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Abstract. We discuss recent progress in the full-waveform-based imaging of probed solids/soils,
with geotechnical site characterization applications in mind. The primary goal is the recon-
struction of the material profile of near-surface, arbitrarily heterogeneous formations using
elastic waves as the probing agents.

The problem requires efficient solutions of the forward wave simulation problem, robust
strategies for tackling the inverse imaging problem, and designing of experimental protocols
to best harness the limited field data that feed the imaging problem. To address the forward
problem, the semi-infinite extent of the probed domains is truncated via the introduction of
perfectly-matched-layers (PMLs) at the truncation interfaces. We discuss a new variational hy-
brid formulation for transient elastic wave simulations in PML-truncated domains that is com-
putationally optimal when compared to competing schemes. We then discuss a full-waveform-
based inversion framework driven by PDE-constrained optimization ideas: to address the imag-
ing problem we seek to resolve simultaneously PML-endowed state and adjoint time-dependent
BVPs, together with time-independent BV control problems that drive the material updates
during inversion iterations. To address solution multiplicity and improve on the robustness
of the inversion algorithms we deploy regularization schemes (Tikhonov and Total Variation),
continuation schemes (frequency-, grid-, and regularization factor-continuations), and a new
search-direction biasing scheme that seems to accelerate algorithmic convergence.

We report satisfactory results with numerical experiments targeting inversion of both smooth
and sharp profiles in two dimensions, and also provide examples attesting to the quality and
efficiency of the forward wave modeling.
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1 INTRODUCTION

Recent advances in both algorithms and computer hardware architecture have renewed hope
that problems associated with the non-invasive condition assessment of physical and biologi-
cal systems are becoming more tractable with present means. The last thirty years have seen
various developments aiming at the solution of such mathematically, algorithmically, and com-
putationally challenging inverse problem that arises in various application domains ranging
from seismic to medical imaging. The inverse medium problem in the context of geotechni-
cal site characterization, reduces to the reconstruction of the soil’s material profile, i.e., of the
spatial distribution of the elastic material properties (Lamé parameters {λ, µ} or, to an extent,
equivalently, of the P- and S-wave velocities, {cp, cs}).

Since the focus is on characterizing near-surface deposits, the truncation of the semi-infinite
extent of the physical domain becomes necessary. We, thus, introduce perfectly-matched-layers
(PMLs) [1, 2, 3, 4, 5, 6] to convert the semi-infinite physical domain to a finite computational
model that mimics the physical behavior of the non-truncated domain. The PML is a truly ab-
sorbing condition, capable of handling heterogeneity, unlike any other competing methodology.
The PML attenuates propagating waves without reflection from the interface for all non-zero
angles-of-incidences and frequencies (Fig. 2(a)). Here, we address the numerical simulation
of elastic wave motion in two-dimensional, PML-truncated, arbitrarily heterogeneous elastic
media (forward problem). Specifically, we discuss a new hybrid, fully symmetric, variational
formulation (mixed unsplit-field PML, coupled with a non-mixed approach for the interior do-
main) for direct transient analysis. The hybrid formulation leads to optimal computational cost
and easy modification of existing interior-domain displacement-based codes to accommodate
PMLs as a means of domain truncation.

To address the inverse medium problem, we favor a full waveform inversion approach that
uses stress waves for interrogation, and is driven by the measurements collected directly in the
time-domain at receivers on the soil’s surface, as schematically shown in Figs. 1(a) and 1(b). We

(a) (b) (c)

Figure 1: Problem definition: (a) interrogation of a heterogeneous semi-infinite domain by an active source; (b) a
2D cross-section of the domain showing one source and multiple receivers; and (c) computational model truncated
from the semi-infinite medium via the introduction of PMLs

