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Abstract. Structural health monitoring (SHM) employing wireless sensor networks (WSN) is becom-
ing increasingly popular in recent years. Accurate synchronized sensing amongst wireless sen-
sors is a key issue enabling the implementation of such smart systems for SHM based on 
vibration measurements. However, perfect synchronized sensing is unachievable in WSN. The 
effect of non-synchronous sensing when using wireless sensors on structural modal identifica-
tion is addressed and a methodology for correcting such errors is proposed herein. This pa-
per first discusses the potential sources causing non-synchronous sensing and estimates their 
extents based on data samples collected from Imote2 sensors, and then investigates the impact 
of synchronization errors in the measured output response on modal identification using nu-
merical simulations. The simulation results show that even small synchronization errors in 
the output response can distort the identified mode shapes. A new methodology is proposed 
herein for eliminating such errors. This methodology estimates the power spectral densities 
(PSDs) of output responses using non-synchronous samples directly based on a modified FFT. 
As long as the corrected PSDs are obtained, the correlation functions can also be easily ob-
tained by IFFT. Then these corrected PSDs or correlation functions can be fed into various 
output-only modal identification algorithms. The proposed methodology is validated using 
numerical simulations. It is found that the simulation results closely match the identified pa-
rameters based on synchronous data. 



Zhouquan Feng and Lambros S. Katafygiotis 

 2

1 INTRODUCTION 
In recent years, the emerging wireless sensor networks (WSN) for structural health moni-

toring (SHM) have attracted a lot of attention from both the academic and industrial commu-
nities [1].A wireless sensor network consists of a group of sensors using wireless links to 
perform distributed sensing and processing tasks. Compared with traditional wired sensor 
monitoring systems, there is no extensive wiring between sensors and data acquisition system 
involved, resulting in fast and flexible deployment, easier maintenance and cost reduction. In 
addition, wireless sensing technology allows sensor data to be processed locally at each sen-
sor node, which can reduce the amount of data that needs to be transmitted and distribute the 
computing burden across the network. Inspired by these advantages, WSN are becoming even 
more popular in structural health monitoring applications.  

Though WSN have the potential to improve SHM dramatically, a number of issues need to 
be addressed before wireless sensors can be utilized in SHM [2]. Time synchronization in 
WSN has been an important concern that has restricted the application of these networks since 
vibration-based SHM needs synchronous measured data. However, each wireless sensor in the 
network has its own intrinsic clock, and these clocks on the sensors have to be frequently syn-
chronized with each other to maintain a consistent global time. For clock synchronization, 
several methods have been developed and tested [3]. The flooding time synchronization pro-
tocol (FTSP) [4] is adopted in our network, which is capable of clock synchronization with 
errors estimated to be about 10µs [5]. The clock synchronization is periodically performed to 
eliminate the clock offsets and skews. Thus, accurate clock synchronization among sensor 
nodes has been shown to be achievable.  

However, even when the clocks on all sensor nodes are precisely synchronized, the meas-
ured signals may not be synchronized with each other due to the decentralized nature of WSN 
and resource limitations in each wireless sensor. In the following sections the potential 
sources causing non-synchronous sensing are first discussed and their extents are estimated 
using data collected from Imote2 sensors [6]. Then, the impact of non-synchronous sensing 
on modal identification is investigated by numerical simulations. A new methodology for 
eliminating such errors is proposed. Finally, the proposed methodology is validated by an il-
lustrative example using simulated data. 

2 SOURCES CAUSING NON-SYNCHRONOUS SENSING 
Sensing on Imote2 sensors is performed in the following way. Prior to sensing, clock syn-

chronization is conducted to convert the local clock times to global clock time using the esti-
mated offsets and skews between local clocks and reference clock. Next the base station node 
sends sensing parameters such as sampling frequency and number of data points to remote 
nodes. When the prescribed start-sensing time arrives, sensing tasks are posted on the remote 
nodes. Once the sensing driver is ready, sensing starts. The sensing tasks continue running 
until the predetermined amount of data is acquired. During sensing, the acquired data points 
are first stored in a buffer. Every data point or every several data points can be marked with a 
local time stamp. When the buffer is filled, the data is passed to the sensing application for 
possible processing and/or transmission, and the emptied buffer becomes available for the 
next block of data. By examining the above sensing procedures, potential sources causing 
non-synchronous sensing are summarized below. A schematic diagram depicting these errors 
is shown in Figure 1. 

