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Abstract. This paper deals with the problem of optimum design of a foundation for rotating 
machinery on a storey of a building with a view to minimize the level of standing-wave vibra-
tion in the building. The foundation is usually designed as a base plate for the machinery, 
with some resilient mounts fixed to the bottom of the base plate and supported by the floor of 
the storey in order to provide a suitable level of vibration isolation of the building. Due to va-
riable service speeds and the existence of non-balanced masses, the rotating machinery may 
be considered a source that within a given range of excitation frequencies excites forced vi-
bration of the foundation, and thereby the floors and walls, etc., of the building. The transmis-
sion of such vibrations through the building may result in undesirable sound emission and 
unsatisfactory comfort conditions for the people in dwellings and offices of the building. To 
remedy this, the objective of this work is to develop and implement a method of design optimi-
zation to determine optimum stiffness values of resilient mounts subject to constraints on 
availability of physical properties of material to be used. The design objective is chosen as 
minimization of the power transmitted from the machine to the floor of the building where the 
foundation for the rotating machinery is mounted. At the current stage of our project, this 
problem is only carried out for a given, quite simplified model of a building. However, for this 
building model, the design and performance of the optimized machinery foundation will be 
illustrated and discussed using several numerical examples. In the next stage of our work, a 
multi-material, parameterized building model will be developed with detailed dimensions and 
connections of components, and the current problem will be extended to encompass simulta-
neous design optimization of both the building and the foundation for the rotating machinery 
in order to minimize the level of standing-wave vibration in the building. 
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1 INTRODUCTION 

Rotating machinery in buildings is usually applied in central heating and ventilation sys-
tems, and larger machinery of this type including a pump is normally mounted on a founda-
tion, which is usually designed as a base plate for the machinery with some resilient mounts 
fixed to the bottom of the base plate and supported by the floor of the storey. Due to variable 
service speeds and the existence of non-balanced masses, the rotating machinery may be con-
sidered a source that within a given range of excitation frequencies excites forced vibration of 
the foundation, and thereby the floors and walls, etc., of the building. The transmission of 
such vibrations through the building may result in undesirable sound emission and unsatisfac-
tory comfort conditions for the people in dwellings and offices of the building. Aside from 
that, vibrations increase safety hazards in machinery, buildings and installations. The primary 
goals of vibration insulation are to restrict the detrimental effects of vibrations on people to 
within reasonable limits, and to protect sensitive apparatus and safety systems from excessive 
stresses from vibrations.  

Problems of design optimization of machinery foundations against vibration have been 
mainly studied from two aspects:  

1. Free vibration design, also termed as frequency design. This aims at keeping the oper-
ating frequency as far away as possible from the eigenfrequencies of the machinery 
mounting system by adjusting the mounting system in order to avoid resonance. It is 
usually realized by maximization of the fundamental eigenfrequency or frequency gaps 
between two consecutive eigenfrequencies of the machinery mounting system.  

2. Forced vibration design. The machinery mounting system is assumed to be subjected to 
a time-varying unbalanced mechanical loading, and this system will be designed by 
minimizing a chosen cost function describing the level of vibration response or trans-
mission. 

The problem of forced vibration design optimization of the installation systems of machi-
nery in buildings has been extensively researched under the assumption of a rigid supporting 
structure [1-3]. The design based on a rigid supporting structure model is reasonable for the 
installation of machinery in many real engineering situations. However, this rigid support 
based model may not be appropriate for the problem studied in the present paper where the 
machinery is to be installed on a relatively flexible floor of the storey in a lightweight build-
ing. Based on a flexible support model, Ashrafiuon [4] studied design optimization of aircraft 
engine-mount systems for vibration isolation, and Xie et al [5] considered optimization of the 
mounting system for microelectronics manufacturing equipment using the receptance matrix 
method. In these works, minimization of the transmitted force from the vibrating machine to 
the receiver is chosen as the design objective. In the work [6] it was suggested to choose the 
power flow as the cost function because it combines both forces and velocities in a single 
concept. Furthermore, the transmitted power from the unbalanced machine to the floor is 
closely related to the structural noise emission from the floor. Power flow is considered to be 
a more reasonable measure of the vibratory state in vibro-acoustic modeling. The power flow 
from a vibrating machine to different flexible receivers through resilient mounts is presented 
in the works [6-9].  