cast the profile reconstruction problem as a PDE-constrained least-squares misfit optimization
problem [7, 8] , and then recast it with the aid of a Lagrangian, whereby the misfit functional is
augmented with the side-imposition of the PML-endowed PDEs, initial, and boundary condi-
tions via Lagrange multipliers. To enforce the stationarity of the Lagrangian, we derive next the
first-order optimality conditions. Upon discretization, the coupled system results in a classic
KKT (Karush-Kuhn-Tucker) system. To solve, we pursue a reduced-space approach in which
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the coupled system of PDEs are solved in the reduced space of the control variables –the Lamé
parameters. To alleviate the difficulties associated with solution multiplicity, we explore both
Tikhonov (TN) and Total Variation (TV) regularization schemes. To aid the inversion process in
reconstructing high-quality material profiles, we deploy regularization factor continuation and
source-frequency continuation schemes. We present examples involving layered systems and
smoothly-varying profiles, as well as layered systems containing inclusions to demonstrate the
performance of the proposed inversion approach and associated algorithms.

2 2D ELASTIC WAVE HYBRID MODELING

First, the equilibrium equation and the kinematic condition combined with the constitutive
law, are Fourier-transformed into the frequency-domain, to obtain

div ŜT + f̂ = −ω2ρû, D : Ŝ =
1

2

[
∇û + (∇û)T

]
, (1)

where S, E , and D are the stress, strain, and compliance tensors, respectively; ρ is the density
of the elastic medium, u is the displacement vector, f is the load vector, and (:) denotes tensor
inner product. Next, we introduce the coordinate-stretched form for each coordinate:

s̃ =

∫ s

0

εs(s
′)ds′, εs(s, ω) = αs(s) +

βs(s)

iω
,

d

ds̃
=

1

εs(s, ω)

d

ds
, s = x, y, (2)

where ω denotes circular frequency, εs is a complex stretching function in the direction of
coordinate s, and αs and βs denote scaling and attenuation functions, respectively. As the
names imply, αs “stretches” or scales s, whereas βs is responsible for the amplitude decay of
the propagating wave once it enters the PML.

The stretching is applied by replacing x and y in (1) with the stretched coordinates x̃ and
ỹ. Making use of (2), (1) can be written in terms of the non-stretched coordinates, and then,
inverted back into the time domain to obtain a mixed unsplit-field PML formulation:

div
(
ṠT Λ̃e + ST Λ̃p

)
+ af = ρ (aü + bu̇ + cu) , (3a)

D :
(
aS̈ + bṠ + cS

)
=

1

2

[
(∇u̇)Λ̃e + Λ̃e(∇u̇)T + (∇u)Λ̃p + Λ̃p(∇u)T

]
, (3b)

in which a = αxαy, b = αxβy +αyβx, c = βxβy, and Λ̃e and Λ̃p define the diagonal stretch ten-
sors where the subscripts “e” and “p” refer to attenuation functions associated with evanescent
and propagating waves, respectively. In the regular domain, Λ̃e reduces to the identity ten-
sor, whereas Λ̃p vanishes identically. In (3), we introduce an auxiliary variable S(x, t), which
physically represent stress memories or histories, defined as

S(x, t) =

∫ t

0

S(x, τ)dτ and consequently, Ṡ(x, t) = S(x, t). (4)

Owing to the complexity of (3), one could not conceivably reduce (3) to a single unknown
field, as it is routinely done in displacement-based interior elastodynamics problems, without
increasing the temporal complexity. Here, we propose a hybrid approach, whereby we retain
a displacement-based interior problem and couple it with the mixed unsplit PML. Thus, the
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(a) (b)

Figure 2: PML-truncated semi-infinite domains in 1D and 2D

wave motion in a PML-truncated domain (Figure 2(b)) over a time interval of interest, (0, T ] is
governed by the hybrid system of equations:

div
{
µ
[
∇u + (∇u)T

]
+ λ(div u)I

}
+ f = ρü in ΩRD, (5a)

div
(
ṠT Λ̃e + ST Λ̃p

)
= ρ (aü + bu̇ + cu) in ΩPML, (5b)

D :
(
aS̈ + bṠ + cS

)
=

1

2

[
(∇u̇)Λ̃e + Λ̃e(∇u̇)T + (∇u)Λ̃p + Λ̃p(∇u)T

]
in ΩPML, (5c)

subject to silent initial, and the following boundary and interface conditions:{
µ
[
∇u + (∇u)T

]
+ λ(div u)I

}
n = gn on ΓRD

N , (6a)

(ṠT Λ̃e + ST Λ̃p)n = 0 on ΓPML
N , (6b)

u = 0 on ΓPML
D , (6c)

u+ = u− on ΓI, (6d){
µ
[
∇u + (∇u)T

]
+ λ(div u)I

}
n = −(ṠT Λ̃e + ST Λ̃p)n on ΓI, (6e)

where gn denotes prescribed tractions. Note that the hybrid approach couples two initially-
uncoupled sets of governing equations via the continuity of displacements and tractions at the
interface.

