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Abstract. Arlequin method is a modeling framework based on the combination of concurrent
multiscale and multi mechanical models. It is a general application of overlapping domain de-
composition. The choice of the coupling operators written in common areas between different
models provide the main key to ensure the continuity of displacement, velocity, and equilibrium
of forces. Using overlap coupling methods in the context of structural dynamics is advanta-
geous when treating dissimilar domains, mainly when wave propagation between the different
models is taken into consideration. In this paper we propose to couple and analyze different
numerical time schemes using the Arlequin method. Numerical studies, based on multiscale
and multimodel space coupling are used to exemplify the efficiency of our approach.
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1 INTRODUCTION

Performing numerical simulations of the dynamic response in rotating machinery is mostly
based on beam structures representing the coarse model.
Taking into consideration local physical phenomena occurring at microscopic levels such as
crack propagation or contact requires a fine three dimensional modeling of the structure. On
the other side, carrying out calculations on very finely meshed models can be very expensive in
computational terms.

Many adaptive methods [1] proposing solutions for this kind of multiscale studies have been
developed in order to enhance the accuracy of the numerical approximations and also reduce
CPU (Central Processing Unit) and memory problems. But in spite of their main advantage,
these multi-meshes methods are considered very expensive to implement in practical computa-
tions.

An other approach is offered by multiscale methods. The main idea is to have one global do-
main with a coarse mesh, including a zone of interest where a very fine mesh is super-imposed.
These methods are to divide into two major classes: the first one is based on coupling domains
at discrete interface [2], and the second consists on using an overlapping zone [3] where the two
interfaces are superposed.

Arlequin method [4] is developed in the context of multiscale overlapping methods. Using
a partition of models, this approach provides a progressive passage between different models
with enhanced flexibility by means of multiple parameters [5]. In static and dynamic cases, Ar-
lequin method gives the possibility of coupling dissimilar models with concurrent scales such as
2D-1D and 3D-1D models. In dynamic studies, it presents an important ability to treat problems
where aspects like wave propagation are taken into consideration. It has been shown in [6], that
if the coupling parameters of this method are correctly used, wave transition is guaranteed and
problems of spurious reflections are avoided while transiting between models.

Moreove, being capable of coupling different models where each one has its own time inte-
gration scheme is a very important aspect. It can be considered as a first step for introducing
different time discretizations, as well as a main key for coupling multiple finite element codes.
Extending the Arlequin method to such application can be very advantageous.

In this study, we will visit energy conservation aspects for continuous and discrete Arlequin
formulations. Then we will analyze the energy balance of the Newmark [10] algorithm while
coupling different Newmark schemes, and propose a formalism for coupling different time in-
tegration schemes in the Arlequin framework.

Based on this formalism, two numerical applications are presented. The first one considers
a multiscale coupling of two bar models. The second concerns a multimodel coupling of con-
tinuous 2D and beam structures. Future industrial applications of this work will mainly be used
in the domain of rotor dynamics where multimodel coupling authorizing multiscale time inte-
gration is believed to be useful for such studies.
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Figure 1: 1D-1D mesh coupling.

Figure 2: 2D-1D mesh coupling.

2 ARLEQUIN CONTINUOUS FORMULATION IN DYNAMIC REGIMES

An Arlequin-based mechanical study consists in dividing a global model Ω into two or more
sub-domains Ωi. These sub-domains have a common overlap area S.
Considering two domains Ω1 and Ω2, the overlap is equivalent to their intersection S = S1∩S2.

In general terms, the Arlequin formulations are obtained by three main steps:

• super-imposing a local model Ω2 to a global one Ω1 in a zone of interest S.

• distributing the mechanical energies between the overlapping sub-systems by means of
partition of unity functions.

• gluing the models in a part Sg of S.

