoing harmonic exoitatin the presence of structural damp-

ing.

2 GOVERNING EQUATIONS

Consider a straight frame member of constant @est8en positioned in the three-
dimensional Cartesian coordinates/,¢) as depicted in Figure 1; the coordinate origin, i©
located at the cross-section’s center of mass,hwikialso coincident with the shear center. The
longitudinal, elasticx-axis is normal to the cross-sectional plapez), wherey and z are the

3
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cross-section’s principal inertial axes. The framember has length and its cross section has
areaA, area moments of inertia with respect to yheand z-axis |, and|,, respectively, and

polar moment of inertid, =1 +1 , (Figure 1). The frame member is made of an isatnoate-

rial, represented by the elastic constaBtgYoung’'s modulus)G (shear modulus), and(Pois-
son ratio).

Neglecting the effect of axial warping due to tomsiand assuming the kinematics of Ti-
moshenko theory [26] in three dimensions, i.e.heaoss-section remains flat and rigid with
respect to thickness-stretch deformations alony #redz axes, gives rise to the three Cartesian
components of the displacement vector of the form

u(xyg=u 3+ B ¥ 6.( )
u,(xv. 2=\ §- B( X @)
u(x 2= v+ 9. ¥

whereu,, u,, andu, are the displacements along they, and z axes, respectively, with,

v, andw denoting the displacements yat z=0; 6, €,, andd, are the rotations about the
three coordinate axes. The positive orientations fbe six kinematic variables
usfu, v, w 6, 6, 6, aredepicted in Figure 1,

6,
A: ],,V’ ‘[z) ‘[P ) T

Figure 1: Beam geometry and kinematic variables.

Adhering to the small-strain hypothesis, the noniskzing strain components have the form

XY, 2=e( 3+ zg X+ V€ )
VX Y)=6(X+ ye( X 2)
V(X2 =6g(R— zg X

wheree(u) E[e_L, e, & € ¢ éT denote the strain measures of the theory, related
the kinematic variables by first-order partial diéntiation
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e(@=u(®  g( ¥= w( x+6,( X
&(9=6,,(% (3= ul X6, X
&(¥=-6,(% &(¥=6,X

®3)

The forces , Q,, andQ; and moments §,, My, andM;} are related to the strain measures,

by way of the constitutive equations (refer to FegR)

N=Ag M,=J8
Qy :Gyeé I\/ly = Dy% (4)
Qz:Gzezl Mz: Dz%

where A = EA is the axial stiffnessi, = k! GA and G, = kGA are the shear stiffnesses (with

ki and k? shear correction factors)l, =Gl, is the torsional stiffness, and, =El, and

D, = El, are the bending stiffnesses.

=

Y,

0,
e
™

X

N Sk

M

X
Figure 2: Beam resultant forces and moments.

If g,(x), g,(x), andg,(X) are the distributed loads applied alongthg andz directions, re-

spectively, the frame-member equilibrium equatioesome

dN _ dM, _
= _q>< _O

dx dx
dQ, dMm,

= - = S

dx % dx ‘ ®)
dQ, _ dMm, _

dx % dx <

To reconstruct the deformed shape of a frame stiédr which certain in-situ strain meas-
urements are known, a functior@{u) that matches, in a least-square sense, the cengeleof
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the analytic strain measurefy), to those corresponding to the strain measurementss

minimized with respect to the kinematic variables,where the superscrigt denotes those
quantities that are computed from the in situ stra@asurements. Thus, tlgu) functional can

be written in compact notation as

®(u) :”e(u)—ef ? (6)
®(u) is then discretized by the piecewise-continuospldcementsy”, i.e
u(x)=u"=N(xu® (7

whereN(x) denotesC’-continuous shape functions anéithe nodal dof's. Consequently, the
total least-squares functional is a sum of theviddal element contributionsp®(u”), i.e.,

N
¢ = Z(De , with N denoting the total number of elements. Accountorghe axial stretching,

e=1

bending, twisting, and transverse shearing, theehe functional is given by

6
PN =D A D; (8)
k=1
where
LE[A AN AN A A AJA] (9)

with A2 (k=1,...,6) denoting the dimensionless weight coefficientsd af the cross-

sectional area of the element. The six componédikeelement functional are given as the Euc-
lidean norms

Ez%i[ (x)-€'] (k=1...6) (10)

where L* denotes the element length,is the number of strain sensoxs,(0< x < L) are the

positions at which the strain sensors are located the superscrigt is used to denote the strain
measures that are computed from the strain-serdoes/ (experimental values) at the location