We seek next the weak form, in the Galerkin sense, corresponding to the strong form (Eq. 5).
We take inner products of (5) with test functions w1(x), w2(x), and T(x), and then integrate
over ΩRD, ΩPML, and ΩPML, respectively, where the integration by parts is applied to the equi-
librium equations (5a) and (5b). By adding the equilibrium equations, the weak form of (5) can
be cast as:∫

ΩRD

∇w1 :
{
µ
[
∇u + (∇u)T

]
+ λ(div u)I

}
dΩ +

∫
ΩPML

∇w2 :
(
ṠT Λ̃e + ST Λ̃p

)
dΩ

+

∫
ΩRD

w1 · ρü dΩ +

∫
ΩPML

w2 · ρ (aü + bu̇ + cu) dΩ

=

∫
ΓRD
N

w1 · gn dΓ +

∫
ΩRD

w1 · f dΩ, (7a)
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∫
ΩPML

T :
[
D :
(
aS̈ + bṠ + cS

)]
dΩ

=
1

2

∫
ΩPML

T :
[
(∇u̇)Λ̃e + Λ̃e(∇u̇)T + (∇u)Λ̃p + Λ̃p(∇u)T

]
dΩ. (7b)

For the mixed finite element implementation of the weak form, both u(x, t) and S(x, t) are
treated as independent variables that need to be approximated separately now only within the
PML domain. Let the basis functions be denoted by Φ and Ψ. The trial functions (u, S) and
the test functions (w, T) are spatially discretized as

ux(x, t) ∼= ΦT (x)ux(t), uy(x, t) ∼= ΦT (x)uy(t)

Sxx(x, t) ∼= ΨT (x)Sxx(t), Syy(x, t) ∼= ΨT (x)Syy(t), Sxy(x, t) ∼= ΨT (x)Sxy(t),

wx(x) ∼= wT
xΦ(x), wy(x) ∼= wT

y Φ(x),

Txx(x) ∼= TT
xxΨ(x), Tyy(x) ∼= TT

yyΨ(x), Txy(x) ∼= TT
xyΨ(x).

We, subsequently, obtain the semi-discrete form that is second-order in time and is resolved
by the classical Newmark-β scheme. We note the resulting matrices are symmetric, and that
their size is substantially smaller (up to 60% reduction in total number of unknowns in two
dimensions) than that required by fully-mixed formulations (split- or unsplit-field), since the
interior elastodynamics problem remains purely displacement-based.

To test the accuracy and efficiency of the hybrid formulation, we present two numerical ex-
periments: a homogeneous semi-infinite domain (Fig. 3(a)), and a horizontally-layered medium
(Fig. 3(d)). We use a Ricker pulse time signal with a central frequency fr = 15 Hz as: (a) an
explosive source placed at the center of the homogeneous domain, and (b) a surface stress load
over a region (−1m ≤ x ≤ 1m) of the heterogeneous domain. The efficacy and quality of the
PML is nicely corroborated by Fig. 3, which shows no discernible reflections from the PML
interfaces, nor any residual reflections from the fixed external boundaries, even in the presence
of heterogeneity. The various error metrics shown in Fig. 4 that include the domain energy
decay, global and point-wise time-dependent norms, and a long-time stability run, all attest to
the forward problem’s performance.