We note that for the numerical applications presented in this paper, the gluing area Sg is equal
to the overlapping zone S (external junction).
We consider a time dependent problem, where Ω1 and Ω2 are subjected to a field of volume
density of forces fi (i = 1, 2) and clamped in a non zero measured part Γ1 of its boundary dΩ1.
We denote W1 and W2 as the spaces of kinematical admissible fields related to Ω1 and Ω2, and
M the Lagrange multiplier space called the mediator space (for more details on these definitions
we refer to [7]):

W1 =
{
v1 ∈ H1(Ω1); v1 = 0 onΓ1

}
(1)

W2 = H1(Ω2) (2)

Based on the Virtual Work Principle (VWP), the classical continuous Arlequin formulation con-
sists in finding the admissible displacement fields u1 and u2, as well as the Lagrange multipliers
fields λ.
It can be written as follows:

Find (u1, u2, λ) ∈ W1 ×W2 ×M ; (3)
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∀(w1, w2, µ) ∈ W1 ×W2 ×M, (4)

Gdyn(u1, w1, u2, w2, α) +Gint(u1, w1, u2, w2, β) +Garl(λ,w1, w2) = Gext(w1, w2, ϕ) (5)

Garl(µ, u1, u2) = 0 (6)

Weight parameters α, β, and ϕ ∈ [0 1] used to distribute energy between different models are
defined by two main properties:

• α = β = ϕ = 1 in Ω|Sg

• 0 < α, β, ϕ < 1 in Sg

We note:

• α2 = 1− α1

• β2 = 1− β1

• ϕ2 = 1− ϕ1

Gdyn , Gint , Garl , Gext represent respectively the work of inertial forces, the work of the internal
forces, the work of the Arlequin forces, and finally the work of the external forces applied on
the different models. They are defined by:

Gdyn(u1, w1, u2, w2, α) =
∫

Ω1

α1ρ1ü1w1dΩ1 +
∫

Ω2

α2ρ2ü2w2dΩ2 (7)

Gint(u1, w1, u2, w2, β) =
∫

Ω1

β1σ(u1) : ε(w1)dΩ1 +
∫

Ω2

β2σ(u2) : ε(w2)dΩ2 (8)

Gext(ϕ,w1, w2) = f1(w1) + f2(w2) =
∫

Ω1

ϕ1f.w1dΩ1 +
∫

Ω2

ϕ2f.w2dΩ2 (9)

Garl(λ,w1, w2) =< λ,w1 − w2 > where <,> represent a coupling operator (10)

Where σ(u) and ε(u) respectively denote the strain and stress tensors associated to the displace-
ment field u.

2.1 COUPLING OPERATORS

Constructing the coupling matrix is a main step in the application of the Arlequin method
especially when a multimodel coupling is taken into consideration (2D or 3D models coupled
with 1D models). The gluing volume of displacement field is treated in a natural way by intro-
ducing the Lagrange multiplier field.
Several operators are proposed for coupling models in the context of the Arlequin framework
[4], [5], [7], [8]. We define u as the general displacement vector formed of u1 and u2. The three
main operators are presented as follows:

L2 coupling Garl =
∫
Sg

λ.u dSg (11)

H1 coupling Garl =
∫
Sg

[
λ.u+ l2ε(λ) : ε(u)

]
dSg (12)
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where l is a strictly positive parameter homogeneous to a length.

Energy coupling Garl =
∫
Sg

σ(λ) : ε(u) dSg (13)

Depending on the application, L2 coupling may introduce ill conditioning of the global stiffness
matrix. This can be treated in an artificial manner by introducing an homogenous parameter (H1

coupling), or in a more natural way by using the energy coupling.
The three operators listed above are tested in the context of our applications (2D-1D an 1D-1D
coupling). In general terms, they all present similar results.

3 ENERGY CONSERVATION: CONTINUOUS ARLEQUIN FORMULATION

In this section we will write the energy conservation in a transient dynamic regime while
using the Arlequin continuous framework.

Considering the same problem presented in the section 2 but with no external loads, the ex-
pression of total mechanical energy (Etot) of the system is given by:

Etot = Ekinetic + Epotential (14)

where kinetic and potential energies are respectively defined as:

Ekinetic =
∫

Ω1

1

2
α1ρ1(u̇1)2dΩ1 +

∫
Ω2

1

2
α2ρ2(u̇2)2dΩ2 (15)

Epotential =
∫

Ω1

1

2
ρ1σ(u1) : ε(u1)dΩ1 +

∫
Ω2

1

2
ρ2σ(u2) : ε(u2)dΩ2 (16)

We assume that the constitutive material follows a hooke’s law:

