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Abstract. The purpose of this paper is to estimate the geometrically nonlinear dynamic 
behavior of a saddle form cable net, using an equivalent single-degree-of-freedom model. 
First, a symmetric simple cable net is assumed, consisting of two crossing cables, considering 
the vertical displacement of the central node as the only degree of freedom. The equation of 
motion is found to be similar to the one of the Duffing oscillator with a hardening cubic term. 
Next, a MDOF symmetric cable net model is considered, with fixed cable ends, having a 
circular plan view and forming a surface of a hyperbolic paraboloid. Harmonic external 
loads act vertically on every node of the net, with the same amplitude and time variation. 
Modal analyses are conducted in order to calculate the linear eigenfrequencies and the 
corresponding eigenmodes of the network. The nonlinear dynamic response of the cable net is 
obtained by performing time history analysis. Detecting nonlinear phenomena, such as 
bending of the response curve, jump phenomena, different response amplitudes according to 
the initial conditions, superharmonic or subharmonic resonances, demands much 
computational effort for different load amplitudes and ratios of loading frequency. Based on a 
method of approximate analysis for prediction of the response of cable nets, the MDOF model 
is transformed to an equivalent SDOF one, using similarity relations. The analytical solution 
of the single-degree-of-freedom model can provide, with minimum computational time, the 
basic information needed for nonlinear dynamic response, i.e. secondary resonances, jump 
phenomena, dependence on the initial conditions and the exact loading frequency for which 
the maximum steady state oscillation amplitude is obtained. The comparison between the two 
models by means of the steady state amplitude of the central node, demonstrates that the 
behavior of the SDOF model describes satisfactorily the one of the MDOF model, predicting 
the dominant nonlinear phenomena. 
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1 INTRODUCTION 
Nonlinear phenomena, such as superharmonic or subharmonic resonances, bending of the 

response curve and jump phenomena, as well as response amplitudes dependent on the initial 
conditions, that occur in nonlinear systems [1], are very difficult to be detected in a multi-
degree-of-freedom system. The only way to plot a response curve, which can show if the 
above phenomena take place, is by conducting a large number of nonlinear time history 
analyses, for different closely spaced load amplitudes and frequencies, but this is a time 
consuming procedure requiring much computation effort. 

The idea of solving an equivalent SDOF system to estimate the dynamic response of a 
complex structure has been adopted by many researchers ([2]-[9]). This idea is based on 
equating the energy of the real structure to the one of the SDOF system. Ensuring equal 
displacements and velocities in both systems, the kinematic similarity is maintained. This 
approach has the advantage that the equation of motion for a SDOF oscillator can be solved 
analytically. Hence, it is possible to determine the range of the parameters that influence the 
dynamic response of the system. On the other hand, it is impossible to assess the overall 
response of the MDOF system, because the simulation is obtained only in the main direction 
of motion, neglecting the other two dimensions of the large structure. 

Another method of reducing the dimensions of a large scale event, using a smaller one with 
similar characteristics, is a method based on the Buckingham Pi theorem [10]. This theorem 
states that if an equation involves a number of variables and k fundamental measurement 
units, then the equation can be expressed in terms of k fewer arguments that are non-
dimensional ratios of the original variables. The concept is based on the notion that an 
equation must be dimensionally homogeneous, that is, its solution must be invariant to any 
change in the system of measurement units employed. This technique has been used to design 
small scale experiments in order to simulate with accuracy large scale phenomena. 

Gero ([11], [12]), inspired by this theorem, presented a method to estimate the static 
behaviour of a large cable net, using charts that describe the behaviour of a smaller one, by 
means of the maximum deflection and cable tension. The transformation of the large structure 
to the smaller one was obtained by similarity relations. The proposed method was restricted to 
nets with fixed cable edges. The two networks should have similar geometries, with the same 
sag-to-span ratio, so that their corresponding quantities could also be similar. 

This latter method was extended by the authors of the present paper to elastically supported 
cable network structures, by taking into account the characteristics of the edge ring, and more 
specifically its flexural stiffness ErIr ([13] - [15]). Thus, the ring was no longer considered 
rigid, but elastically deformable, accounting for more realistic boundary conditions for the 
cables. Additional charts and similarity relations were provided for the preliminary design of 
the edge ring, including the sag-to-span ratio of the net as a variable in the transformation 
relations. This method was further developed for the case of dynamic response [16], providing 
additional similarity relations for the mass and the natural frequency of the system, for the 
case of fixed cable ends. 