When rotating machinery is to be mounted on building floors rather than directly on a soil 
foundation, suitable resilient mounts should be provided as vibration isolation elements under 
the machine with a view to reduce the transmission of vibration. 

The design optimization of machinery mounting systems is studied in this paper. The sys-
tem consists of a rotating, unbalanced machine as vibration source, a mounting system as iso-
lator, and a flexible floor as receiver. By assuming a simple time harmonic excitation 
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generated within the machine by its operating mechanisms, it is convenient to characterize the 
individual sub-structures by their complex mobilities evaluated at the interfaces of contiguous 
sub-structures. The mobility is defined as the ratio of the complex amplitudes of the velocities 
and forces at any interface for a given frequency [10]. The physical quantities, such as veloci-
ties, forces and moments at the interfaces, are solved in terms of the mobility matrices of sub-
structures.  

A generalized mathematical model of mobility power flow is developed in this paper for 
evaluation of the response of the total system subjected to a given external excitation. In this 
model, the machine is modeled as a rigid mass subjected to a harmonically time-varying force. 
The base plate is assumed to be rigidly connected with the machine, and included in the mod-
eling of the machine. The mounting system of the machine is designed as some resilient sup-
ports fixed to the bottom of the machine and supported by the floor of the storey in order to 
provide a suitable level of vibration isolation of the floor. The flexible floor is modeled as an 
elastic uniform plate, and the driving point and transfer mobilities of the plate are adopted in 
the model. The degrees of freedom associated with flexural vibration of the supporting struc-
ture are of main interest because the flexural wave motion is usually dominating the sound 
radiation compared with the in-plane wave motion. 

The objective of minimizing vibration transmission is realized by sizing optimization of 
the stiffness coefficients of the resilient mounts. The design objective is chosen as minimiza-
tion of the power flow transmitted to the building floor through the resilient mounts at the ex-
citation frequency of the machinery. The design and performance of the optimized machinery 
foundation will be illustrated and discussed using several numerical examples.  

The rest of this paper is organized as follows. First, a generalized mathematical model of 
mobility power flow is developed in this paper. The formulation of minimization of transmit-
ted power flow is presented in Section 3. Section 4 presents a simplified parametric example 
only considering the vertical flexural motion, and a generalized optimization example with 
more degrees of freedom. In Section 5, a shape optimization problem of a pad that is placed 
on a flexible floor to support a resilient mount, is presented. Finally, observations and conclu-
sions are drawn based on the optimization results.  

2 A GENERAL MOBILITY FORMULATION OF THE MACHINERY MOUNTING 
SYSTEM 

A general model with a rotating, unbalanced machine as vibration source, a mounting sys-
tem as isolator, and a flexible floor as receiver, is developed for analysis and optimization of 
vibration transmission, see the model in Figure 1. The machine is modeled as a rigid body 
subjected to a harmonically time-varying force. The mounting system of the machine is de-
signed as some resilient supports fixed to the bottom of the machine and supported by the 
floor of the storey in order to provide a suitable level of vibration isolation of the floor. The 
flexible floor is modeled as an elastic uniform plate, and the driving point and transfer mobili-
ties [11] of the plate are adopted in the model. Figure 1 gives a representation of a vibratory 
rigid body resiliently mounted on a four-edge simply supported plate via multiple resilient 
mounts. The forces and velocities at the interface of the contiguous sub-systems are shown in 
Figure 2, where the arrows define the positive directions of the forces and velocities.  
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Figure 1:  A machine mounted to a flexible floor via multiple resilient mounts 

Figure 2:  Description of forces and velocities between three sub-systems: source, resilient mounts and receiver 

2.1  Rigid body 

A local coordinate system o o ox y z , cf. Figure 1, is adopted with origin in the center of grav-

ity of the machine. It is assumed that the machine is excited by a generalized concentrated 
force vector sF  with three force and three moment components acting at the center of gravity. 