X .
Substituting Eq. (7) into Eq. (3) gives the straieasures in terms of the nodal dof's as

e(u)=B(x)u° (11)
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where the matri>B(x) contains the derivatives of the shape functiNifg) . Substituting Eq.
(11) into Eq. (8) results in the following quadedtorm

CDe:—(ue)Tk‘“ue—(u e)Tf % (12)

wherek® andf®are defined in terms cB(x) andc® is a constant. Note th&f depends only
on the measurement locations, whereas ® depends on the experimentally measured strain

values. Minimization of the functiona® with respect tai® leads to the inverse element matrix
equation

keu®=f*® (13)

The assembly of the finite element contributionsilevaccounting for the appropriate coordinate
transformations and by specifying problem-dependamiacement boundary conditions, results
in a non singular system of algebraic equatiorteeform

KU=F (14)

The solution of these equations for the unknowrisdisf efficient: theK matrix is inverted
only once, since it is independent of the valuethefmeasured strains. TRevector, however
is dependent on the measured strain values thaigehduring deformation. Thus, at any
strain-measurement update during deformation, tagixavector multiplication provides the
solution for the unknown nodal displacement ddfiss K™ F, whereK ™ remains unchanged
for a given distribution of strain sensbrs

The remaining part of the element formulation imas the selection of suitable shape
functions, symbolically defined by Eq. (7), and ttmmputation of the experimental strain

measuresg’ , appearing in Eq. (10). In Section 3, the shapetfans for two alternative in-
verse-frame elements, each having two nodes angeawdef’'s, are derived. In Section 4, a
procedure for computing’ is described,; it relates the number of strain gaug the interpo-
lation order of the shape functions.

! Depending on the selected shape functions (ref&etdion 3), interior dof's may be present. Thasecan-

densed out at the element level by straightforvpanditioning of the element equatiorisiu®=f ¢, and then by
solving exactly for the condensed dof’s in termshaf end-node dof's. This process results in thieiced ele-

e

ment equations (without the interior dof®zuf =f 3, wherek? is a function of the partitioned parts of the
original k® matrix, anduy contains the end-node dof’s. Since the unredicechatrix is independent of the

strain values, so is thie; matrix. This implies that even for the elementthvithe condensed-out interior dof’s,
the corresponding system matriK,, is also strain-value independent.
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3 ELEMENT SHAPE FUNCTIONS

In this section, inverse frame elements Bfadd f' order are formulated. The elements use
the interdependent interpolations that enable Exdepredictions even for very slender frame
members, without incurring any form of excessivffesting due to shear locking [27]. Th&-0
order shape functions are guided by Timoshenkdilequm equations, Eq. (5), that correspond
to the forces and moments applied exclusively atethd nodes, resulting in constant distribu-
tions of the transverse-shear strain measures1°fheder shape functions accommodate Eq. (5)
for uniformly distributed transverse loads, givinge to linear distributions of the transverse-
shear strain measures.

A frame element is referred to a local axial caumﬁiaxD[O, Le] where® denotes the

element length. Furthermore, a non-dimensional dinate ¢ = (2x/ Le—l)D[—l,J] is used to

define the element shape functions (Figure 3).ifiial nodal configurations are defined by the
two end nodes, 1 (at=-1) and 2 (at¢ =+1) and one or three interior nodes. Thus, theainiti

configuration for the B-order element has the interior nodéat the midspané = 0); whereas
the interior nodes of the“brder element areg (at £ =-1/2),r (at £ =0), ands (at £ = +1/2) .

£=-l '—91 CE

|
1
*

O

r

Q

Le

|
2
]
|

Figure 3: Inverse finite element geometry and ntmablogy.

The initial nodal configurations of thé"0and f-order elements are readily reduced to two
nodes and twelve dof by condensing out the intetadts at the element level, Eg. (13), in a

manner analogous to static condensation. The irggudtements have three-displacement and
three-rotation dof’s at each end node (Figure 4)

u u
A% \4
w w
0. ¢ * e,
0, 0,
02 il 02 2

Figure 4: Two-node inverse finite element.