This preliminary design method is used in the present work to transform a MDOF cable 
net, called prototype, into an equivalent SDOF cable net, called model, in order to solve 
analytically the equation of motion, and thus have the possibility to detect nonlinear 
phenomena and estimate the nonlinear dynamic response of the large structure. The analytical 
solution, which plots the steady state amplitude of the equivalent SDOF model, is compared 
with the steady state response of the MDOF system, obtained numerically. The accuracy of 
the method is evaluated by means of a numerical example. 
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2 PROTOTYPE AND MODEL ASSUMPTIONS 
The cable net used as prototype, has a diameter Lp=100m and sag-to-span ratio equal to 

fp/Lp=1/35 (fp=2.857m), while the number of cables in each direction is Np=25 (Figure 1). The 
Young modulus is assumed equal to Ep=165GPa. The unit weight of the cables is taken equal 
to ρp=100kN/m3, which corresponds to a concentrated mass on every node equal to: 

     ( )
12
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ppp
p mseckN151.0
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M −=
+

=
ρ

 (1) 

Uniform harmonic loads, expressed as Pp(t)=(P0)pcosΩpt, are assumed to be exerted 
vertically on every node of the net, having the same amplitude and time variation. The 
maximum permissible cable stress is assumed equal to the yield stress of the material. In this 
work the yield stress is assumed equal to 1570MPa considering one of the two most common 
categories of steel for cables 1570/1770MPa. The oscillation of the central node of the net 
will be used to describe the response of the net. Raleigh damping [17] is also introduced 
taking into account damping ratio equal to ζp=2%, which is a common value for such 
structures [18]. The subscript p refers to the prototype. 

 
Figure 1: Geometry of the prototype 

The model utilized as the equivalent SDOF system consists of two crossing cables (Nm=1), 
with a concentrated mass at the central node Mm. In order to minimize the scaling error, the 
model has the same sag-to-span ratio fm/Lm, cable span Lm, and Young modulus Em with the 
prototype. A harmonic load, expressed as Pm(t)=(P0)mcosΩmt, is exerted vertically on the 
central node (Figure 2). The subscript m refers to the model. 
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Figure 2: Geometry of the model 

3 SIMILARITY RELATIONS 
The relations that are used in this work for the transformation of the large cable net 

(prototype), to the simple one (model), are based on the ones given in [16], for a cable net 
with fixed cable ends. Taking into account that the sag-to-span ratio, the cable span and the 
Young modulus are the same for both the prototype and the model, the similarity relations 
that will be used are the following: 
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 wm=wp     : nodal deflection (8) 

 ωm=ωp     : natural frequency (9) 

where Ν is the number of cables per direction and E the elastic modulus of the cables, while 
the subscripts m and p refer to the model and the prototype, respectively. Two more relations 
are added, describing the loading frequency and the damping ratio: 

 Ωm=Ωp=Ω    : loading frequency (10) 

 ζm=ζp=ζ     : damping ratio (11) 
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4 ANALYTICAL SOLUTION FOR THE MODEL 

4.1 Equation of motion 

In this section, the analytical equation of motion of the simple cable net, which consists the 
model of the method, is derived. The initial pretension is introduced as initial elongation ε0,m 
to all cable segments, which, according to Hook’s law, is equal to: 

     m,0mm0 )EA()N( ε=  (12) 

SN is the length of each segment at the equilibrium state under pretension, given as: 
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The initial length S0 for all segments is equal to: 
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If the vertical displacement of the central node is defined as wm, the deformed lengths of 
the cable segments are given as: 
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The cable tension for each deformed segment is expressed as: 
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Their components, referring to the global axes, are calculated as: 

 (N1,2x)m=(N1,2)m·(Lm/2)/(S1,2),  (N1,2z)m= ±(N1,2)m·(fm+wm)/(S1,2)  

 (N3,4y)m=(N3,4)m·(Lm/2)/(S3,4),  (N3,4z)m= ±(N3,4)m·(wm-fm)/(S3,4) (17) 

The sum of forces at the central node, referring to the x, y, z global axes, are: 

   (Nx)m=(Ny)m=0,  (Nz)m=(N1z)m - (N2z)m + (N3z)m - (N4z)m (18) 

Differentiating Eq. (18) with respect to wm, and considering zero displacement for the 
unforced and undeformed state, the stiffness coefficient at the prestressed equilibrium state is: 
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In case a dynamic vertical load Pm(t) is applied on the central node, the equation of motion 
of this node is expressed in the equilibrium state: 