The corresponding generalized velocity vector at the center of gravity is denoted as sV . 

  1 2 3 4 5 6, , , , ,
Ts s s s s s sF F F F F FF  (1) 

  1 2 3 4 5 6, , , , ,
Ts s s s s s sV V V V V VV  (2) 

where the superscript T represents the transpose of a matrix or vector. 
A number of resilient mounts are assumed to be attached to the bottom of the machine, and 

the generalized output force and velocity vectors from the rigid body to the resilient mounts at 
the n junctions are assembled in the vectors 
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  1 2 Ta a a anF F F F ,  1 2 Ta a a anV V V V  (3) 

Correspondingly, the generalized force and velocity vectors acting at the j-th resilient 
mount by the machine are bjF  and bjV , and each of them includes six components, respec-

tively.  
The dynamics governing equation of the rigid body [12] can be written in terms of the mo-

bility matrices, 

 11 12

21 22

s s s s

a s s a

     
    
     

V M M F
=

V M M F
 (4) 

where 1
11

1s

i
M J , 1

12

1s

i
M J R , 1

21

1s T

i
M R J , 1

22

1s T

i
M R J R . The symbol   is 

the excitation frequency, i  represents the imaginary unit, 1i   , R  represents the location 
matrix of the resilient mounting junctions with respect to the center of gravity of the machine, 
and J  is the general mass matrix. The time dependent term  exp i t  is omitted in the re-

mainder. 

2.2  Resilient mounts 

The resilient mounts are used as vibration isolators for minimizing vibration transmission 
from the machine to the building floor. At the mounting junctions on the plate, the general-
ized force and velocity vectors at the bottom ends of the resilient mounts, see Figure 2, are 
assembled in the vectors 

  1 2 Tc c c cnF F F F ,  1 2 Tc c c cnV V V V  (5) 

The relation between the velocity vectors and force vectors at the two ends of the j-th resil-
ient mount is given by using the four-pole equation [13, 14], 

 
   
   

11 12

21 22

j jbj cj

bj cjj j

        
     

diag T diag TF F

V Vdiag T diag T
 (6) 

where  j
pqdiag T , , 1, 2p q  , means the diagonal transmission sub-matrix of the j-th resilient 

mount. 
For generality, in this study, each resilient mount is modelled as six lumped stiffness com-

ponents with negligible mass, where three components with translational stiffness and three 
with rotational stiffness are assumed without coupling between the different stiffness compo-
nents. For example, the p-th component of the j-th resilient mount is described by the follow-
ing four-pole equation 

 

1 0

1

bj cj
p p
bj cj

jp p
p

F F
i

V V



 
                   

 (7) 
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where bj
pF  denotes the p-th (p = 1, …, 6) component of the generalized force  at the j-th resil-

ient mount, and j
p  denotes the stiffness coefficient of the p-th stiffness component in the j-th 

resilient mount.  
For all resilient mounts, the transmission matrix equation is obtained as 

 
11 12

21 22

b c

b c

     
    

     

F T T F

V T T V
 (8) 

The conditions for force equilibrium and motion compatibility at the junctions can be writ-
ten as 

 a b F F , a bV V , c d F F , c dV V  (9) 

2.3  The supporting floor 

The supporting floor is modeled as a thin, elastic uniform plate. When there are no signifi-
cant reflections from the boundaries or from discontinuities within the receiver, an infinite, 
uniform plate model may be assumed. Otherwise, a finite plate with suitable boundary condi-
tions should be considered. The supporting plate floor is excited by the force and moment 
components at the bottom of each resilient mount. The force and velocity vectors at the plate 
mounting points, see Figure 2, are assembled in the vectors 

  1 2 Td d d dnF F F F ,  1 2 Td d d dnV V V V  (10) 

The force vector at each resilient mount junction j = 1, …, n includes six components, 

  1 2 3 4 5 6, , , , ,
Tdj dj dj dj dj dj djF F F F F FF  (11) 

Accordingly, the velocity vector at each resilient mount junction j = 1, …, n includes three 
translation components and three rotational components, i.e., 