3.1 0Morder eement

The formulation of the ®order element is guided by Eq. (5) for the loadiage of end-
node forces and moments. For this case, the ade ftwisting moment, and shear forces are
constant along the element; whereas the bendingemisnare linear. Equations (5) in terms of

8
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the strain measures (after Eqg. (4) have been intemt) indicate that the strain measwgds=1,
4-6) are constant, arel (i=2,3) are linear. From Eq. (3), it is deducedtih and 8, are linear,

6, and 6, parabolic,v andw cubic.
Thus,u and 6, are interpolated using the linear Lagrange polyatsn¥ (&) (i =1,2)

u(¢)=2, L (é)u

i=1,2

0.(¢)= 2 L (¢)e,

i=1,2

(15)

The polynomial degrees for the deflectionrandw, and bending rotatiorg, and,, variables
are interrelated: ifv andw are defined by cubic polynomials, thén and &, need to be repre-

sented by quadratic polynomials to form consistéeie of locking, transverse shear-strain
measures,, g (This is a key requirement of the interdependetdrpolation strategy, 1IS.)

Thus, the remaining kinematic variables, which é&ndimth bending and shear deformation
along thex andy orthogonal directions, are interpolated as

v(§)=2 L (E)v - 2 NP(&)8,

i=1,2 =1 2

W(f):z L‘”(f)w+_2 NP (£)8,
i=1,2 j=1r ,2 (16)
Hy ({) = Z L(J'Z) (5) Hyi

j=1r,2

6.(¢)= 2. LP(¢)e,

j=1r,2

where L'? (£) are standard quadratic Lagrange polynomials, Mfit{&) (j=1r,2) are spe-

cial-form cubic polynomials; these functions areagied from standard cubic Lagrange poly-
nomials by enforcing the transverse shear-stramsores to be constant along the element, i.e.,

e = (V\{X + By) = const 17)
& =(v,—8,) = const

The expression fot” (&), L'? (&), andN® (&) (i=1,2; j=1r ,9 are summarized in the
Appendix. The element has fourteen dof's, six @heslement end, plus the rotatiof}s and
g, at the element’'s midspan
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;
v ={u, v, W, 8,,6,,,6,,,6, .6, .U, v, W, 8,, 8, 6} (18)

yr?

Thus, in order to achieve a two-node element witbivte dof's (Figure 4), the internal dof’s,
6., 6 _,are condensed out statically.

yri Yzr

3.2 1%order dement

Consider a frame element loaded by uniformly disted transverse loadg,(x) and
0,(x) . From Egs. (5), after the substitution of Eqgs, 4y readily deduced thag(,e,) need to
be linear and &,,e,) parabolic. Theu andg, variables remain linear and interpolated by Eq.
(15). Moreover,¢,w) and @,, 6,) are respectively quartic and cubic, and arepalated as

v(é)= 2, LI(é)w

k=1,9,r,s,2

wi§)= 2, LI(S)w

k=1,q9,r,s,2

6,()=310(£)6,+ 3 N (&)w

i=1,2 k=1grs.2

6,(6)=Y ()8, X N(9v,

i=1,2 k=1grs,2

(19)

Whereﬁ(ks)(f) (k=1,q,r,s,2 are cubic polynomials that satisfy the conditi¢fus the de-
tailed expressions, refer to the Appendix)

e, (V\(X +9y) = linear

20
& =(\/'X —HZ) = linear (0)

Interpolation described by Egs. (15) and (19) leadsformulation with eighteen dof’s

0o ={uy, v, W B, 60,0, v W VLW LY LWLy W, B, 6 (2D)

The interior dof's are condensed out at the elereel, leading again to a twelve dof's inverse
element (Figure 4).

4 INPUT DATA FROM SURFACE STRAIN MEASUREMENTS

A key step in the iIFEM formulation is to compute strain measures due to experimentally
measured surface strains. Herein, the relationgi@pseen the measured surface strains and the
six strain measures, are established. Also discussed are strain-gaogjgons along the frame
axis and their angular orientations that enablectimplete description of the experimental strain

10
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measures. The present analysis is restricted noefraembers with circular cross sections; the
cylindrical coordinate syster(rﬂ, X, r) is shown in Figure 5.

AZ

Ve

el Y

Figure 5: Orthogonal and cylindrical coordinatetayss.

4.1 Strain measuresfrom linear strain gauge measurements

Taking the usual assumption of negligilate ando,, o, andr,, are the only non-zero

stress components acting on the external surfac,,, (Figure 6(a)). The corresponding strain
state is (Figure 6(b))

g, 14 T
£ =%, g=-—0,=-VE, Vy="2% (22)
E E G
€y
Lo 7'\ i
% &
x6 = X
Tx 0 = 0 g 7 Rext »
r_Rext X > —— @ = —>
— — x &, *
o X TX 0 7/ x6
—
’ V6
TX9 P2l
0
0
(a) Stress state. (b) Strain state.

