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Abstract. Structural health monitoring (SHM) employing wireless sensor networks (WSN) is 
becoming increasingly popular in recent years. A Bayesian spectral decomposition (BSD) 
method employing a distributed computing strategy is presented for structural modal identifi-
cation in WSN using output-only response data. This method uses the statistical properties of 
the largest eigenvalue of the output spectral matrix to obtain not only the optimal values of 
the updated modal frequencies and damping ratios but also their associated uncertainties by 
calculating the posterior joint probability distribution of these parameters. Mode shapes are 
obtained by singular value decomposition (SVD) of the output spectral matrix at correspond-
ing discrete frequencies closest to their optimal values. This method identifies each mode, the 
modal frequency and damping ratio and the mode shape separately, which takes advantage of 
variable separation and can distribute the computational effort to several computational units, 
thus becoming suitable for implementation in wireless sensor network that provides such dis-
tributed computing environment. In addition, energy is conserved through the use of a novel 
distributed computing strategy. The efficacy and efficiency of the proposed methodology is 
demonstrated using numerical simulations. 
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1 INTRODUCTION 
Experimental modal analysis (EMA) using vibration data has been widely used over the 

years because of its importance in model updating, response prediction, vibration control and 
health monitoring. Many modal identification algorithms, both in the time and frequency do-
main, have been developed in the past three decades. Particularly, much attention has been 
devoted to the identification of modal parameters in the case where no input but only response 
measurements are available. These techniques, referred to as operational modal analysis or 
output-only modal identification or ambient modal identification, provide an in-operation test-
ing solution for modal parameter identification with no need for external artificial excitations 
and take advantage of the ambient excitations such as micro-tremors, traffic, wind, waves and 
earthquakes, etc. Operational modal identification is proved to be very useful in civil engi-
neering, where it is very difficult and expensive to excite infrastructures such as buildings and 
bridges with actuators to obtain artificially induced vibrations.  

In recent years, the emerging wireless sensor networks (WSN) for structural health moni-
toring (SHM) have attracted a lot of attention from both the academic and industrial commu-
nities [1]. Wireless sensor networks have the potential to improve SHM dramatically with 
onboard computation and wireless communication capabilities. Compared with traditional 
wired structural monitoring systems, wireless sensors can locally process measured data and 
transmit only the important information through wireless communication, allowing for the 
distribution of the computation burden across the network. Moreover, there is no extensive 
wiring between sensors and data acquisition system, which arrows for a fast and flexible im-
plementation, and easier maintenance. Inspired by these advantages, WSN are becoming im-
mensely popular in structural health monitoring in recent years.  

Though the wireless sensor network has the potential to improve SHM dramatically, lim-
ited resources on wireless sensors preclude direct application of existing algorithms in wire-
less sensor networks [2]. For example, the wireless sensors have limited computation speed, 
limited memory space and limited energy powered by batteries. Algorithms designed to be 
implemented in WSN should take account of such limitations, and it is preferable to process 
the data in a decentralized way. On the other hand, uncertainties are abundant in civil engi-
neering and statistical methods for modal identification based on output-only measurements 
have been well developed and have been attracting more attention recently. Statistical meth-
ods are very powerful because they explicitly treat uncertainties entering the mathematical 
models of the structure and the excitations. Bayesian statistical approaches for modal identifi-
cation have been proposed by Katafygiotis and Yuen [3-4] using ambient data under a Bayes-
ian statistical framework. As a result, they not only obtain the optimal values of the updated 
parameters by maximizing the posterior probability density function (PDF), but also allow for 
the quantification of uncertainties associated with the identified parameters of interest. How-
ever, the critical issue that always remains is the efficient determination of optimal values and 
their covariance matrix. Usually, the optimal values are solved by multidimensional numerical 
optimization and the covariance matrix is determined by finite difference. When the number 
of identified parameters is moderate to large, which is typical in modal identification of civil 
infrastructures, numerical optimization in maximizing the posterior PDF is very challenging 
and requires lots of computation effort to obtain the optimal values, which would preclude 
such algorithms from being implemented in wireless sensor networks. A method that not only 
has most of the advantages related to Bayesian statistical algorithms for uncertainty treatment 
but also reduces much of the computation effort is desirable.    