(a). Clock synchronization error: for FTSP in Imote2 platform, this error is less than 10μs 
most of the time, with the maximum observed value being 80μs [5]. This error is compara-
tively small for SHM applications.  
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(b). Non-simultaneity in sensing start-up: starting sensing on all imote2 nodes simultane-
ously is challenging. Even if the time of start of sensing is set to be the same global time, the 
real execution time may have different delays in each node, and thus sensing may not start 
simultaneously.  

(c). Differences in sampling frequency among sensor nodes: the actual sampling frequency 
may differ from the nominal value by at most 10 percent for the Imote2 Basic Sensor Board 
[7].  

(d). Non-uniform sampling interval over time: a non-uniform sampling interval is observed 
in the Imote2 sensor boards. The coefficient of variation (COV) of the sampling interval is 
about 0.01~0.02%, which is relative small. 

δ
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T1

2T ε

0δ clock synchronization error

1δ δ2 initial time delay

1T T2 mean sampling time interval

ε sampling time jitter

 
Figure 1: Illustration of non-synchronous sensing. 

Ideally, the signal is sampled uniformly (with a constant sampling interval Ts) and syn-
chronously (all the sensors start sensing at the same global time). The time at (k+1)th sampling 
instant is: 

 k st kT=  (1) 

Due to the reasons mentioned above, the (k+1)th data point is actually sampled at a different 
time instant: 

 ( )k st kT ck kδ ε′ = + + +  (2) 

where, δ  is a constant time shift, coming from sources (a) and (b); because the clock syn-
chronization error is relatively small, only sensing start-up time delay is considered here; ck  
is a linear time shift, coming from source (c); the coefficient c is the difference between real 
sampling interval and nominal sampling interval; ( )kε  is a random time shift, coming from 
source (d), and these time jitters result in non-uniform sampling. 

3 ERROR ESTIMATION 

3.1 Test of non-synchronous sensing when using Imote2’s  
The extent of non-synchronous sensing when using Imote2’s is evaluated using time 

stamps marked with data points when sampling. To evaluate these non-synchronous sensing 
errors, a group of ten Imote2 sensors were programmed with a sensing application. The sens-
ing application was modified slightly from Illinois SHM Project (ISHMP) Services Toolsuite 
[8]. The sensor boards used are Imote2 basic sensor board ITS400B [6]. One sensor serves as 
base station node, the other nine sensors serve as remote nodes. After the base station node 
sends sensing parameters to these nine remote nodes, they start to sample at the same set time 
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and also record the time stamps of every data point. Processing these time stamps, we can es-
timate the non-synchronous sensing effect on Imote2 sensors. The statistical properties of the 
sampling times are listed in Table 1, and the differences of the start-sensing time among sen-
sors are listed in Table 2. 

 
node 
ID 

mean sampling 
frequency (Hz) 

mean sampling 
interval (µs) 

% error 
( ) /i i it t tΔ −Δ Δ  

standard deviation of 
sampling interval 

COV of sampling 
interval 

3 38.64 25878 3.51% 3.0 0.01% 
32 39.09 25584 2.33% 3.8 0.01% 
98 38.20 26179 4.71% 3.7 0.01% 
99 39.84 25099 0.40% 2.5 0.01% 
101 40.50 24690 -1.24% 2.9 0.01% 
102 40.47 24711 -1.16% 4.1 0.02% 
104 39.22 25499 1.99% 4.6 0.02% 
105 39.98 25011 0.04% 3.0 0.01% 
113 38.77 25791 3.16% 5.2 0.02% 

Notes: ,i it tΔ Δ are the actual mean sampling interval and the nominal sampling interval, respectively 

Table 1: Statistics of sampling time (40Hz, 1000 points) 

Node ID 3 32 98 99 101 102 104 105 113 
relative time delay iδ (µs) 14942 14160 16582 16582 8601 910 17908 10484 0 
fractional time delay /i itδ Δ  0.60 0.57 0.66 0.66 0.34 0.04 0.72 0.42 0 

Table 2: Differences of the start-up time (Node 113 as reference) 

From Table 1, we can see that the sampling frequencies of the accelerometers on the 
Imote2 sensor boards have various non-negligible deviations from the nominal value (40Hz), 
with a maximum of 4.71% error in Node #98. Differences in the sampling frequencies among 
the sensor nodes will result in inaccurate estimation of modal parameters unless appropriate 
post-processing is performed. From the last column in Table 1 we can see that the time inter-
vals fluctuate about 0.01~0.02%, which is quite small, thus the non-uniform sampling effect 
(random shift term ( )kε ) can be neglected. From Table 2 we can see that sensing start-up at 
all Imote2 sensor nodes is not simultaneous. Some of them start earlier and some later. Node 
#113 is the first one to start sensing, while Node #104 is the last one. Another observation is 
that these differences are all less than one sampling time interval. The maximum difference is 
0.72 time step observed in Node #104. Although the commands to start sensing are set at ex-
actly the same time, the execution times of the commands are different in different sensor 
nodes.  

