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Abstract. Penalty functions are a popular tool to add constraints to a system of equations, such
as for instance Dirichlet boundary conditions or setting a relation between different degrees of
freedom. Although implementation of the penalty method is simple, the commonly used stiffness-
type penalties have a drawback in dynamics in that they increase the speed of sound locally.
Thus, in conditionally stable time integration schemes the critical time step is lowered (often
by orders of magnitude) if stiffness penalties are used. As an alternative, one may use inertia
penalties that lower the speed of sound and therefore increase the critical time step, but in this
paper we suggest the simultaneous use of stiffness and inertia penalties, which is called the bi-
penalty method. In the bi-penalty method the relative magnitudes of stiffness penalty and inertia
penalty can be tuned so that the net effect on the critical time step is neutral, thereby removing
a major disadvantage of stiffness-type penalty methods.
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1 INTRODUCTION

Penalty functions are a popular technique to impose constraints in computational mechanics.
Penalties can be used to enforce support conditions, tyings, interface conditions and/or con-
tact. In mechanics, penalty functions are usually based on adding stiff springs to the system of
equations. The accuracy of the constraint imposition depends on the magnitude of the penalty
parameter, that is the stiffness of the added springs — the larger the penalty parameter, the more
accurate the constraint is realised [1].

However, the penalty parameters cannot be chosen arbitrarily large: the condition number
of the system matrix is affected adversely by increased penalty parameter, which deteriorates
numerical accuracy. Furthermore, in dynamics an additional disadvantage is that stiffness-type
penalties increase the speed of sound (at least locally where the penalty is applied). This be-
comes particularly significant in case a time domain analysis is performed with a conditionally
stable time integration scheme; such schemes have a so-called critical time step which acts as
an upper bound on the time step that can be used — larger time steps may (and usually do) lead
to numerical instabilities. The critical time step is inversely proportional to the (local) speed of
sound. Since the speed of sound increases with increased stiffness, applying stiffness penalties
leads to increased speed of sound and decreased critical time steps [2].

As an alternative to stiffness-type penalties, it has more recently been suggested to use
inertia-type penalties [3, 4]. Whereas stiffness-type penalties can be considered as stiff springs
that prohibit displacement of the associated degree of freedom, inertia-type penalties act like
heavy masses that prohibit acceleration of the corresponding degree of freedom. Although in-
ertia penalties are not as accurate as stiffness penalties of equal magnitude, the beneficial effect
of inertia penalties in dynamics is that they decrease the speed of sound and therefore increase
the critical time step [4, 5].

To combine the benefits of stiffness penalties and inertia penalties, we suggest the simulta-
neous use of stiffness-type penalties and inertia-type penalties — a concept which is denoted
as the bi-penalty method [5]. As explained above, stiffness penalties and inertia penalties have
opposite effects on the critical time step; thus, critical ratios between the two penalty parameters
can be derived such that their combined effect on the critical time step is neutral. The simul-
taneous use of inertia penalties and stiffness penalties has been suggested in the mid 1980s by
Asano [6, 7, 8] for reasons of computational accuracy (and in fact penalties were also added
to the damping matrix in these works), and more recently in [9] where the main focus was on
frequency domain analysis.

In this paper, expressions will be given to compute the critical penalty ratio (CPR) described
above. We will review the method to compute the CPR given in [5] and also present an alterna-
tive, much simpler method that has been developed recently. It will also be demonstrated that
the critical time step remains unaffected if the penalty ratio is chosen not larger than the critical
penalty ratio, whereas instabilities may occur otherwise. The bounds between stable and unsta-
ble simulations turn out to be very crisp, which is evidence for accuracy and relevance of the
derived expressions for the critical penalty ratio.

2 BI-PENALISED EQUATIONS OF MOTION

We consider a linear elastic structure with stiffness matrix K, mass matrix M, external force
vector f and degree of freedom (DOF) vector u. A constraint un − u = 0 is applied to the nth

DOF where u is the user-prescribed value of un. The constraint is enforced using stiffness and
inertia penalty functions. For the former, the constraint in its usual form is added to the potential
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energy U . For the latter, the rate format of the constraint is taken and added to the kinetic energy
T . The penalised potential and kinetic energy functionals thus read

U =
1

2
uTKu− uT f +

1

2
αs (un − u)2 (1)

and
T =

1

2
u̇TMu̇+

1

2
αm

(
u̇n − u̇

)2 (2)

where αs and αm are penalty parameters of the stiffness type (dimension N/m) and inertia type
(dimension Ns2/m), respectively. The equations of motion of the structure follow from

d
dt

∂T
∂u̇T

+
∂U
∂uT

=
[
M+MP

]
ü+

[
K+KP

]
u−

(
f + fP

)
= 0 (3)

The components of MP and KP are all zero except for the diagonal entries MP
nn = αm and

KP
nn = αs. Similarly, fP

n = αmü+ αsu with all other components of fP equal to zero.

3 COMPUTING THE CPR FROM THE BI-PENALISED SYSTEM

The critical time step ∆tcrit of explicit time integration schemes, such as the central difference
method, follows from

∆tcrit =
2

ωmax
(4)

where ωmax is the maximum eigenfrequency of the structure, which can be approximated (and
is in fact bounded [10]) by the maximum eigenfrequency of the smallest element.