Au (2011) developed a fast Bayesian FFT method for ambient modal identification with 
separate modes [5], which allows for fast computation of the optimal values and covariance 
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matrix. In this work, we present a Bayesian spectral decomposition (BSD) method for modal 
identification using ambient data which is based on the statistical properties of the largest ei-
genvalue of the output spectral matrix. This method identifies each mode, the modal fre-
quency and damping ratio and the mode shape separately. As a result, the number of 
parameters to be identified by numerical optimization reduces to four for each mode. After the 
optimal modal frequencies have been obtained, mode shapes are determined by singular value 
decomposition of the output spectral matrix at corresponding frequencies. Moreover, a dis-
tributed computing strategy is proposed for energy conversation in WSN. A numerical exam-
ple is presented to demonstrate its procedures and features. 

2 THEORETICAL ASPECTS 
Some of the theoretical aspects related to the presented work are briefly discussed in the 

following sections. 

2.1 Bayesian spectral density method 

Let the acceleration time history measured at Ns DOFs of a structure be YN={y(m) sN∈ , 
m=1,…,N}, where N is the number of samples per channel. Herein, the measured acceleration 
is modeled as y(m)=x(m)+n(m), where x(m) is the acceleration response of the structural 
model defined by a set of model parameters θ, the parameters to be identified; n(m) is the 
prediction error which accounts for the difference between the model response and measured 
data, due to measurement noise and modeling error. Based on YN we introduce the following 
discrete estimator of the spectral density matrix 

 , ( ) ( ) ( )H
y N k N k N kω ω ω=S y y  (1) 

where the superscript H denotes conjugate transpose, ( )N kωy denotes the (scaled) Fourier 
transform of the vector process ( )ty at frequency kω , as follows: 
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where 2 1j = − , tΔ is the sampling interval, k kω ω= Δ , 10,..., 1k N= −  with 1 ( / 2)N INT N= , 
2 /Tω πΔ = , and T N t= Δ . The scaling factor of the FFT in Eq(2) is defined such that the 

spectral density is two-sided with respect to the circular frequency in rad/s.  
For a liner classically damped structure subjected to white noise excitation and independ-

ent and identical distributed (i.i.d.) Gaussian prediction error, Katafygiotis and Yuen (2001) 
derived the PDF for the spectral density matrix and applied it to Bayesian modal identification 
[3].  Consider a set of independent, identically distributed, time histories (1) ( ),... M

N NY Y . Assum-
ing that N →∞ , the corresponding Fourier transforms ( ) ( ), 1,...,m

N k m Mω =y are independent 
and follow an identical complex sN -variate normal distribution with zero mean, and the aver-
age spectral density estimate 
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follows a central complex Wishart distribution of dimension sN with M degrees of freedom. 
The PDF of this distribution is given by: 
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where A , tr[A] and E[A] denote the determinant, the trace and the expectation, respectively, 
of a matrix A. Note that this PDF exists only when sM N≥ . Furthermore, it can be shown 
that in the limit when N →∞  the matrices , ( )M

y N kωS and , ( )M
y N lωS are independently Wishart 

distributed for k l≠ . 
On the other hand, for a high sampling rate and long duration of data, the 

term ,[ ( )]y N kE ωS in Eq(4) can be expressed as 

 , 0[ ( )] T
y N k k nE ω = +S ΦΗ Φ S  (5) 

where s mN N×∈Φ is the mode shape matrix confined to the measured DOFs (the i-th column 
corresponds to the i-th mode shape); 0nS is the spectral density matrix (constant) of the predic-
tion error; kH is the spectral density matrix of the modal response with (i, j) element given by 
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It should be noted that this is only valid for acceleration response, and the exponential of ωk in 
the numerator will be the values 0 or 2 when the response corresponds to displacement or ve-
locity, respectively.  