  ( )tP)N()N()N()N(wCwM mmz4mz3mz2mz1mmm =−+−++ &&&  (20) 

The damping C is a function of the damping ratio ζ, expressed as [17]: 
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      C=ζ·Ccr=2ζMmωm (21) 

where ωm is the natural frequency of the system.  
If the dynamic load is expressed as Pm(t)=(P0)mcosΩt, substituting the expressions of the 

tension of the cables, given by Eq. (16) and the prestressed, initial and deformed lengths, 
given by Eqs. (13) - (15), into the vertical components of the cable tensions (Eq. (17)), the 
differential equation (20) becomes: 
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Taking into account that the sag-to-span ratio f/L is usually very small for actual cable 
nets, allowing thus to neglect its second, third or higher powers, Eq. (22), developed in Taylor 
series, reduces to: 
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Expanding the expression of the stiffness Km, given by Eq. (19), in Taylor series with 
respect to the term f/L and neglecting terms of (f/L)4, leads to: 
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Thus, Eq. (23) can be rewritten as: 
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where a nonlinear cubic term appears with a coefficient depending on the modulus of 
elasticity of the cable material, the cable cross-section area and the span of the cables. 

Nayfeh and Mook [19] thoroughly explored the equation: 

    )tcos(Kwww2w 32
0 Ωεαωεμ =+++ &&&  (26) 

known as the equation of motion referring to a forced damped Duffing oscillator, with μ being 
positive, and the coefficient of the nonlinear term α being either positive (hard spring) or 
negative (soft spring). The equation of motion of the simple cable net, described by Eq. (25), 
can take the form of Eq. (26), with positive coefficient of the nonlinear term and become: 
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where: 

      εμ=ζωm (28) 
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The parameter ε is assumed to be small and dimensionless, with ε<1, defining the small 
scale of the coefficients of the velocity and the cubic term in the equation of motion with 
respect to the one of the linear term. The exact value of this parameter is not important, 
because the solution of the problem is independent of ε. It depends only on the parameters εμ 
and εα, as defined in Eqs. (28) and (30), respectively, meaning that the parameter ε never 
appears alone in the solution. In what follows the main features of the investigation of the 
Duffing oscillator are reported from [19]. 

4.2 Fundamental resonance 
In case of fundamental resonance the excitation is assumed to be weak, in order to prove 

that a weak excitation produces large scale oscillations. The small amplitude of the load is 
expressed as: 
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For fundamental resonant conditions, the steady state response is given as: 
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where Ω is the loading frequency expressed as: 

      Ω=ωm+εσ (34) 

with εσ a frequency detuning, which, for a given amplitude of the response, is calculated by 
the following equation: 
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Taking into consideration Eqs. (28), (30) and (32), Eq. (35) can be rewritten as: 
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4.3 Superharmonic resonance 
For superharmonic resonant conditions, the steady state response is given as: 
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The loading frequency is expressed as: 
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      3Ω=ωm+εσ (38) 

For a given amplitude of the free oscillation term a, the frequency detuning is calculated 
by: 

 
2

m

2

3
mm

m
22

m

6

3
mm

m

m

2

3
mm

m

m

2

2
22

m

62

m

2

m

2

)(
LM

)EA(16
aLM

)EA(a6
LM
)EA(48

a8
a33

ζω
ω
Λ

ωω
Λεσ

μ
ω
Λα

ω
α

ω
Λασ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅±⋅+⋅=⇒

⇒−±+=

 (39) 
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4.4 Subharmonic resonance 
In case of subharmonic resonance, the loading frequency is expressed as: 

      Ω=3ωm+εσ (41) 

For a given detuning εσ, subharmonic solutions with non trivial amplitudes (a≠ 0) exist 
only if: 
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where Λ is given by Eq. (40), while for a given Λ subharmonic solution with non trivial 
amplitudes (a≠ 0) exist if: 
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with amplitude given by: 
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In case no subharmonic resonant conditions exist, the steady-state response depends only 
on the external load: 
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while, for the non trivial stable solution of a (a≠ 0), the response of the nonlinear system at 
steady-state is: 
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5 NUMERICAL EXAMPLE 1 

A numerical example is used in order to explain the method. For this example, the cable 
diameter of the prototype is assumed equal to Dp=50mm, with a cross-sectional area 
Ap=0.00196m2. Approximating realistic structures, the initial cable pretension is 
(N0)p=600kN, which corresponds to 19% of the yield stress, considering yield stress 
1570MPa. 