  1 2 3 4 5 6, , , , ,
Tdj dj dj dj dj dj djV V V V V VV  (12) 

The mobility equation of the plate can be now written as follows [11, 15-18], where  Y  is 

the mobility matrix,  

  

1 11 12 1 1 1

2 21 22 2 2 2

1 2

d d d d n d d

d d d d n d d

dn dn dn dnn dn dn

       
       
                                

V y y y F F

V y y y F F
Y

V y y y F F




    


 (13) 

Since the flexural vibration dominates the noise emission of the building floor, only the 
out-of-plane flexural wave will be taken into account. Thus, the in-plane shear and longitudi-
nal motions induced by in-plane forces, and drilling motion of the plate induced by twisting 
moment are neglected. The out-of-plane flexural waves are induced by the out-of-plane force 
and the in-plane moment components. For example, the mobility sub-matrix 21dy  can be writ-

ten as 
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21 21 21

21
21 21 21

21 21 21

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0

z x y

x z x x x y

y z y x y y

wF wM wM
d

F M M

F M M

y y y

y y y

y y y

  

  

 
 
 
 
 
 
 
 
 
 

y  (14) 

where the mobility term 21

zwFy  relates an out-of-plane translational velocity 2d
zV  at the junction 

no.2 to an out-of-plane force excitation 1d
zF  at junction no.1, where the latter junction is the 

excitation point, and the former junction is the response point. 
The mobility representation is a useful tool to describe the dynamic properties of the sup-

porting floor. For a realistic complicated floor, force and moment mobilities at the mounting 
junctions can be measured by experiments. For some simple infinite and finite structures, the 
mobility matrices can be derived analytically. The mobility formulations for an elastic uni-
form plate with simply supported edges and an infinite plate can be found in, e.g., Refs. [10, 
11, 15]. 

2.4  Power flow 

The time averaged power flow transmitted from the machine to the building floor can be 
expressed as 

    * *1 1
Re Re

2 2
d d d d           

F V F YF  (15) 

where the symbol ( )*  represents conjugate transpose of a matrix or vector. 
The transmitted force dF  can be solved from Eqs. (4), (8) and (13) by applying the condi-

tions of force equilibrium and motion compatibility in Eq. (9). For brevity, the somewhat 
lengthy derivation is omitted here, as the same result can be found in Ref. [14]. Thus one gets 
the following expression for the transmitted force dF , 

   121 11 22 12
22 22 21

d s s s s
  F T M T + T Y + M T Y M F  (16) 

In order to avoid excessive vibration of the machine, a suitable constraint on the velocity 
sV  of the rigid body may be applied. Thus, the velocity sV  is sometimes of interest in design 

optimization of machinery mounting system. The expression for the velocity sV  given in Eq. 

(17) is obtained by solving Eqs. (4), (8) and (13) with the conditions of force equilibrium and 
motion compatibility in Eq. (9), 

  11 12
11 12

s s s s dV = M F M T - T Y F  (17) 

3 OPTIMIZATION FORMULATION FOR MINIMIZATION OF POWER 
TRANSMISSION 

3.1   Optimization formulation 
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The problem of design optimization of the rotating machinery mounting system with the 
objective of minimizing the total power flow transmitted from the machine to the building 
floor via several resilient mounts, can be formulated as  

 

   *

min max

1
min Re

2

s.t. Given constraints

, 1, ,

d d

dv
i i n



  

   
 

  

F Y F

　　

 (18) 

The present work aims to realize this objective by optimizing stiffness coefficients i  of 

resilient mounts in a given range between min  and max . The lower and upper limits of the 

stiffness coefficients are usually determined by physical properties of the resilient mounts. A 
reasonable lower limit is important for satisfying requirements on the static displacement of 
the machine, or the motion during starting and stopping stages. It is well-known that the stiff-
ness of resilient mounts is normally frequency dependent. However, for simplicity the stiff-
ness will be assumed to be independent of frequency in the following. 