3 THE INVERSE MEDIUM PROBLEM

We formulate the inverse problem initially as a PDE-constrained least-squares misfit mini-
mization problem (à la [7, 8]), where the misfit is defined as the difference between the mea-
sured response (um) at the receivers and a computed response (u) that is obtained using trial
distributions of the material parameters. The misfit least-squares minimization can be cast as

F :=
1

2

Nr∑
j=1

T∫
0

∫
Γm

(u− um)2 δ(x− xj) dΓ dt +R(λ, µ), (9)

and is subject to the physics of the problem, as expressed by the forward problem statement
shown in the preceding section. In the above, F denotes the objective functional, Γm denotes
the part of the surface ΓRD

N occupied by measuring stations, Nr denotes the total number of
receivers on the surface, and R has been introduced to alleviate the solution multiplicity. We
explore both TN and TV regularization schemes.

We cast the PDE-constrained inverse medium problem (9) with the aid of a Lagrangian L,
whereby the misfit functional F is augmented with the side-imposition of the governing PDEs
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(a) Homogeneous (b) u at t = 0.218s (c) u at t = 0.44s

(d) Heterogeneous (e) u at t = 0.34s (f) u at t = 0.45s

Figure 3: PML-truncated medium in two dimensions

and boundary conditions via Lagrange multipliers, per:

L(u,S,θu1,θu2,θs,θb1,θb2, λ, µ)

=
1

2

Nr∑
j=1

∫ T

0

∫
Γm

(u− um) · (u− um) δ(x− xj) dΓdt + R(λ, µ)

+

∫
ΩRD

∫ T

0
θu1 ·

[
div

{
µ
[
∇u + (∇u)T

]
+ λ(divu)I

}
+ f − ρü

]
dt dΩ

+

∫
ΩPML

∫ T

0
θu2 ·

[
div

(
ṠT Λ̃e + ST Λ̃p

)
− ρ (aü + bu̇ + cu)

]
dt dΩ

+

∫
ΩPML

∫ T

0
θs :

{
D :
(
aS̈ + bṠ + cS

)
− 1

2

[
(∇u̇)Λ̃e + Λ̃e(∇u̇)T + (∇u)Λ̃p + Λ̃p(∇u)T

]}
dt dΩ

+

∫
ΓRD
N

∫ T

0
θb1 ·

{(
µ
[
∇u + (∇u)T

]
+ λ(divu)I

)
n− gn

}
dt dΓ

+

∫
ΓPML
N

∫ T

0
θb2 ·

[(
ṠT Λ̃e + ST Λ̃p

)
n
]

dt dΓ. (10)

In the above and in the parlance customarily used for such problems, {u , S} are the state
variables (s), {θu1 , θu2, θs, θb1, θb2} are the Lagrange multipliers or adjoint variables (m),
and {λ , µ} are the control variables (c). We seek to satisfy stationarity of L by requiring that
the first variations of L vanish.

3.1 The 1st optimality condition (State problem)

The variation of L with respect to the Lagrange multipliers must vanish; accordingly δmL =
0. There results the state (or forward) problem, identical to the IBVP given by (5-6).
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(a) Energy decay (std) (b) Energy decay (log) (c) Long-time stability

(d) Displacement norm (e) Relative error e(t) (f) e(t) for ux at sp2 (g) e(t) for uy at sp5

Figure 4: Error metrics for homogeneous domain

3.2 The 2nd optimality condition (Adjoint problem)

Similarly, we enforce the vanishing of the variation of L with respect to the state variables,
that is δsL = 0. There results the following adjoint problem:

div
[
µ(∇θu1 +∇θu1T ) + λ div θu1 I

]
= ρ ¨θu1 in ΩRD,

div
(
−θ̇sΛ̃e + θsΛ̃p

)
= ρ

(
a ¨θu2 − b ˙θu2 + cθu2

)
in ΩPML,

D :
(
aθ̈s − bθ̇s + cθs

)
= Λ̃p (∇θu2)T − Λ̃e

(
∇ ˙θu2

)T
in ΩPML,

subject to{
µ(∇θu1 +∇θu1T ) + λ div θu1 I

}
n =

Nr∑
j=1

(u− um) on Γm,(
−θ̇sΛ̃e + θsΛ̃p

)
n = 0 on ΓPML

N ,

θu2 = 0 on ΓPML
D ,

θu1 = θu2 on ΓI,

{2µ∇θsymu1 + λ div θu1 I}n =
(
θ̇sΛ̃e − θsΛ̃p

)
n on ΓI,

θu1(x, T ) = 0, ˙θu1(x, T ) = 0 in ΩRD,

θu2(x, T ) = 0, ˙θu2(x, T ) = 0 in ΩPML,

θs(x, T ) = 0, θ̇s(x, T ) = 0 in ΩPML.