5.1 Transformation of the prototype to the model 
Using the similarity relations, the equivalent SDOF model has the following 

characteristics: 
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5.2 Analytical solution for the SDOF model 

5.2.1. Eigenfrequency of the model 

The eigenfrequency of the SDOF model is calculated by Eq. (29): 
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5.2.2. Fundamental resonance 

A load amplitude is chosen for the prototype equal to (P0)p=1.30kN, corresponding to a 
nodal load for the SDOF model, equal to: 
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The load amplitude is chosen large enough to cause nonlinear phenomena, without cable 
tensile failure. The response curve is based on Eq. (36): 
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while the frequency ratio is calculated as: 
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The amplitude of the steady state response, given by Eq. (54), with respect to the ratio of 
the loading frequency over the eigenfrequency, is plotted in Figure 3. The bending of the 
curve indicates the intense nonlinearity of the system. This bending means that jump 
phenomena are expected to characterize the response of the prototype, multiple response 
amplitudes dependent on the initial conditions, while the maximum steady state amplitude is 
predicted for frequency ratio larger than 1. 
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Figure 3: Fundamental resonance: response curve of the SDOF model for load amplitude (P0)m=219.70kN 

5.2.3. Superharmonic resonance 

A load amplitude is chosen for the prototype equal to (P0)p=14kN, corresponding to a 
nodal load for the SDOF model, equal to: 
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meaning: 
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Again, the load amplitude is chosen large enough to cause nonlinear phenomena, without 
cable tensile failure. The diagram of the steady state response is defined by Eq. (39): 
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and the frequency detuning is calculated for a given response amplitude. The total response 
amplitude is given as: 

       wm=a+2Λ (59) 

where Λ this time is calculated as: 
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with 
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The response diagram, based on Eq. (58), is plotted in Figure 4. 
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Figure 4: Superharmonic resonance: response curve of the SDOF model for load amplitude (P0)m=2366kN 

5.2.4. Subharmonic resonance 

As explained in section 4.4, subharmonic solutions, with non trivial amplitudes of the free 
oscillation term a, exist for a given value of Λ only if: 
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Based on Eq. (40) and assuming that: 

      Ω=3ωm+εσ (63) 

the load amplitude is calculated: 

     )(M2)P( 22
mmm0 ΩωΛ −=  (64) 

for a frequency detuning satisfying inequality (62), while the amplitude of the oscillation is 
calculated by Eq. (44): 
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where 

        )m)(677.2(c 22Λεσ −=  (66) 

      24 secm66.7d =  (67) 

        )](sec24.0)89.2[(e 222 −+−= Λεσ  (68) 

Thus, Eq. (65) becomes: 
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Figure 5 illustrates the curve that defines the region of the subharmonic solutions, by 
means of Λ and (P0)m with respect to the frequency ratio and to the response amplitude, given 
by Eq. (69). A detail of the same diagrams is given in Figure 6, for frequency ratio up to 4. In 
Figure 7 the response amplitude is plotted with respect to the frequency ratio and the loading 
amplitude. In Figure 8 the detail of the same diagrams is given for frequency ratio up to 4. 
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Figure 5: Subharmonic resonance of the SDOF model: a) Λ vs frequency ratio, b) (P0)m vs frequency ratio 
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Figure 6: Subharmonic resonance of the SDOF model (detail): a) Λ vs frequency ratio, b) (P0)m vs frequency 
ratio 
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Figure 7: Subharmonic resonance of the SDOF model: a) Response amplitude a vs frequency ratio, b) Load 
amplitude (P0)m vs response amplitude a 
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Figure 8: Subharmonic resonance of the SDOF model (detail): a) Response amplitude a vs frequency ratio, b) 
Load amplitude (P0)m vs response amplitude a 

The frequency ratios that could cause subharmonic resonance are larger than 3.15 with 
load amplitude larger than 5239kN, which corresponds to 31kN for the MDOF prototype. A 
parametric analysis, changing the load amplitude, the frequency ratio and the initial 
deflection, keeping the initial velocity of the central node equal to 16m/sec, showed that as the 
load amplitude increases, the minimum initial deflection w0,m and the frequency ratio that can 
cause subharmonic resonance decrease (Figure 9). 
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Figure 9: Subharmonic resonant conditions for the SDOF model: a) (P0)m vs frequency ratio, b) initial deflection 
vs frequency ratio 