In the expression for the total transmitted power   in (18), dF  denotes the vector of am-
plitudes of the loading vector acting on the plate with the excitation frequency  . The given 
constraints are specified by physical and geometrical requirements on mounting systems. The 
symbol dvn  denotes the number of design variables. 

3.2  Design sensitivity analysis 

The sensitivity of the objective function   in Eq. (18) with respect to the design variable 

k  can be derived as 

 
   

 
*

*
Re1

Re
2

d d
d

d

k k k  

                     

F Y F F
F Y , k = 1, …, dvn   (19) 

where the symmetric characteristics of the mobility matrix  Y  have been used. 

In order to derive the sensitivity of the transmitted force 
d

k


F

 with respect to the design 

variables, Eq. (16) is rewritten as 

  21 11 22 12
22 22 21
s s d s s  T M T + T Y + M T Y F M F  (20) 

By differentiating both sides of Eq. (20) with respect to the design variable k , consider-

ing the condition that only 21T  is dependent on design variables among the mobility matrices 

of the machine, resilient mounts and the floor plate, and assuming that the generalized excita-

tion force sF  generated by the rotating unbalanced machine is design independent, 
d

k


F

 can 

be obtained as 

  
21

121 11 22 12
22 22

d
s s d

k k 
 

  
 

TF
T M T + T Y + M T Y F ,  k = 1, …, dvn  (21) 
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The accuracy of analytical sensitivities has been validated by overall finite difference sen-
sitivity calculations. With these sensitivity results, the design problem (18) may be solved by 
a mathematical programming method, e.g., MMA by Svanberg [19]. 

4 NUMERICAL EXAMPLES 

4.1 A simplified parametric example 

First, a simple special case of the vibratory system shown in Figure 1 is considered. Here, 
four identical resilient mounts are placed symmetrically with respect to the machine, and 
mounted on a flexible floor, which is assumed to be an infinite elastic plate of constant thick-
ness. This simplification leads to an equivalent system of the resilient mounts as shown in 
Figure 3, which consists of four separate sets of a spring of stiffness   and a mass sm  equal 

to 4m , where the symbol m represents the total mass of the machine. The dynamic govern-
ing equation is simplified correspondingly, i.e., the forces acting on all four mounting points 
are assumed to be the same, that is, 0 4F , where 0F  denotes the vertical excitation force act-

ing on the machine. A similar simplified model using a finite four-edge simply supported 
plate as the receiver is studied in [20]. 

 

 
Figure 3: A simplified modeling for the machine connected to a flexible floor via four symmetrically placed 

mounts 

From the vibration equation of a system with a single degree of freedom, see, e.g. [21], the 
force jF  transmitted from the mass sm  to the floor via the j-th spring is obtained from [11, 20] 

 0
2

1

4
1

4 4

j

j

F
F

m m
i Y

 



 

 (22) 

where   is the stiffness of the spring. 
Since only the out-of-plane force excitation on the plate is considered, the mobility matrix 

of the plate in Eq. (13) can be simplified. By the concept of effective point mobility jY  as a 

space averaged effective mobility over all excitation points [22],  jY  can be expressed as 

1 2 3 4j j j j jY Y Y Y Y     for j=1, 2, 3, and 4. The symbol jkY  is the general mobility element 

from the excitation point k to the response point j, where jkY  with k = j is the driving point 

mobility, while jkY  with k ≠ j denotes the transfer mobility. The effective mobility represents 

the ratio of the total velocity due to all applied forces to the force acting at the point j. It can 
be calculated that the effective point mobility of an infinite plate jY  (j=1, 2, 3, 4) are same, 
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i.e., 1 2 3 4Y Y Y Y   . The driving point and transfer mobilities of an infinite plate can be 

found in, e.g., [11, 15]. 
The velocity 0V  of the machine is calculated based on the same assumption 

 0 1
0 2

1

1

4 1
4

F i Y
V

m
i

i Y i i




  
  




          
    

 (23) 

Thus, from Eq. (15) the time averaged power P    transmitted from the machine to the 
floor can be rewritten as 

   

2

2

0
1 2

1

1
2Re

4
1

4 4

F
P Y

m m
i Y

 



 

 (24) 