The adjoint problem is a final-value problem (requires reverse marching along the time line) and
is driven by the misfit between the computed and observed responses at measuring stations. We
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note that the operators implicated in the adjoint PDEs are identical to the state operators, modulo
the sign reversal for those terms implicating first-order time derivatives. By construction, the
adjoint equations are also hybrid and PML-endowed, with (θu1,θu2) and θs playing a role
analogous to u and S of the state problem, respectively.

3.3 The 3rd optimality condition (Control problem)

Lastly, we impose δλL = 0 and δµL = 0. The variations result in the following two
boundary-value control problems:
λ-control problem:

−Rλ∆λ−
∫ T

0

(div θu1)(div u) dt = 0 in ΩRD, (13a)∫
ΓRD
N

∇λ · n dΓ = 0 on ΓRD
N . (13b)

µ-control problem:

−Rµ∆µ−
∫ T

0

∇θu1 : 2∇usym dt = 0 in ΩRD, (14a)∫
ΓRD
N

∇µ · n dΓ = 0 on ΓRD
N . (14b)

In writing (13) and (14), we adopted the TN scheme for regularizing the solutions. If the TV
regularization were to be used instead, the first terms in (13a) and (14a) are modified, and the
control problems now read

−Rλ ∇ ·
[
(∇λ · ∇λ+ ε)−

1
2 ∇λ

]
−
∫ T

0

(div θu1)(div u) dt = 0 in ΩRD, (15)

−Rµ ∇ ·
[
(∇µ · ∇µ+ ε)−

1
2 ∇µ

]
−
∫ T

0

∇θu1 :
(
∇u +∇uT

)
dt = 0 in ΩRD. (16)

We remark that the TV scheme leads to a nonlinear operator in the control equations, as opposed
to the Laplacian operator that results when TN regularization is used.

4 THE INVERSION PROCESS

To satisfy the stationarity ofL, all three problems must be solved. However, the simultaneous
solution of the resulting KKT system using a full-space method is computationally expensive.
Alternatively, a reduced-space method, in which the coupled system of PDEs are solved in the
reduced space of the control variables, is preferable [7, 8]. The procedure is iterative: we start
with an assumed initial spatial distribution of the control parameters (λ and µ) and solve the state
problem. Then, we solve the adjoint problem. By doing so, we satisfy the first and second op-
timality conditions, and we iteratively update the control parameters using a conjugate gradient
method with inexact line search so that the misfit reduces to a preset tolerance, thereby allowing
the third optimality condition to be satisfied. We bring in two remedies that aid the inversion
process in reconstructing high-quality material profiles: (a) a regularization factor continuation
scheme to penalize high-frequency material oscillations during the early inversion stages, (b)
a source-frequency continuation scheme in which a low-frequency excitation typically allows
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for a rough resolution of the material profile, whereas an excitation with higher-frequency com-
ponents fine-tunes the profile, and (c) a search-direction biasing scheme, whereby we seek to
bias the λ-search directions by the µ-search directions, effectively forcing both parameters to
increase simultaneously, during the early inversion iterations. The scheme is motivated by the
physics of the problem, and is described by:

dλk ← ‖dλk‖
[
W

dµk
‖dµk‖

+ (1−W )
dλk
‖dλk‖

]
(17)

where a weighted average of unit λ- and µ-search directions are used for the evolution of λ.