Figure 6: Stress and strain states on the franegrettsurfacerER.,) in the cylindrical coordinate system.

Consider a linear strain gauge placed on the extsurface aik = x , at a particulag and with
an anglef with respect to the beam axis (Figure (75;1 X5, x3) is a local Cartesian coordinate
system havingk,-axis along the strain gauge measurement axiaxis on the frame surface
and x,-axis normal to the frame surface and coincidetit waxis.

11
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Figure 7: Location and coordinate system of a fisg@in gauge placed on the frame external surface

Using the appropriate strain-tensor transformatiénosn the(6,x,r) to (x,, %,, %) coordinates
[28], the relationship between the measured s&raiand the strain tensor in Eq. (22) becomes

£,=€,C0S B +¢&, sif B +y, cog sif (23)
or, using the second of Egs. (22),

£, =&, (cos2 L -V sirt ,B) +y, COB s (24)
Expressing Eqg. (2) for=R_,,, yields [23-25]

£, =6+ gR,sind+ ¢ R,cod

. (25)
Vi =€,C080 - § Sind+ g B,

Substituting Eq. (25) into Eq. (24) results in thkiation between the measured strgjnand the
Six strain measures at= x

where the following notation has been useg= cosf, s, =sind, c; =cosf, s, =sinS.

12
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4.2 Strain gaugedistributions

The 0"-order element, having constagt e,, e, ande, and lineare, ande,, requires eight

strain measurements. This number may be reducad by invoking the moment-shear equilib-
rium equations, Eq. (5). Substituting Eqg. (4) iBtp (5) results in

De.=Ge Dg,=Ge¢ (27)

The T-order element has constagtande,, lineare, ande,, and paraboli@, ande, , thus

requiring twelve strain measurements. For this eld@neach of the equations in Egs. (27) is lin-
ear inx, thus four constraint equations are obtained;niimaber of the strain-gauge measure-
ments is thus reduced from twelve to eight. Thzcedure should be viewed as a convenient
means of reducing the required number of strairggsuby solving foe, ande, analytically

rather than measuring these quantities experinigngihce the magnitudes ef ande, are

generally much smaller compared to the bendingnstn@asures, this treatment should be quite
adequate for both static and dynamic applicatitms$Section 5, the validity of this constraint
strategy for dynamically loaded beams is examinegthtitatively.

Since the strain gauges can be placed anywherg #henbeam surface, the distributions
summarized in Table 1 are considered in this sfatio refer to Figures 8 and 9); additional
strain-gauge locations have been examined in T2}efer to a specific combination of the ele-
ment type and strain-gauge configuration, a compatettion, #-#E, is used; where the first posi-
tion, #, refers to the element order (O or 1),9beond position, #, indicates the number of strain
gauges per element (6 or 8), and the letter “Eitatds that Egs. (27) have been used in the for-
mulation. The strain gauges are placed at diffggesitionsx = (L%3, L%2, 2.%3) along the ele-
ment. The strain-gauge angular orientatiochg) are also allowed to be different; for example,

(6,5) = (-2i/3, 174) indicates that the strain gauge is placed atcttcumferential anglé:-
2173 and is oriented with an angbe 174 with respect to the frameaxis (Figure 7).

Element- | Orientation @, 3) of | Orientation @, 3) of | Orientation @, ) of
strain gauge  strain gauges at strain gauges at strain gauges at
notation x=L%3 x=L%2 x=2L%3
(-2173,0), (-273,174),
0-6E - (0,0), (O174), -
(2173,0), (273,174)
(-2173,0), (-273,174),
1-8E (-2rv3,174) (0,0), (O174), (21v3,174)
(2173,0), (273,174)

Table 1: Strain-gauge distributions §,(3) corresponding to thé"0and ' —order elements.

13
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Figure 9: 1-8E strain gauge distribution.