3.2 Effect of non-synchronous sensing on modal identification  
The effect of time synchronization error on modal identification has been studied by 

Krishnamurthy et al. [12] and it was found that these errors affect the identified mode shape 
results. However, Krishnamurthy considered that these errors only come from clock synchro-
nization errors and these errors have been overestimated. In reality, clock synchronization er-
rors are comparatively small compared with other errors in Imote2 sensors. 

To study the impact of synchronization errors on modal identification, we simulate a 2-
DOF shear structural model subjected to white noise excitation. The 2-storey shear building 
model and the theoretical modal parameters (natural frequencies, modal shapes) are shown in 
Figure 2. In order to study the non-synchronous sensing effect, three cases of output response 
are considered: no time shift, constant time shift and linear time shift. According to the extent 
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of synchronization errors showed in section 3.1, the simulations of non-synchronous sensing 
are done using three scenarios: 1) Baseline (no time shift): both of the sampling frequencies 
are 40Hz; 2) Case1 (constant time shift): both of sampling frequencies are 40Hz, but channel 
#2 has 20000µs time delay; 3) Case2 (linear time shift): The sampling frequencies of channel 
#1 & #2 are 39.8406Hz & 40.4858Hz, respectively. 
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y (t)2
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1k 

2k c2

c1

m1

m2

f =1.7037Hz f =4.4603Hz1 2

1 1
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Figure 2: Two-storey shear structure 

  Baseline: no shift Case 1: constant shift Case 2: linear shift 
  mode 1 mode 2 mode 1 mode 2 mode 1 mode 2 
frequency (Hz) 1.7090 4.4824 1.7090 4.4824 1.7090 4.5020 
%error - - 0.00% 0.00% 0.00% 0.44% 

1 1 1 1 1 1 mode shape magnitude  
1.617 0.697 1.617 0.695 1.582 0.495 

%error  - - 0.00% -0.29% -2.16% -28.98% 
phase angle (o) 0 127 -12 94 -144 -105 

Table 3: Comparison of identified modal parameters using PP method 

  Baseline: no shift Case 1: constant shift Case 2: linear shift 
  mode 1 mode 2 mode 1 mode 2 mode 1 mode 2 
frequency (Hz) 1.6992 4.4727 1.6992 4.4727 1.6797 4.5801 
%error - - 0.00% 0.00% -1.15% 2.40% 

1 1 1 1 1 1 mode shape magnitude 
1.617 0.696 1.617 0.694 13.579 0.008 

%error  - - 0.00% -0.29% 739.76% -98.85% 
phase angle (o) 0 127 -12 94 129 -115 

Table 4: Comparison of identified modal parameters using FDD method 

  Baseline: no shift Case 1: constant shift Case 2: linear shift 
  mode 1 mode 2 mode 1 mode 2 mode 1 mode 2 
frequency (Hz) 1.7062 4.4593 1.7058 4.4832 1.7111 4.5032 
%error - - -0.02% 0.54% 0.29% 0.98% 

1 1 1 1 1 1 mode shape magnitude 
1.615 0.526 1.600 0.589 0.257 0.006 

%error  - - -0.93% 11.98% -84.09% -98.86% 
phase angle (o) 0 -176 13 -155 108 53 

Table 5: Comparison of identified modal parameters using NExT/ERA method 
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After obtaining the output response data of the structure, various modal identification algo-
rithms can be applied to identify the modal parameters. In this study three popular output-only 
modal identification algorithms are utilized: Peak-Picking (PP) [9], Frequency Domain De-
composition (FDD) [10] and Natural Excitation Technique in conjunction with Eigensystem 
Realization Algorithm (NExT/ERA) [11]. The identified results are summarized and com-
pared in Table 3, 4 & 5. It can be seen that all these three algorithms suffer from errors when 
using the non-synchronous samples directly. These errors affect only slightly the identified 
frequencies but affect the mode shapes considerably. The constant time shift error almost only 
affects the phase information of the mode shape. The linear time shift error has more influ-
ence on the modal parameters, especially the mode shapes, of which both the magnitude and 
phase suffer big errors. For these three output-only modal identification algorithms, FDD and 
NExT/ERA are more susceptible to synchronization errors, especially for linear time shift er-
rors. 