σi = Dε(ui) (17)

with D the elastic constant matrix.
The derivative of the total energy formula with respect to time gives:

dEtot
dt

=
∫

Ω1

α1ρ1u̇1ü1dΩ1+
∫

Ω2

α2ρ2u̇2ü2dΩ2+
∫

Ω1

ρ1σ(u1) : ε(u̇1)dΩ1+
∫

Ω2

ρ2σ(u2) : ε(u̇2)dΩ2

(18)

We assume that virtual fields are equivalent to velocity fields w1 = u̇1 and w2 = u̇2.
Comparing (18) and (5) enables us to write:

dEtot
dt

= − < λ, u̇1 − u̇2 > (19)

For λ = µ, the derivative of (6) gives:

dGarl

dt
=< λ, u̇1 − u̇2 > + <

dλ

dt
, u1 − u2 > (20)
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Assuming λ as a time independent field, the second term of 20 is reduced to zero, and we are
capable to write the energy conservation as:

dEtot
dt

=< λ, u̇1 − u̇2 >= 0 (21)

Based on (21), we proved that in a general case, when the Lagrange multiplier field is time
independent, the Arlequin framework provides an energy conservation of the global problem.

4 DISCRETIZED PROBLEM

In the following sections, we consider the energy coupling (13). This choice is based on
several study results realized in the context of our 2D-1D and 1D-1D applications, and on the
homogeneity between the ingredients of this operator and the quantities evaluated in (8).
We now introduce the spatio-temporal discretizations corresponding to (5) and (6). We take
into consideration the effect of the damping matrix:

M1ü
1
n+1 + C1u̇

1
n+1 +K1u

1
n+1 + Lt1λn+1 = f 1

n+1/ext (22)

M2ü
2
n+1 + C2u̇

2
n+1 +K2u

2
n+1 + Lt2λn+1 = f 2

n+1/ext (23)

L1u
1
n+1 + L2u

2
n+1 = 0 (24)

In this discretized equation system, Mi, Ci, and Ki are the mass, damping, and stiffness matri-
ces of the system, and f in+1/ext is the external load vector. Li matrices are the Arlequin coupling
matrices (24) acting on the displacement fields in this case.

We note that the different matrices figuring in (22) and (23), with the exception of the Li ma-
trices, are weighted by the mean of the weight parameters defined in section 2. Ci matrix has
a special importance in the rotor dynamics domain since it can contain the gyroscopic terms
essential for such studies.

5 NUMERICAL INTEGRATION

For our two applications we apply the Gravouil-Combescure [14] method for coupling two
sub-domains with different Newmark integration schemes and the same time scale.

5.1 Problem statement

Tests realized on the 2D-1D and 1D-1D couplings show coherent results and balanced energy
Newmark algorithm when the average acceleration method is applied or when the same scheme
is used for both models. However, when different Newmark schemes are involved, the energy
balance is no more respected and differences caused by the work of the gluing forces appear.

5.2 Energy balance of the Newmark algorithm

Ideally, a single-step time integration algorithm should lead to a similar energy balance equa-
tion for finite increments. Using ([11]), we will establish the energy balance for multi-Newmark
scheme coupling. Our main goal is to focus the contribution of the Arlequin forces in this equi-
librium equation.
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The work of these forces at the interface between the overlapping domains leads to undesirable
energy dissipation effects. The discrete form of the energy balance equation involves the incre-
ment of the mechanical energy over the time interval from tn to tn+1. This increment can be
expressed in terms of mean values and increments of the displacement and velocity as follows:

∑
i=1,2

[
Ei
c + Ei

p

]n+1

n
=
∑

i=1,2

[1
2

(u̇i)tMi(u̇
i
n) +

1

2
(ui)tKi(u

i)
]n+1

n
(25)

=
∑

i=1,2

[
(
1

2
(u̇in+1 + u̇in)tMi(u̇

i
n − u̇in+1) +

1

2
(uin+1 + uin)tKi(u

i
n − uin+1)

]
(26)

Using different ingredient of the Newmark scheme, the energy balance equation taking into
consideration the contribution of the gluing forces at the interface can be written as following:

∑
i=1,2

[1
2

(u̇i)tMi(u̇
i
n) +

1

2
(ui)tKi(u

i) + (βi − 1

2
γi)

1

2
(4t)2(üi)tMi(ü

i)
]n+1

n
(27)

=
∑

i=1,2
(4ui)t

[(
f̄ i + (γi − 1

2
)4f i

)
(28)