In the context of modal identification the set of modal parameters θ consists of the natural 
frequencies, damping ratios, mode shapes, spectral density matrix of modal excitations and 
spectral density of the prediction error. Assuming a non-informative prior distribution, the 
posterior PDF of θ  given the spectral density data is proportional to the likelihood function  
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where c1 is a normalizing constant. 
The most probable parameters θ̂  are obtained by minimizing the log-likelihood function 

( )L θ  

 1 2, ,
,( ) exp[ ( )]M k k

y Np L∝ −θ S θ  (8) 

where 
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Furthermore, with a sufficient large amount of data, the posterior PDF of the parameters θ  
can be well-approximated by a Gaussian distribution 1ˆ ˆ( , ( ))N −θ H θ with mean θ̂  and covari-
ance matrix 1 ˆ( )−H θ , where ˆ( )H θ denotes the Hessian of ( )L θ calculated at ˆ=θ θ .Consider a 
second order expansion for the log-likelihood function 
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  1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( ) ( ) ( )( )
2

TL L + − + − −θ θ J θ θ θ θ θ H θ θ θ  (10) 

Note that the first term is a constant, and the second term vanishes since the gradient vec-
tor ˆ( )J θ equals to zero due to the minimization nature. Substituting Eq.(10) into Eq.(8), the 
posterior PDF can be approximated by a Gaussian distribution 

 1 2, , 1
,

1 ˆ ˆ ˆ( ) exp[ ( ) ( ) ( )]
2

M k k T
y Np −∝ − − −θ S θ θ C θ θ θ  (11) 

where 1ˆ ˆ( ) ( )−=C θ H θ is the posterior covariance matrix, inverse of the Hessian matrix.  
The critical issue that remains is the efficient determination of the most probable parame-

ters and their covariance. In the original method, the optimal values are solved by numerical 
optimization and the Hessian is determined by finite difference. In particular, the objective 
function is a nontrivial nonlinear function of the modal parameters, so the determination of 
most probable parameters is computationally very demanding. In addition, the inverse of 

,[ ( )y N kE ωS  is ill-conditioned in a resonance frequency band. If all the most probable parame-
ters were to be found by numerical optimization then the computational effort grows with the 
number of measured DOFs Ns and the number of contributed modes Nm. By noting the sym-
metry of the spectral density matrix of modal excitations and the normalization characteristic 
of mode shapes, there are 2Nm + Nm(Ns-1) + Nm(Nm+1)/2 +Ns = O(Nm

2+ NmNs) parameters to 
be identified. The growth of the dimension with Ns is a major issue because it can be moder-
ate or large in typical civil engineering applications (e.g., Ns>10). The growth of the dimen-
sion with Nm, although quadratic, is not significant because one can focus on a resonance 
frequency band dominated by a small number of modes. For well-separate modes one can 
identify each mode separately and Nm=1 in this case. 

In the next section we shall analyze the statistical property of the largest eigenvalue of the 
output spectral matrix and utilize it to effectively determine the optimal values of modal fre-
quency and damping ratio and their covariance matrix when the structure has separated modes.  

2.2 Modal identification with single mode 
Assume that in a resonance frequency band the response is dominated by a single mode 

and only the spectral density data in this band are used for modal identification. For simplifi-
cation, the spectral density of the prediction error is assumed to be the same for all measured 
DOFs. In this case, the parametersθ consist of the natural frequency ω, damping ratio ζ, mode 
shape sNΦ∈ , spectral density Sf of the modal excitation and the prediction error Sn. Here the 
modal index is omitted for simplification. It is assumed that the mode shape is normalized to 
have unit norm, i.e., 2 1Φ = . 