4 ERROR ELIMINATION  

4.1 Proposed algorithm  
In order to eliminate the synchronization errors, direct intuition suggests reconstructing the 

synchronous samples from measured non-synchronous ones. This is so called signal recon-
struction, and some work has been done for this purpose such as interpolation based approach 
[13] and resampling based approach [5]. Nevertheless, such approaches can be computation-
ally extensive. Rather than reconstructing the signal in the time domain, we develop a correc-
tion approach to recover the true spectral density using non-synchronous samples in the 
frequency domain. This approach is based on the spectral relationship of synchronous data 
and non-synchronous data. Because only spectral densities or correlation functions are needed 
for most of modal identification algorithms and raw synchronous time histories are not 
needed, reconstruction of the signal in the time domain is unnecessary. As long as we are able 
to obtain the corrected spectral densities, the correlation functions can also be easily obtained 
by IFFT. 

4.1.1 Constant time shift 

Consider two time histories { xα (0), xα (Δt),… xα ((N-1)Δt)}T and { xβ′ (δ), xβ′ (Δt+δ),… 
xβ′ ((N-1)Δt+δ)}T, i.e., β′x  has a constant time shiftδ . The discrete Fourier transform (DFT) 
for αx  is given by 

 
1

0
( ) ( ) k

n N
j n t

k
n

X x n t e ω
α αω

= −
− Δ

=

= Δ∑  (3) 

where k kω ω= Δ , 2
N t
πωΔ =
Δ

, 0,1,..., int( / 2)k N= . The DFT for the shifted signal β′x  is 

given by 

 ( ) ( )kj
k kX e Xω δ

β βω ω′ = ⋅  (4) 

where ( )kX β ω is the DFT of the original signal. Therefore,  

 
2
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Then, the true cross spectral density estimate can be obtained by 

 *( ) [ ( ) ( )]x x k k k
tS E X X

Nα β α βω ω ωΔ
=  (6) 

where (·)* denotes the complex conjugate operation.  

4.1.2 Linear time shift 

Consider two time histories { (0)xα , ( )x tα αΔ ,… (( 1) )x N tα α α− Δ }T and { (0)xβ , ( )x tβ βΔ ,… 
(( 1) )x N tβ β β− Δ }T, having different sampling frequencies, i.e. t tα βΔ ≠ Δ , with corresponding 

sampling time lengths T N tα α α= Δ and T N tβ β β= Δ , respectively. In discrete Fourier transform, 
we know that k kω ω= Δ  and 2 / 2 /T N tω π πΔ = = Δ . In order to ensure that ( )kXα ω  and 

( )kX β ω  correspond to the same discrete frequency when calculating the cross spectral den-
sity, their frequency resolutions should be identical, i.e., α βω ωΔ ≡ Δ , thus their duration time 
should be the same,  i.e., 

 N t N tα α β βΔ = Δ , 
tN

N t
βα

β α

Δ
=
Δ

 (7) 

Based on this relationship, the cross spectral density can be estimated by 

 * *( ) [ ( ) ( )] [ ( ) ( )]x x k k k k k

t tS E X X E X X
N Nα β

β α
α β α β

α β

ω ω ω ω ω
Δ Δ

= = , when ,N Nα β →∞  (8) 

where k kω ω= Δ , 2 2
N t N tα α β β

π πωΔ = =
Δ Δ

, 0,1,...,min{int( / 2), int( / 2)}k N Nα β= . 

4.1.3 Summary of proposed procedure 
In reality, the time shifts of non-synchronous data are a combination of constant time shifts 

and linear time shifts. The most popular FFT-based method for power spectral density estima-
tion is Welch’s refined periodogram approach [14]. The procedures for computing the true 
power spectral density estimate from non-synchronous data in WSN are as follows: 

(1) Calibrate the sampling frequencies of each sensor board before sensing experiment. 
(2) Perform sensing experiment, and make sure the time stamps are also recorded when 

sampling. 
(3) Set one sensor as reference and partition the data into several segments. Each segment 

has a length of Nr data points. 
(4) Partition the data in other sensors into several segments as well. The first data point of 

each segment is chosen as close as possible to the first data point of the corresponding seg-
ment in the reference sensor data by comparing their time stamps. The length Ni of each seg-
ment is chosen such that the Eq. (7) holds approximately.  