As a reference to evaluate the effect of the spring isolator, the power flow wsP  from the 

machine to the building floor without spring isolators is given in Eq. (25) below. The model-
ing without isolation is obtained by removing the spring isolators from Figure 3, and we find 
that the power wsP  transmitted from the machine to the floor without spring isolators is given 

by 

  

2

2

0
1

1

1
2Re

4 1
4

ws F
P Y

m
i Y




 (25) 

The velocity 0
wsV  of the machine without spring isolators is calculated as 

 0 1
0

1
4 1

4

ws F Y
V

m
i Y




 (26) 

Assuming four springs with the same stiffness coefficient, the dependence of transmitted 
power P  in Eq. (24) on the stiffness coefficient   will be studied for different excitation fre-
quency and mass values of the machine. In this section, no damping is assumed for the 
springs and the plate. 

For a rigid building floor, the velocity at the mounting junction on the plate is zero, 1V = 0, 

thus the transmitted power P =0. If the stiffness of the spring is reasonably selected to make 

the resonance frequency 0 4m

   of the mass-spring system to be located far from the ex-

citation frequency  , the transmitted force iF  on the floor is relatively small.  

When a flexible floor is considered, the mobility of the plate must be taken in account, and 
the velocity of the mounting point on the plate 1 0V  . Thus we should pay attention to the 

transmitted power P , the velocity 1V  and force 1F . 
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When the bending stiffness of the plate is quite large, the corresponding mobility Y1 is very 
small. The conclusion is similar to the case of a rigid floor above. The transmitted power P , 
shown in Figure 4 (a), and force 1F  are very large only in the vicinity of resonance, and in 

other cases both of them are generally small. In this example, the given circular excitation 
frequency   is 50 rad/s. 

A suitably flexible plate of thickness 0.2 made of a material with Young’s modulus 92 10 , 
Poisson’s ratio 0.3 and mass density 840, is studied here. SI units are assumed. Transmitted 
powers for different mass values of machine and excitation frequencies are presented in Fig-
ure 4 (b). For a specified excitation frequency and a given stiffness coefficient, it is seen that 
when the mass of the machine increases, then the transmitted power decreases. Actually, an 
inertia concrete block is sometimes placed at the bottom of machine to increase the mass of 
the vibrating rigid body. The extra inertia block can be deemed beneficial for reduction of 
transmitted power when an infinite plate is the receiver, in which case no resonant behavior 
can occur. Though infinite structures do not exist in reality, the assumption of infinite struc-
tures is applicable in many circumstances where there are no significant reflections from dis-
continuities or boundaries within the receiver [6]. 

The only peak of each curve in Figure 4 (b) comes from the resonance of the spring-rigid 
body system. Obviously, the peak will move to the right when the mass of the machine is in-
creased, and the maximum value at the peak also decreases significantly. If the mass of the 
machine is the same, then the value of the transmitted power at the peak point is reduced for a 
higher value of the excitation frequency. This can be explained from Eq. (24) where the term 

1
sm Y  in the denominator increases with increasing excitation frequency, which can be ap-

proximately considered as increasing the effect of damping.  
Compared with the power flow wsP  from the machine to the building floor without spring 

isolators, it is found that if a very soft spring is provided under the machine, the transmitted 
power to the floor will be considerably reduced, but it may cause significant vibration velocity 
of the machine, see Figure 5. If a machine is rigidly bolted to the floor in the infinite plate 
case, then the vibratory movement of the machine may be reduced, but the transmitted power 
to the floor will be relatively large. Thus, some compromise must be made between the two 
requirements, and motivates optimization.  
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Figure 4: Transmitted power for different masses of machine and excitation frequencies: (a) very stiff floor plate, 
(b) relatively flexible floor plate 
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Figure 5:  Velocity of machine for different masses of machine and excitation frequencies 

4.2 Optimization of the mounting system of a machine with six degrees of freedom 
subjected to generalized excitation forces 

The model shown in Figure 1 is considered for minimizing the power flow. It is now as-
sumed that a machine with six degrees of freedom is excited by a concentrated force vector 

sF  acting at its center of gravity. The receiver is modeled as a four-edge simply supported 

finite plate of uniform thickness 0.1, which is made of the same material as in the previous 
example. A loss factor 0.005   is introduced for the material. 