If, for example, the load amplitude is equal to (P0)m=9464kN, which corresponds to a load 
amplitude (P0)p=56kN for the MDOF prototype, the minimum initial deflection required in 
order to have a subharmonic resonance is 1.49m with a loading frequency equal to Ω=3.32ωm, 
taking into account an initial velocity equal to 16m/sec. The time history diagrams of the 
central node deflection, for these initial conditions and for null initial conditions, are shown in 
Figure 10, based on the results obtained by solving numerically the analytical equation of 
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motion, given by Eq. (25). For a load amplitude equal to (P0)m=8619kN, corresponding to 
51kN for the MDOF prototype, an initial velocity 16m/sec, a minimum initial deflection 
2.28m and a loading frequency Ω=3.44ωm constitute the conditions for subharmonic 
resonance. The time history diagrams of the central node deflection, for these initial 
conditions and for null initial conditions, are shown in Figure 11. 
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Figure 10: Time history diagrams of the central node deflection for Ω/ωm=3.32 and (P0)m=9464kN:  
a) with null initial conditions, b) with initial displacement and velocity 
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Figure 11: Time history diagrams of the central node deflection for Ω/ωm=3.44 and (P0)m=8619kN:  
a) with null initial conditions, b) with initial displacement and velocity 

5.3 Numerical results for the MDOF prototype 

In order to evaluate the accuracy of this method, numerical analyses are conducted to 
estimate the dynamic response of the MDOF cable net, being the prototype for this example.  

5.3.1. Eigenfrequencies and eigenmodes of the prototype  

A modal analysis is performed to calculate the vibration modes and the natural frequencies 
of the system. The first six vibration modes are shown in Figure 12. The first vibration mode 
is the first symmetric mode (denoted as 1S) having frequency ωp=9.902sec-1. 
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Figure 12: The first six vibration modes of the prototype 

According to similarity relation (9) the natural frequency of the model, calculated as 
ωm=8.22sec-1, should be equal to the prototype’s one. The natural frequency of mode 1S, 
obtained by the equivalent SDOF model, is 17% smaller than the one calculated by modal 
analysis of the MDOF system. The difference is rather large, because the difference between 
the model and the prototype, regarding the number of cables is also large. Nevertheless, this 
method is not used to calculate with accuracy the eigenfrequency, the maximum deflection or 
the cable tension of the prototype, but it is proposed to detect the occurrence of nonlinear 
phenomena. 

5.3.2. Fundamental resonance 

Accounting for fundamental resonant phenomena the load amplitude of the harmonic 
uniform load is chosen in section 5.2.2, equal to (P0)p=1.30kN. The load frequency varies 
between 0.90ωp and 1.30ωp. The damping ratio, according to similarity relation (11), is 
considered equal to ζp=ζm=ζ=2%. The amplitude of the steady state response for the central 
node of the MDOF prototype with respect to the ratio of the loading frequency over the 
eigenfrequency, is plotted in Figure 13. In the same diagram the response of the SDOF model 
of Figure 3 is also illustrated for comparison reasons. According to similarity relation (8), the 
nodal dynamic deflection of the prototype should be equal to the one of the model. For 
frequency ratios between Ω/ωp=0.90 and Ω/ωp=1.10, the error of the calculation is not more 
than 10%, which is considered as satisfactory. After the peak amplitude and as the frequency 
ratio increases, the error increases too, arising at 45% for Ω/ωp=1.30. This occurs because the 
sixth mode of the MDOF system is another symmetric mode, having a natural frequency 
equal to ω6=14.655sec-1=1.48ω1=1.48ωp. Thus, as the loading frequency approaches the 
frequency of this mode, the amplitude increases, leading to a fundamental resonance for the 
sixth mode. Using the equivalent SDOF model, which has a unique frequency, is not possible 
to predict this second fundamental resonance. 
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Figure 13: Fundamental resonance: response curve of the MDOF prototype for load amplitude (P0)p=1.30kN 

The bending of the response curve for the MDOF system is obvious from the diagram of 
Figure 13. If null initial conditions are assumed, by means of deformation and velocity on 
every node, when the frequency ratio is Ω/ωp=1.07 the steady state amplitude is 2.52m, while 
for Ω/ωp=1.08, the amplitude drops suddenly to 1.06m, verifying the jump phenomenon. 
However, if initial conditions are assumed, the amplitude of the steady state deflection for 
Ω/ωp=1.08 is 2.62m, verifying that the dynamic response of the MDOF prototype depends on 
the initial conditions. The initial conditions are deformations and velocities with respect to the 
three global axes, applied on every node, taken from the response of the MDOF system for 
Ω/ωp=1.07 (Figure 14).  
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Figure 14: Time history response of the central node for Ω/ωp=1.07: a) deflection diagram and  
b) vertical velocity diagram 