−
∑

i=1,2
(4ui)t

(
Ltiλ+ (γi − 1

2
)Lti4(λ)

)
(29)

−
∑

i=1,2
(γi − 1

2
)
{

(4ui)tKi4ui + (βi − 1

2
γi)(4t)2(4üi)tMi(4üi)

)
(30)

−
∑

i=1,2
(4ui)tCi

{
1

2
(u̇in+1 + u̇in) + (γi − 1

2
)4u̇i

}
(31)

where
4f i = f in+1 − f in
4λ = λn+1 − λn
4u = un+1 − un
f̄ i = 1

2
(f in+1 + f in)

λ = 1
2
(λn+1 + λn)

Terms in (27) are the total mechanical energy plus a conservative Newmark term. In (28) and
(29) , we respectively have the work of the external forces and the work of gluing forces. In
(30) we have a Newmark dissipative term, and in (31) the contribution of the damping matrix.
We are mainly interested in (29). It represents the Arlequin contribution and it will be studied
in details in the next section.

In order to show conservative terms on the left side of Newmark’s energy balance, and dis-
sipative terms on the right side, we can express (30) with quadratic terms.
If the mass matrix Mi is replaced with an equivalent mass matrix M∗

i defined by:

M∗
i = Mi + (γ − 1

2
)hC (32)

Equations (27) to (31) can be written as:∑
i=1,2

[1
2

(u̇i)tM∗
i (u̇in) +

1

2
(ui)tKi(u

i) + (βi − 1

2
γi)

1

2
(4t)2(üi)tM∗

i (üi)
]n+1

n
(33)
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=
∑

i=1,2
(4ui)t

[(
f̄ i + (γi − 1

2
)4f i

)
(34)

−
∑

i=1,2
(4ui)t

(
Ltiλ+ (γi − 1

2
)Lti4(λ)

)
(35)

−
∑

i=1,2
(γi − 1

2
)
{

(4ui)tKi4ui + (βi − 1

2
γi)(4t)2(4üi)tM∗

i (4üi)
)

(36)

1

2
∆t

{
∆t−2∆utC∆u+

1

4
(u̇n+1 + u̇n)tC(u̇n+1 + u̇n)

}
(37)

− 1

2
(βi − 1

2
γi)

{
(γi − 1

2
)2 − 1

2
(βi − 1

2
γi)
}

∆t3∆ütC∆ü (38)

Now we have a Newmark energy balance system with conservative and dissipative terms re-
spectively on the left and right side of the equation.

6 ARLEQUIN INTERFACE WORK

The contribution of the Arlequin gluing forces at the interface appear in the Newmark energy
balance equation and it is given by:

W arl
inter =

∑
i=1,2

(4ui)t
(
Ltiλ+ (γi − 1

2
)Lti4λ

)
(39)

We can re-write this term as an interpolation of λ between n and n+ 1 as follows:

W arl
inter =

∑
i=1,2

(4ui)t
(
Ltiλ+ (γi − 1

2
)Lti4λ

)
=
∑
i=1,2

(4ui)tLti
(
γiλn+1 + (1− γi)λn

)

= (4u1)tLt1
(
γ1λn+1 + (1− γ1)λn

)
+ (4u2)tLt2

(
γ2λn+1 + (1− γ2)λn

)
(40)

=
(
(4u1)tLt1γ

1 + (4u2)tLt2γ
2
)
λn+1 +

(
(4u1)tLt1(1− γ1) + (4u2)tLt2(1− γ2)

)
λn (41)

In order to find a solution to the problem statement (5.1) we have to be able to use the Arlequin
condition (24).
In (41) we can notice that the presence of γ1 and γ2 makes the factorization unrealizable and
the use of the Arlequin condition impossible.
Based on [13], we propose to introduce a time independent Lagrange multiplier field λn+γ .
In other terms, between two successful time steps, λn+γ is a constant field.
Equation (39) can now be written as:

W arl
inter =

∑
i=1,2

(4ui)tLtiλn+γ (42)

If the numerical integration conditions are well respected, between two successive time steps,
Arlequin condition (24) gives:∑

i=1,2

(Liun+1) = 0 and
∑
i=1,2

(Liun) = 0 (43)
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Now we have (42) equivalent to zero.
In this section we have demonstrated that by the mean of a time independent Lagrange multi-
plier field, the work of the Arlequin gluing forces is reduced to zero while using two different
Newmark schemes and a space recovering method.