The stiffness coefficients of four resilient mounts are chosen as design variables, i.e. we 
have 24dvn   when considering the stiffness components in every direction to be design va-
riables. 

The lower and upper limits min  and max  of the stiffness coefficients are given as 102 and 

105, respectively. The units of stiffness coefficients of translational and rotational stiffness 

components are N/m and Nm/rad. First, a vertical excitation force  0, 0,1000, 0, 0, 0
Ts F  is 

considered. The initial values of all design variables are taken to be 5×104, which provides a 
convenient reference for evaluation and discussion of the vibration reduction by optimization. 
At the same time, the power flow without resilient mounts is calculated as a reference to eva-
luate the effect of the isolator. When considering vertical force excitation, the design objective 
is independent on the stiffness components in the directions of the in-plane and twisting mo-
tions. However, the rotational stiffness with respect to the x and y directions and the vertical 
translational stiffness will influence the transmitted power.  

Excitation 
frequency  

 Power flow  
Initial design Optimized design Design without 

resilient mounts 
10 1.2134 0.0997 1.3508 
20 0.0712 0.0075 0.0776 
50 0.2660 5.1457e-005 0.8417 
100 0.0312 5.6883e-005 0.0617 

Table 1:  Optimized result for the case with an excitation force in the z direction, only 
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As stated in Table 1, it is found that, in comparison with the initial design and design with-
out resilient mounts, the optimization has reduced the power flow significantly for four differ-
ent excitation frequencies,  = 10, 20, 50, 100. 

Next, an excitation force  1 2 1000, 0,1000, 0, 0, 0
Ts F  with a different direction but 

the same magnitude as above, is considered. When simultaneously considering the vertical 
and horizontal (in the x direction) force excitations, the design objective depends on the ver-
tical translational stiffness, the rotational stiffnesses with respect to the x and y directions, and 
the horizontal stiffness with respect to the x direction. The same initial design is used. 

Excitation 
frequency  

 Power flow  
Initial design Optimized design Design without 

resilient mounts 
10 0.8528 0.0499 0.7780 
20 3.7194 0.0038 2.1498 
50 0.1334 2.5622e-05 0.4561 
100 0.0157 2.8445e-05 0.0353 

Table 2:  Optimized result for case with excitation forces in both the x and z directions 

The results shown in Table 2 for this case also illustrate that substantial reduction of the 
power flow can be achieved for the excitation frequencies considered. When the excitation 
frequency  is taken to be 10 or 20, the design without resilient mounts gives relatively lower 
values of the power flow compared with those of the initial design. This implies that an inap-
propriately chosen isolator may increase the vibration transmission. The important conclusion 
that can be drawn from the results reported in Tables 1 and 2 is that design optimization is 
extremely useful for the best possible selection of an isolator. 

5 SHAPE OPTIMIZATION OF A SUPPORTING PAD PLACED ON A FLEXIBLE 
FLOOR FOR A RESILIENT MOUNT 

This section deals with the shape optimization of a rotationally symmetric pad (see Figure 
6) which, as illustrated in Figure 7, transfers a vertical force F  from a resilient mount to a 
distributed pressure loading  f x  on a flexible wooden floor. One- and two-parameter 

analytical expressions for the distributed pressure loading are derived in Brunskog and 
Hammer [23] for the problem of pressing a rigid, plane indenter a small uniform distance into 
the plane surface of an elastic body. For simplicity and in order to apply the result from [23], 
we shall model the wooden floor as an infinite, isotropic, elastic plate as considered in Section 
4.1. Moreover, we assume that the Young’s modulus of the pad is large relative to that of the 
plate, and that the radius br  of the pad is sufficiently small such that the introduction of the 

pad does not change the force equilibrium condition c d F F  and the motion compatibility 
condition c dV V  in Eq. (9).  