We require the critical time step to remain unaffected by the use of the bi-penalty method;
thus, we require the maximum eigenfrequency of the bi-penalised system ωBP

max to be not larger
than the maximum eigenfrequency of the unpenalised system ωUP

max. We define the the criti-
cal penalty ratio (CPR) as the ratio αs/αm for which the maximum eigenfrequency of the bi-
penalised system is identical to the maximum eigenfrequency of the unpenalised system. To
find expressions for the CPR we proceed as follows:

1. Find ωUP
max as the largest root from the unpenalised eigenvalue problem

det
(
K−

(
ωUP)2M)

= 0 (5)

2. Substitute ωUP
max into the bi-penalised eigenvalue problem:

det
([

K+KP
]
−
(
ωUP

max

)2 [
M+MP

])
= 0 (6)

The free parameters of the latter expression are the two penalty parameters αs and αm.

3. Define the CPR as CPR = αs/αm and find an expression for the CPR from Equation (6).

This is the approach that was used in [5] to compute the CPR for linear bar elements, beam
elements and two-dimensional four-noded square elements. Whilst valid results can be obtained
with this approach, it is nevertheless somewhat cumbersome in that the eigenvalue problem of
the bi-penalised system must be solved. The complexity of the expressions increases rapidly
when more than one DOF is penalised. Thus, it is of interest to explore alternative methods to
compute the CPR.
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4 COMPUTING THE CPR FROM THE UNPENALISED SYSTEM

As it turns out, it is possible to compute the CPR without the need to consider the bi-penalised
eigenvalue problem. Here, we will present some basic principles of the proofs — the full proofs
are quite elaborate and will be published in detail elsewhere. The bi-penalised eigenvalue prob-
lem is written as [(

K+KP
)
−
(
ωBP)2 (M+MP

)]
v = 0 (7)

where v is an eigenvector of the bi-penalised system. The eigenvectors can be scaled such that
they are K-orthogonal and M-orthonormal [1], that is

vT
I

(
K+KP

)
vJ =

(
ωBP
I

)2
δIJ (no summation over I) (8)

vT
I

(
M+MP

)
vJ = δIJ (9)

Taking I = J , we obtain for large values of αs and αm that αsv
2
n =

(
ωBP
I

)2 and αmv
2
n = 1,

where vn is the penalised component of the I th eigenvector vI . Elimination of v2n then yields√
αs

αm

= ωBP
I (10)

that is, for large values of the penalty parameters the square-root of the penalty ratio
√

αs/αm

is an eigenvalue of the bi-penalised system. It will be proven elsewhere that if
√

αs/αm is
chosen equal to the largest eigenvalue of the unpenalised system, then it is also equal to the
largest eigenvalue of the bi-penalised problem, so that the overall conclusion is that by taking
αs =

(
ωUP

max

)2
αm the maximum eigenfrequencies of the bi-penalised system and the unpe-

nalised system are identical. Thus, the critical penalty ratio is

CPR =
(
ωUP

max

)2 (11)

This result is also valid for an arbitrary number of penalised DOF.

5 EXAMPLE

For illustration, we will consider the well-known case of one-dimensional linear bar ele-
ments. The lumped mass matrix and stiffness matrix are given as

M =
ρAh

2

[
1 0
0 1

]
and K =

EA

h

[
1 −1

−1 1

]
(12)

where A is the cross-sectional area, h is the element length, E is Young’s modulus and ρ is the
mass density. The unpenalised eigenvalue problem can be expanded as

det
(
K−

(
ωUP)2 M)

=
(
ωUP)2 ((ωUP)2 − 4E

ρh2

)
= 0 (13)

so that ωUP
max = 2ce/h where ce =

√
E/ρ is the one-dimensional speed of sound. The CPR is

then found as CPR = 4c2e/h
2, which corresponds with the dimensionless CPR found earlier in

[5]. For the consistent mass matrix, a similar procedure leads to CPR = 12c2e/h
2.

As a numerical example, we consider a bar of length L = 100 m and cross-sectional area
A = 1 m2. A force F = 1 N is applied at the left end from time t = 0 s onwards. Stiffness
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Figure 1: Wave propagation in a bar — strain profiles across the bar at time t = 150 s with critical penalty ratio
(top) and super-critical penalty ratio (bottom)

and inertia penalties are applied at the right end of the bar to simulate fixed-end conditions. The
material parameters are taken as E = 1 N/m2 and ρ = 1 kg/m3. The used finite element mesh
consists of 100 two-noded bar elements. We apply a time step ∆t = ∆tcrit = 1 s, which means
that the simulation should be numerically stable in the interior of the domain; if instabilities
occur, they will occur due to the penalisation at the right end of the bar. The inertia penalty
parameter αm = 50. Figure 1 shows the strain profiles across the bar at time t = 150 s for
two values of the stiffness penalty: one whereby αs/αm = CPR and one whereby αs/αm =
1.002 · CPR. It is clear that selecting a penalty ratio equal to the CPR leads to a simulation that
is numerically stable. It can also be seen that if the penalty ratio is taken slightly larger than
critical, instabilities are initiated at the penalised end of the bar.

6 CONCLUDING REMARKS

The bi-penalty method, in which inertia penalties are used simultaneously with the usual
stiffness penalties, can be used in explicit dynamics to control the critical time step. The effects
of stiffness penalties and inertia penalties on the critical time step are opposite, therefore their
relative magnitudes can be tuned to obtain a zero net effect on the critical time step. We have
also outlined procedures to compute so-called critical penalty ratios (CPRs) that set the stability
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limit for numerical simulations. An earlier method required that the bi-penalised eigenvalue
problem was solved, but a new method has been formulated by which the CPR can be computed
directly from the unpenalised eigenvalue problem.

In this paper, we have presented the computation of the CPR for simple one-dimensional bar
elements. More sophisticated results for beam elements and two-dimensional square elements,
obtained using the earlier method to compute the CPR, have been reported in [5], whereas the
eigenfrequencies for unpenalised square elements (using plane various integration schemes)
have also been given in [11].
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