5 NUMERICAL EXPERIMENTS

To test the proposed inversion scheme, we discuss next numerical experiments, involving
arbitrarily heterogeneous hosts and synthetic data. The first example is a fictitious medium
that has material properties varying smoothly with depth. We reduce the half-plane, through
truncation, to a 45m × 45m computational domain, surrounded on its sides and bottom by a
5m-thick PML, as shown in Fig. 5(a). The material interfaces were extended horizontally into

(a) Geometry (b) Cross-section (c) Target λ and µ

Figure 5: A PML-truncated semi-infinite domain in two dimensions

the PML, thereby, avoiding sudden material changes at the interface between the PML and the
regular domain. We started the inversion process with a homogeneous profile that has both
λ and µ set to 80 MPa. By applying a Gaussian pulse load with a maximum frequency of
fr = 40 Hz, we reconstructed the Lamé parameters shown in Fig. 6. Both Lamé parameters are
satisfactorily inverted.

Example 2 involves a horizontally-layered medium with λ(y) = µ(y) = 80, 101.25, and 125
MPa from top to bottom, as shown in Fig. 7(a). We use a source-frequency continuation scheme
according to which a few time signals with different frequency content are used to probe the
domain. We start the inversion process with a low-frequency source and feed the converged
reconstructed λ and µ profiles as initial guesses to the problem excited with a higher-frequency
source. Here, we considered four different Gaussian pulses with maximum frequencies of 10,
20, 30, and 40 Hz. Figure 8 shows the velocity profiles computed from the reconstructed Lamé
parameter profiles. Both velocity profiles seem to be recovered quite satisfactorily.

The last example focuses on a layered medium with λ(y) = µ(y) = 320, 500, 720 MPa
from top to bottom and an embedded elliptic inclusion of 720 MPa in an effort to implicate
arbitrary heterogeneity (Fig. 9). As in Example 2, we use a source-frequency continuation
scheme with four distinct Gaussian pulses (fmax = 10, 40, 80, and 120 Hz), to probe the

9
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(a) λ (TN) (b) λ (TV) (c) λ at x = 0m

(d) µ (TN) (e) µ (TV) (f) µ at x = 0m

Figure 6: Simultaneous inversion for the Lamé parameters using TN and TV regularization

(a) Geometry (b) Target λ and µ

Figure 7: A PML-truncated horizontally-layered semi-infinite domain in two dimensions
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(a) cp (m/s) (TN) (b) cs (m/s) (TN)

(c) cp (m/s) (TV) (d) cs (m/s) (TV)

Figure 8: Velocities computed from the reconstructed Lamé parameters

(a) Geometry (b) Target λ and µ

Figure 9: A PML-truncated layered semi-infinite domain with an elliptic inclusion
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domain. Here we opted for using the TV regularization only. We initiated the inversion process
with a homogeneous medium that has λ = µ = 310 MPa. Figure 10 provides the velocity
profiles computed from the reconstructed λ and µ. Once again, both velocity profiles seem to
have been recovered with moderate success.

(a) cp (m/s) (b) cs (m/s)

Figure 10: Velocities computed from the reconstructed Lamé parameters

6 CONCLUSIONS

We discussed a full-waveform-based inversion methodology in PML-truncated elastic me-
dia, suitable for geotechnical site characterization purposes, implemented directly in the time-
domain, using stress waves for probing, and driven by the measured response at receivers situ-
ated on the ground surface.

We adopted a PDE-constrained optimization approach, and discussed the implementation of
the resulting first-order optimality conditions. These gave rise to: a) a state problem that was
treated by the a new symmetric hybrid method developed for the forward wave simulation; b) an
adjoint problem that was treated also with the hybrid method similarly to the state problem; and
c) control problems that were used to update the material parameters. The continuation schemes
we deployed assisted the optimizer in narrowing the initial feasibility space by presenting sub-
sequent iterations with improved initial guesses. Though the presentation here is limited to
geotechnical applications, the overall structure of the inversion scheme is modular and very
flexible, and could be adopted as a solution approach for a broader class of inverse problems.
Its performance can be improved by introducing a nonlinear iterative solver that would achieve
convergence rates better than the conjugate gradient method used herein, possibly similar to
what was proposed in [7].

We discussed our experience in reconstructing heterogeneous profiles involving smoothly-
varying profiles, as well as layered systems, and layered media with embedded inclusions, in
order to demonstrate the performance of the proposed inversion approach. Here, we described
only the two-dimensional case, but the axisymmetric and three-dimensional cases follow di-
rectly.
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