 
Figure 6: Schematic figure of a rotationally symmetric supporting pad for a resilient mount 
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The pad is assumed to be a circular truncated cone with a slant boundary subject to design. 
Due to rotational symmetry of the pad, the design problem can be formulated as a shape 
optimization problem of the curved part of the plane radial section of the pad shown in Figure 
7, where the y axis is oriented along the center line, and x indicates the radial direction. The 
design boundary is defined by Spline curves evaluated in terms of the positions of the given 
points a and b and three master nodes, i.e., node 1, 2 and 3 shown in Figure 7. The 
coordinates of the master nodes are chosen as design variables. The design domain is meshed 
by a number of 4-node axisymmetric finite elements. 

a

bc

d e
x

y

rb

hl

rt

hr
1

2

3

f(x)

F

 
Figure 7: The axisymmetric planar design domain with three master nodes on the design boundary 

All dimensions of the design domain are normalized by the radius br  of the plane bottom 

surface, i.e., t t br r , l l bh r , r r bh r . 

The shape optimization problem is formulated as 

 

min

s.t.

T

L U

C

V V




 

x
P U

x x x

 (27) 

where C  is the static compliance of the structure. Assuming the point c of action of the force 
F to be fixed, the compliance C  is defined as the scalar product of the nodal force vector P  
and the vector U  of nodal displacements in the y direction at the bottom surface of the pad. 
Moreover, V  denotes the volume of the axisymmetric structure, V  is the given upper limit on 
the volume, and Lx  and Ux  denote allowable lower and upper limits of the design variables 

which are the coordinates of three master nodes on the design boundary. The upper limit of 
the volume is prescribed as V =0.51 which corresponds to 75% of the volume of the circular 
truncated cone formed by 360o rotation of the area a-b-c-d-e along the y axis when 1br  . 

The design variable vector x  is expressed as 

  1 2 3 1 2 3

T
x x x y y yx =  (28) 

where subscripts 1, 2 and 3 represent node numbers of master nodes on the design boundary. 
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A numerical example is presented here with the dimensions of design domain taken to be 
1br  , 0.1t br r , 0.5l bh r , 0.05r bh r . The pressure function is adopted from the paper [23] 

in the form 

  
21

c
f x

x 


 
, 41.59 10c    (29) 

where a small value 610   is introduced for avoiding singularity when x equals br  at the 

outer edge, and the integral of pressure over the circular bottom surface is obtained as 

    
1 5

0
2 10

br
F f x xdx


   (30) 

The lower and upper limits of design variables are chosen as 10.7 1.0x  , 20.4 0.7x  , 

30 0.4x  , 10.05 0.2bh y   , 20.2 0.35y  , and 30.35 0.5 ly h   . The initial and 

final designs are compared in Figure 8. The values of the design variables, volume and com-
pliance of initial and optimized designs are given in Table 3. As a result of the shape optimi-
zation, the compliance is reduced from 51.73 to 49.16. 

 Initial design Optimized design 
x1 0.80 0.80 
x2 0.50 0.51 
x3 0.20 0.17 
y1 0.10 0.10 
y2 0.20 0.22 
y3 0.40 0.38 
C  51.73 49.16 
V 0.50 0.51 

Table 3: Comparison of initial and final designs (V =0.51) 

  
(a)  Initial design  (b)  Optimized design  

Figure 8: Radial sections of initial and optimized pad designs 

6 CONCLUSIONS 

The problem of optimization of the machinery mounting system in a lightweight building 
is studied in this paper. A general mobility equation is developed for the system consisting of 
source, isolator and receiver of vibration by assembling the mobility matrices of each sub-
system. The objective of minimizing vibration transmission is realized by sizing optimization 
of stiffness coefficients of resilient mounts. In comparison with designs without resilient 
mounts, designs with optimized isolators can provide significant reduction of the power flow. 
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Shape optimization of a supporting pad for a resilient mount is also studied. Such a pad may 
be used for transferring a vertical force from a resilient mount to a distributed pressure 
loading on a flexible floor. Artificial modeling of the resilient mounts and the floor of the 
building is adopted in this study. Work on more practical modeling of resilient mounts and 
building structures is in progress.  
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