5 NUMERICAL RESULTS

A simple cantilevered beam subjected to dynamidit@pis analyzed to assess the accuracy
of the inverse finite element method. The beamaslemof an aluminum alloyeE€73,000 MPa,
v =0.3, andp=2557 Kg/ni) and has a thin-walled circular cross-section withaverage radius
R=39 mm, wall thickness=2 mm, and length=800 mm. The beam is fully clamped on one
end and subjected at the other end to a harmorticaldorceF,(t) (wheret denotes time) act-
ing in thez-direction at frequenciy, i.e.,

F,(t) = Fsin( 27f t) (28)

where F,, is the force amplitudeR,, =10’ N.) To simulate the experimental-strain measure-

ments and to assess the accuracy of the inversed)dtigh-fidelity forward FE analyses are
performed using QUAD4 shell elements in MSC/NASTRANMe model consists of 114
elements along the cross-sectional circumferende3é0 elements along the beam axis, for a
total of 41,040 elements and 41,156 nodes. Thiotge is applied at the cross-sectional cen-
ter at a node which is connected to all other ned#sn the cross-section by means of multi-
point constraints (or MPC’s) [29].

The dynamic response of the beam is calculated wendal transient analysis keeping the
modes up to 5,000 Hz, with the inclusion of viscdasping of magnitude 5% with respect to
the critical value at each frequency. In the fregyerange from 0 to 5,000 Hz, 51 modes are
present: these include the first lowest flexurarbemodes, 1F-5F, appearing twice due to the
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cross-section symmetry, and the first membrane r(idd¢ Table 2 summarizes the order of the
global modes, their type, and corresponding frequemlue f ; the first three flexural mode
shapes are shown in Figures 10-12. The other modhe same frequency range are associated
with the shell modes describing the cross-sectidisébrtion.

Mode order 1%tand 2¢ | 3%and 4" 15" mode 13"and | 30"and | 40"and
modes modes 14" modes| 31 modes| 415 modes

Mode type 1F oF M 3F 4F 5F

[L';r]eq”ency 126.8 7295 1,670 1,835 3,187 4,671

Table 2: Global modes of the cantilevered bearharfriequency range of 0-5,000 Hz. (F-type modeflexaral;
M-type modes are membrane.)

V4
y
X
Figure 10: ¥ flexural mode (1F,f = 126.8 Hz).
4
y
X
Figure 11: 2 flexural mode (2F,f =729.5 Hz).
4
y

Figure 12: 8 flexural mode (3F,f =1,835 Hz).

To investigate the accuracy of the iIFEM modelingdgnamic applications in both low- and
high-frequency regimes, three different valueshef applied-force frequendy have been con-
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sidered, namelyf,=60 Hz (about half of the fundamental frequen&n450 Hz (halfway be-
tween 1F and 2F modes), digdl,400 Hz (halfway between 2F and 3F). Figures3.8dimpare
the tip-deflection time histories,(t), calculated by means of a high-fidelity FEM Ish@odel
using MSC/NASTRAN and the corresponding iFEM fragtement models. The tip deflection
of the NASTRAN model corresponds to the cross-eeaticenter, and is computed at a node
which is connected to all other nodes within thessfsection by means of MPC’s. The present
IFEM models used the strain-gauge distributiongable 1 and the uniform weight coefficients

A=1 (k=1,...,6)in Eq. (9); the strain values were taken from tbees (at the specific loca-

tions in Table 1) of the NASTRAN model. It is notddht slightly more accurate strain values
reside at the element Gauss points. However, d@emsg the high fidelity of the reference FEM
model, the “measured” strains taken at the nodegquite satisfactory.

For the low-frequency loading =60 Hz, a single Border inverse element gives accurate
results, with a maximum error in the tip deflectioin2.3% (Figure 13). At this excitation fre-
quency, whert > 0.1, viscous damping has reduced the structural wimsitto a steady state
response, proceeding at a constant amplitude andamme frequency as the forcing function.
When the excitation frequency of the forcing fuostis increased, the response has a longer
transient region, which is manifested by interaibetween the natural modes of vibration and
those due to the applied dynamic loading. To mtdeltransient response at higher frequencies,
finer discretizations are required. Thus, fior 450 Hz, a two-element®brder model yields a
1.1% error in the maximum deflection (Figure 14}. tAe f,=1,400 Hz frequency, a three-
element iFEM discretization using th& brder element results in the maximum deflectisore
of 1.3% (Figure 15). These results clearly demaisstthat the methodology is highly efficient,
requiring only few inverse elements and strain-gaoggasurements, and is applicable not only
for the steady state portion of the response Isotfal the transient regime at high frequencies.

@  NASTRAN
iFEM0-GE (1 el.)