(5) Calculate the Fourier transform of each segment and correct it using Eq. (5). 
(6) Calculate the cross spectral density using Eq. (8). 

4.2 Numerical example 
The structural system used is the same as before in section 3.2. The ith sampling instant is 

chosen as follows: t1(i) =0.0250×(i-1), t2(i) =0.0247×(i-1)+0.0200, i.e. sensor #1 has a sam-
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pling frequency 1/0.0250 (40) Hz, while sensor #2 has a slightly different sampling frequency 
1/0.0247 (40.4858) Hz and a time delay 0.02 sec. The measurement noise for the response is 
taken to be 10 percent, i.e. the RMS of the measurement noise for a particular channel is equal 
to 10 percent of the RMS of the noise-free response at the corresponding channel. 

The identified modal parameters using PP, FDD and NExT/ERA methods are summarized 
and compared in Table 6, 7 & 8. It can be seen that the modified methods using the proposed 
corrected spectral densities or correlation functions can achieve better accuracy than the 
original methods. 

 
Non-synchronous Data Baseline 

(Synchronous Data) Direct PP Modified PP   
  mode 1 mode 2 mode 1 mode 2 mode 1 mode 2 
frequency (Hz) 1.7090 4.4824 1.7090 4.4824 1.7090 4.4824 
%error - - 0.00% 0.00% 0.00% 0.00% 

1 1 1 1 1 1 mode shape mag-
nitude  1.617 0.703 1.498 0.553 1.625 0.684 
%error  - - -7.36% -21.34% 0.49% -2.70% 
phase angle (o) 0 131 174 -179 6 141 

Table 6: Identified modal parameters (PP) 

Non-synchronous Data Baseline 
(Synchronous Data) Direct FDD Modified FDD   

  mode 1 mode 2 mode 1 mode 2 mode 1 mode 2 
frequency (Hz) 1.6992 4.4727 1.6797 4.5117 1.6992 4.4727 
%error - - -1.15% 0.87% 0.00% 0.00% 

1 1 1 1 1 1 mode shape mag-
nitude  1.617 0.700 24.786 0.046 1.619 0.688 
%error  - - 1432.90% -93.41% 0.14% -1.79% 
phase angle (o) 0 127 63 50 6 142 

Table 7: Identified modal parameters (FDD) 

Non-synchronous Data Baseline 
(Synchronous Data) Direct NExT/ERA Modified NExT/ERA   

  mode 1 mode 2 mode 1 mode 2 mode 1 mode 2 
frequency (Hz) 1.7030 4.4660 1.7032 4.4770 1.7032 4.4509 
%error - - 0.01% 0.25% 0.01% -0.34% 

1 1 1 1 1 1 mode shape mag-
nitude  1.614 0.545 0.062 0.007 1.629 0.451 
%error  - - -96.14% -98.80% 0.91% -17.32% 
phase angle (o) 0 -174 -78 -114 -6 -180 

Table 8: Identified modal parameters (NExT/ERA) 

5 CONCLUSIONS  
The purpose of this paper is to address the problem of non-synchronous sensing on modal 

identification when using wireless sensor networks. The potential sources causing non-
synchronous sensing are first discussed and their extents are estimated based on data collec-
tion from Imote2 sensors. Among these error sources the dominant ones are non-simultaneity 
in sensing start-up and differences in sampling frequency among sensor nodes. According to 
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numerical simulations, these errors can distort the identified results of the mode shapes. A 
new methodology is proposed for eliminating such errors. This methodology estimates the 
power spectral density (PSD) of output responses using non-synchronous samples based on a 
modified FFT. As long as we obtain the corrected spectral density, the correlation functions 
can also be easily obtained by IFFT. Then, these corrected PSDs or correlation functions can 
be fed into various output-only modal identification algorithms. Comparing with other exist-
ing methods of raw synchronous time history reconstruction, this methodology is simple and 
computationally efficient. The proposed methodology is validated using numerical simula-
tions. The simulation results closely match the identified parameters based on synchronous 
data. 
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7 APPENDIX A – DERIVATION OF EQ(4) 

The discrete Fourier transform for shifted β′x  is given by 
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8 APPENDIX B – DERIVATION OF EQ(8) 

The cross spectral density function between αx  and βx  is defined by [15] 
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