We start by examming the mathematical structure of ,[ ( )]y N kE ωS  in Eq.(5). In this case,  
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T
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where βk = ω/ωk, and 2 2 21/ [( 1) (2 ) ]k k kA β ζβ= − +  is the modal dynamic amplification. To fa-
cilitate deriving the analytical form of largest eigenvalue, we shall express ,[ ( )]y N kE ωS  in a 
more suitable form. The key is to express ,[ ( )]y N kE ωS  via a suitable eigendecomposition. De-

fine a set of orthonormal bases E = { sN
je ∈ : j = 1, …, Ns}, where 1

sNe = Φ∈  and {e2, 
e3, …, eNs} form an orthonormal basis in the complement subspace. Using this basis, the iden-
tity matrix can be represented as 

1
s

s

N T
N j jj

e e
=

=∑I , so the Eq.(12) can be rewritten as 

 , 1 1 1 11 2
[ ( )] ( )s sN NT T T T

y N k k n j j k n n j jj j
E e e S e e S e e S e eω α α

= =
= + = + +∑ ∑S  (14) 

The eigenvalues of ,[ ( )]y N kE ωS  are k nSα + , nS , …, nS , with corresponding eigenvector 
e1, e2, …, eNs, and the largest eigenvalue dk of ,[ ( )]y N kE ωS  is 

 2 2 2( 1) (2 )
f

k k n n
k k

S
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β ζβ
= + = +

− +
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A considerable amount of mathematical effort has been devoted on finding distributions 
for the eigenvalues of a Wishart matrix. Let ks  be the largest eigenvalue of , ( )M

x N kωS . Accord-
ing to Ref. [6], the largest eigenvalue ks are asymptotically independently normally distributed 
with 
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In the context of modal identification, assuming a non-informative prior distribution, the 
posterior PDF of θ  given the eigenvalue data is proportional to the likelihood function 
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In the context of wireless sensor network, in order to utilize the distributed computing ca-
pacity, the whole network may be divided into n clusters of sensors. In this case, each cluster 
can determine a posterior PDF based on its own data, and n sets of posterior PDF will be ob-
tained. The fusion of all the information obtained by various clusters can be conducted in 
Bayesian manner. Take one cluster as a priori, continuously include the data in other clusters, 
then the final posterior PDF 1 2, ,( )n k k

kp θ s  will be a product of the n posterior PDFs correspond-
ing to all clusters, 
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The most probable parameters θ̂ are obtained by maximizing the posterior PDF 
1 2, ,( )n k k

kp θ s . This is equivalent to minimizing 1 2, ,( ) ln[ ( )]n k k
kL p s= −θ θ . Various optimization 

algorithms can be employed to minimize ( )L θ  and obtain the optimal parameters θ̂ , and then 
central difference or analytical formulas can be used to calculate the Hessian matrix ˆ( )H θ . 
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Furthermore, it is found that the updated PDF of the parameters θ can be well approximated 
by a Gaussian distribution 1ˆ ˆ( , ( ))N −θ H θ with mean θ̂  and covariance matrix 1 ˆ( )−H θ . 

2.3 Mode shape identification and assembling 

The mode shapes can be identified as follows: since the modal frequencyω  is identified in 
the previous section, the nearest discrete frequency kω ω→  can be obtained. From Eq. (14), 
we know that the corresponding singular vector ku is an estimate of the rth mode shape Φ  with 
unitary normalization. The principle for mode shape identification is the same as that of FDD 
method [9]. 

The mode shapes extracted from a particular cluster of sensors are referred to as local 
mode shapes. The local mode shapes have to be rescaled and assembled to global mode 
shapes. Consider the global mode shape ΩΦ for the rth mode, along with local mode 
shapes 1ΩΦ , 2ΩΦ ,… nΩΦ  associated with respective clusters of sensors 1Ω , 2Ω ,… nΩ . The lo-

cal mode shapes iΩΦ and jΩΦ associated with two neighboring clusters with overlapped sen-
sors can be expressed as  
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 (19) 

where o is the number of overlapping nodes, and p and q are the number of non-overlapping 
nodes in the ith and jth clusters, respectively. To allow assembly, the mode shapes in Equation 
(19) should be rescaled to have the same values at the overlapping nodes, i.e. 
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 (20) 

where Rj is a rescaling factor for the mode shape jΩΦ . The global mode shape is the union of 
the local mode shapes as 
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=

Φ = Φ∪  (21) 

In the presence of noise, the rescaling factors to Equation (20) for any o>1 does not exist in 
general. Therefore, the rescaling factors Ri (i=1,2,…n) must be approximately determined, for 
example as a solution in the least-square sense [7-8]. Using the rescaling factors, the local 
mode shapes are scaled and assembled to obtain the global mode shape. At the overlapping 
nodes, the local mode shapes are averaged to obtain the associated values of the global mode 
shape. 
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3 APPLICATION IN WIRELESS SENSOR NETWORKS 
In this section, a distributed computing strategy is adopted to implement this algorithm. 