6.1 A PRACTICAL WAY TO ENFORCE THE INTERPOLATION OF λn+γ

The idea proposed in the last section, is a theorical framework permitting the suppression of
undesirable interface effects. But no indications concerning constant value of the time indepen-
dent field λn+γ are presented.
We will now suggest a method which aims to determine a general form of λn+γ . This form
should be applicable on both models and on the gluing zone.

Based on (41),
λn+γ = (γiλn+1 + (1− γi)λn) (44)

we define λn+γ as follows:

λn+γ = (γ∗λn+1 + (1− γ∗)λn) (45)

One can notice that with this definition, according a value to λn+γ is equivalent to according a
value to γ∗.
In order to stay coherent with the partition of unity used for spatial gluing part, we propose to
weight the Newmark parameters γ1 and γ2 with a weight parameter ξ.

By means of this approach we will have:

• γ∗ = γ1 in Ω1|Sc ;

• γ∗ = γ2 in Ω2|Sc ;

• γ∗ = ξγ1 + (1− ξ)γ2 in Sc;

Figure 3: Wave propagation.

We are now able to write (42) as:

W arl
inter =

(
L1(4u1) + L2(4u2)

)
γ∗λn+1 +

(
L1(4u1) + L2(4u2)

)
(1− γ∗)λn (46)

We can notice that (46) is very similar to (41). The main difference is that in 46 the Arlequin
conditions can take effect and suppress the undesirable energy dissipation introduced at the
interface.
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7 NUMERICAL APPLICATION

The proposed methodology here below, is applied for both 2D-1D and 1D-1D couplings.
We used two different dissipative Newmark schemes, and a unique time scale. Results were
validated by comparison with an analytic solution [9] of a free climbed bar model, undergoing
a constant concentrated effort at its free edge. The same work was realized with sinusoidal
loading.

Figure 4: Wave propagation.

In figure 5, the left graph shows the work of the gluing forces at the interface while using two
different Newmark schemes on the 1D-1D bar coupling. The right one represents the same
work but here we use the λn+γ introduced in section 5.1. We can clearly see that the numerical
dissipation disappear, and the contribution of the gluing forces at the interface is reduced to
zero. We can find the corresponding energy balance of the Newmark algorithm (figure7).

Figure 5: Arlequin interface work ; λn+γ Effect.

Graphs in figure 5 are generated for compatible bar meshes. Next results (figure 6) are obtained
when bar models presenting incompatible mesh are coupled. For both cases the contribution of
the Arlequin forces at the interface is negligible. But we can notice a degradation of the results
when incompatible mesh are used. Properly treating the numerical integration issue is the main
clue to address this kind of difficulties.
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Figure 6: Arlequin interface work - Mesh compatibility effect.

Energy balance equation (27) to (31) is represented in the figure 7. Both cases described in
figure 5 are reviewed in the global energy balance system. (Left term holds for (27) and right
term holds for (28) to (30)). The contribution of the gluing forces disappear on the right side
graph. On the other side, one can notice coherent kinetic and potential energy profiles. The
proposed method present satisfying results.

Figure 7: Newmark energy balance - 1D-1D coupling.

Other interesting aspects are currently being investigated. For instance, we are evaluating the
model’s response to high frequency solicitations and studying how do high frequency waves
transit between the different mesh scales.

The study was reviewed in the context of a multimodel 2D-1D coupling (Figure 8), and we
obtained similar results.
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Figure 8: Newmark energy balance - 2D-1D coupling.

8 CONCLUSION

In this article we propose a general formalism to couple different time schemes without
introducing undesirable numerical dissipation due to the gluing forces work effects at the in-
terface. This formalism authorizes multiscale/multimodel coupling since it is based on the
Arlequin method. Two applications (1D-1D and 2D-1D) were presented in order to exem-
plify the relevance of the method. An extension to a 3D-1D coupling is planned to be devel-
oped. Our main goal is to formulate a generale formalism leading to a space-time multimodel-
multiscale/multischeme coupling which guaranties a global energy balance of the system during
the resolution, in the context of the Arlequin method.
More elaborated applications are under progress and will be presented during the conference.
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