(mm)
(]
1

mag

w

max

——

0 0.05 0.1 0.15
t (zec)

Figure 13: Tip deflection w, of the beam loaded by a transverse concentrateel fpatf,=60 Hz.
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o NASTRAN
iIFEM 1-8E (2 el.)

15¢

0.5

W, (mm)
(=)

-1.5

1 | | 1 |
0 0.01 0.02 0.03 0.04 0.05 0.06
t (sec)

Figure 14: Tip deflection w, of the beam loaded by a transverse concentrateel Fpatf;=450 Hz.

08 o NASTRAN H
W, iIFEM 1-8E (3 el.)
? max I
% & & L
06 é F ] .
04 .
£ o2} 1
%
;}E
0 -
0.2+
041 1
1 |
0 0.005 0.01 0.015

t(zec)

Figure 15: Tip deflection y of the beam loaded by a transverse concentrateel Fpatf;=1,400 Hz.
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6 CONCLUSIONS

In search of a suitable computational method fa ums Structural Health Monitoring
(SHM) systems, an inverse Finite Element MethodEK#F has been formulated to perform
the displacement-field reconstruction analysis gehsensing) of three-dimensional frame
structures undergoing dynamic motion. The methagioloses a least-squares variational
principle, which is discretized by’@ontinuous displacement-basiederseframe elements.
Linear strain-displacement relations and their congmts, known as strain measures, are
based on the Timoshenko (first-order) shear defoomaheory that includes the deforma-
tions due to stretching, torsion, bending, andsvarse shear. The variational statement en-
forces experimentally measured strains to be leqs&re compatible with those interpolated
within the inverse frame elements. The implemeatatf this least-square compatibility is
accomplished using the individual strain measures.

Two inverse frame elements, each having two noddstaelve dof’s, have been devel-
oped. The Oth-order element has a shear-strainureaghich is constant along the element
length; whereas the 1st-order element has a lisleaar-strain measure. The element shape
functions are based on interdependent interpolatilbat ensure free-of-shear-locking bending
of slender frame members. The element interpolatioier is linked to the definition of the
number and orientation of the uniaxial strain gautlat are necessary for the analysis. Two
simple and effective strain-gauge distributionséhaeen selected and used in the numerical
examples.

The present shape-sensing capability has been dtratmd on a thin-walled, circular
cross-section cantilevered beam subjected to hacneauitations in the presence of structural
damping. To provide theimulatedstrain-gauge measurements, as well as the retedine
placements, a high-fidelity shell finite element deb was developed using the
MSC/NASTRAN commercial code. Low- and high-frequgrlynamic beam motions were
analyzed and time history of the tip deflectionrexeged, comparing several iFEM discretiza-
tions and strain-gauge schemes. The iIFEM shapeagemsalysis, which is based only on the
strain-displacement relations and the measurethsteda (without any reliance on the mate-
rial, inertial, or damping properties of the stuwref), has been shown to be highly effective
and efficient in predicting the dynamic structurasponse of a damped beam. Accurate pre-
dictions of both the steady-state and transientarese required only few elements and strain-
gauge measurements, where the higher-frequencyagens necessitated somewhat higher
fidelity of the iFEM models.

Although beyond the scope of the present effodjtamhal studies need to be performed,
including: (a) shape-sensing analysis of spateh# structures using the strains measured in
a laboratory, and (b) studies of the strain-gauggiblutions that provide optimal (or nearly
optimal) solutions.
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APPENDI X
The £, 2™ and 4-degree Lagrange shape functions are given as

« 1%degree

[0, 10]={(2-€) (1+4)] (A1)

« 2"degree

[0 =2 (-1 2 1-¢7) £(¢+ 3] (A2)

o 4" degree

(L0 L] =2 (4 -9[(¢ -9 (£ + 1]

: (A3)
[0 ]=5(1-e7) 4 (2-9 3+ €7) 4( 2+ )1

whereé = 2x /L°-10[-1,1 is a non-dimensional axial coordinate;] [O, Le} andL® denotes

the element length. The subscripts 1 and 2 représeend nodes, wheregg, ands denote the
uniformly spaced interior nodes.

The 3" —degree shape functior,” (¢), of the &-order element have the form

3 a3 a3 L 2
[NO NS NO = (1) [(26-9 -4 ( 2+ 3] A4

whereas thal, (¢) shape functions of thé“brder element are

[Nig),Nc(13),Nr(3),|_\ls(3),_’\é3)}Esie (1_52)[(45_3 4 F-3 28 oo+ 3, & )}(AS)
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