This distributed computing strategy can reduce the data amount of wireless transmission and 
take advantage of decentralized computing capacity of the wireless sensor networks (WSN). 
Because wireless communication often consumes more energy than other parts, algorithms 
which require transmission of long time history records should be avoided. Pre-processing 
data locally will not only make it possible to transmit smaller amount of important informa-
tion but also take advantage of the autonomous computing capacity of smart sensors. A two-
level hierarchical architecture is proposed for the application of WSN for Bayesian modal 
identification. There are three types of sensors classified by their functions in the network: 
gateway node, cluster head nodes and leaf nodes. The schematic network architecture is 
shown in Figure1. 

 
Figure 1. Two-level hierarchical architecture of WSN 

Both the leaf nodes and cluster head nodes perform data acquisition, and each node calcu-
lates the FFT and then the auto-spectral density. Using Peak-Picking method, the potential 
modal frequencies can be obtained. Once all the local modal frequencies from leaf nodes and 
cluster head nodes are collected centrally in the gateway node, the first task is to pick out the 
true modes. The true modes should be identified obviously in the majority of clusters, while 
the noise modes will randomly appear. Thus, if a specific natural frequency is identified in a 
substantial number of clusters, it is considered as a true mode. FFT data around these modal 
frequencies are sent to cluster head nodes, and then cross-spectrum around these frequencies 
can be calculated in the cluster head node.  In the cluster head node, SVD is performed in the 
vicinity of the modes to be identified, and then corresponding singular values (eigenvalues) 
are sent to the gateway node. Using Bayesian inference, modal frequencies and damping ra-
tios together with their uncertainties are obtained in the gateway node and then the gateway 
node returns modal frequencies to each cluster head node. Thus, local mode shapes in each 
cluster can be obtained using SVD at the corresponding closest discrete frequencies. Finally, 
each cluster head node reports local mode shapes to the gateway node. A global mode shape 
is assembled in the gateway node by comparing the overlapping nodes in each cluster. After 
that, finalized modal parameters and their uncertainties are sent to PC via USB cable. 

4 NUMERICAL EXAMPLE 
In this example, we use simulated data from an 8-story shear building shown in Figure 2. It 

is assumed that this building has a uniformly distributed floor mass m=1×105kg and inter-
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storey stiffness k=2.5×108N/m, and Rayleigh’s damping with corresponding damping ratios 
1 2 1%ζ ζ= =  is assumed. The structure is assumed to be subjected to a base acceleration 

given by stationary Gaussian white noise with a spectral density of 0.0025 2 3 1m s rad− − . It is 
assumed that the accelerations at each floor were measured using a sampling interval 
ΔT=0.01sec. The time duration for one data set is 1000s and 10 data sets are collected. The 
measurement noise at different sensors is assumed to be i.i.d. Gaussian white noise with 
RMS=0.1 2ms− . Therefore, the spectral density estimation calculated by Eq. (3) follows a 
Wishart distribution with M=10 degrees of freedom and their eigenvalues asymptotically fol-
lows a Gaussian distribution.   

g(t)

1k c1

m2

m4

8m

6m

2ck 2

3k c3

4k c4

5k c5

6k c6

7k c7

8k c8

1m

3m

m5

m7

#1

#2

#3

#4

#5

#6

#7

#8

gateway node

cluster A

cluster B

#9

 
Figure 2. 8-storey shear building 

The measurements can be taken by wireless sensors, which are grouped into two clusters: 
cluster A and cluster B. Cluster A consists of sensor #1, #2, #3, #4 and #5, one of which (ex-
cluding the overlapping nodes) is served as cluster head. Cluster B consists of sensor #4, #5, 
#6, #7 and #8, one of which (excluding the overlapping nodes) serves as cluster head. The 
overlapping nodes for these two clusters are sensor #4 and #5, which are used for global mode 
shape assembling. From the auto-spectrum in each sensor node, we know that there are three 
significant modes.  

Table 1 shows the identified results from the output measurements. It shows the estimated 
optimal values θ̂ , the calculated standard deviationsσ , coefficient of variance (COV), the 
value of a ‘normalized distance’β . The parameter β  represents the absolute value of differ-
ence between the identified optimal and actual value, normalized with respect to the corre-
sponding calculated standard deviation. Thus, β expresses how many standard deviations 
away the identified value of a given parameter is from the target value. It can also be seen that 
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the COV of damping is larger than that of natural frequency, which means it contains more 
uncertainty. 

The mode shapes are identified using SVD of the output spectral matrix at the nearest dis-
crete frequencies, and the corresponding singular vector ku is an estimate of the rth mode shape 
Φ  with unitary normalization. The global mode shapes are assembled using least square 
method. The identified results are tabulated in table 2. The modal assurance criterion (MAC) 
values between theoretical values and identified ones are listed in the end column. The MAC 
values shows that the identified results closely match the theoretical ones. 

 
 Actual θ   Optimal θ̂  S.D. σ  C.O.V ˆ /β θ θ σ= −  

ω1 6.2851 6.2831 0.0022 0.0004 0.8948 
ω2 18.6413 18.649 0.0064 0.0003 1.2129 
ω3 30.3626 30.312 0.0095 0.0003 5.3203 
ζ1 0.01 0.0102 0.0004 0.0416 0.4323 
ζ2 0.01 0.0104 0.0013 0.123 0.328 
ζ3 0.0137 0.0134 0.001 0.0763 0.3528 

Table 1. Identified modal frequencies and damping ratios 

 
mode  DOF #1 #2 #3 #4 #5 #6 #7 #8 MAC 

Th* -0.0891 -0.1752 -0.2554 -0.3268 -0.3871 -0.4342 -0.4666 -0.483 1st 
Id* -0.0891 -0.1754 -0.2554 -0.3267 -0.3872 -0.4341 -0.4664 -0.4831 

1.0000 

Th -0.2554 -0.4342 -0.483 -0.3871 -0.1752 0.0891 0.3268 0.4666 2nd 
Id -0.2568 -0.4363 -0.4862 -0.3893 -0.1781 0.0849 0.3217 0.4619 

0.9999 

Th -0.3871 -0.4666 -0.1752 0.2554 0.483 0.3268 -0.0891 -0.4342 3rd 
Id -0.3998 -0.4739 -0.177 0.2726 0.4894 0.3283 -0.0683 -0.3976 

0.9977 

Note: * “Th” & “Id” denotes theoretical and identified values, respectively. 

Table 2. Identified mode shapes 

5 CONCLUSIONS 
A Bayesian spectral decomposition (BSD) method for identifying modal parameters using 

output-only data is presented. This method takes advantage of the Bayesian spectral density 
approach (BSDA) and frequency domain decomposition (FDD) method, and avoids their 
limitations. Comparing with BSDA, this method reduces the dimension of identified parame-
ters in the optimization problem to only four for each mode. It can identify each mode sepa-
rately, which renders the method suitable for implementation in wireless sensor networks. 
Comparing with FDD, this method considers the uncertainty in a Bayesian statistical frame-
work. It avoids the subjective peak-picking procedures for modal frequency identification and 
the accuracy of damping ratio is also remarkable. It obtains not only the optimal values of the 
modal frequencies and damping ratios but also their associated uncertainties by calculating 
the posterior joint probability of these parameters. The quantification of these uncertainties is 
very important when one plans to use modal parameters estimates for further processing.  

The proposed method along with the distributed computing strategy may be suitable to be 
implemented in wireless sensor networks by utilizing the autonomous computing capacity of 
each wireless sensor. The proposed distributed computing strategy can reduce the amount of 
wireless communication and thus conserve the energy in an efficient manner. 
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