At time t=49.58sec, both vertical displacement and velocity are considerable (Figure 15), 
thus the deflection (Figure 16) and the velocity (Figure 17) at that time are chosen as initial 
conditions for the next frequency step. The time history diagrams for Ω/ωp=1.08, for these 
two cases of initial conditions, are plotted in Figure 18, showing the different response 
amplitudes.  
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Figure 15: Time history response of the central node for Ω/ωp=1.07 (detail): a) deflection diagram and  
b) vertical velocity diagram 

 
Figure 16: Vertical initial deflection for Ω/ωp=1.08 

 

Figure 17: Vertical initial velocity for Ω/ωp=1.08 
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Figure 18: Time history diagrams of the central node deflection for Ω/ωp=1.08: a) with null initial conditions, b) 
with initial displacement and velocity 

These phenomena, namely the maximum steady state amplitude occurring for frequency 
ratio larger than 1, leading to the bending of the curve, the jump and the multiple response 
amplitudes dependent on the initial conditions, also verified by the numerical simulation, 
confirm the intense nonlinearity of the MDOF cable net, which was predicted by the SDOF 
model. 

5.3.3. Superharmonic resonance 

In case of superharmonic resonance the load amplitude for the MDOF prototype is chosen 
in section 5.2.3, equal to (P0)p=14kN. The load frequency varies between 0.30ωp and 0.60ωp. 
The amplitude of the steady state response for the central node of the MDOF prototype with 
respect to the frequency ratio, and the response of the equivalent SDOF model of Figure 4, are 
plotted together in Figure 19. The steady state amplitudes, estimated by the method of the 
SDOF model, are between 25% and 48% larger than the ones obtained by numerical analysis. 
This estimation cannot be considered as satisfactory. On the other hand, the peak amplitude 
for frequency ratio Ω/ωp=0.36, predicted by the equivalent SDOF model, is verified for the 
prototype, confirming the occurrence of the 3:1 superharmonic resonance for the first 
symmetric mode.  
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Figure 19: Superharmonic resonance: response curve of the MDOF prototype for load amplitude (P0)p=14kN 

In Figure 20 the response of the central node is depicted by means of time history diagram 
and response spectrum, verifying this nonlinear resonance. The steady state response, 
obtained after 20sec, is an oscillation of at least two different frequencies. This is also 
illustrated in the response spectrum, in which two peaks are noted for frequencies 0.56Hz 
(3.52sec-1), which is almost equal to the loading frequency (Ω=0.36·9.902sec-1=3.56sec-1) and 
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1.68Hz (10.56sec-1), which is almost equal to the eigenfrequency of the first symmetric mode 
(ω1=ω1S=ωp=9.902sec-1).  
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Figure 20: Response diagrams of the central node deflection for Ω/ωp=0.36: a) time history diagram,  
b) response spectrum 

In Figure 19, a second peak of the amplitude is observed for frequency ratio Ω/ωp=0.53 for 
the MDOF system, which corresponds to a 2:1 superharmonic resonance for the same mode. 
In this case, the loading frequency is Ω=0.53·ωp=5.52sec-1=0.36ω6, where ω6 is the 
eigenfrequency of the sixth mode equal to ω6=14.655sec-1. Hence, this second peak indicates 
also a 3:1 superharmonic resonance for the sixth mode being the second symmetric mode of 
the system.  

In Figure 21a, the time history diagram of the central node deflection is plotted. In Figure 
21b, the response spectrum of the central node deflection illustrates that the oscillation of the 
central node is characterized by three frequencies: at 0.84Hz, corresponding to 5.28sec-1, 
which is very close to the loading frequency (Ω=0.53·ωp=5.25sec-1), at 1.72Hz (10.81sec-1), 
being close to the eigenfrequency of the first symmetric mode (ω1=ω1S=ωp=9.902sec-1) and at 
2.52Hz (15.83sec-1), which is close to the eigenfrequency of the second symmetric mode 
(ω6=14.655sec-1). Thus, both modes are activated in this case and the occurrence of the 3:1 
and 2:1 superharmonic resonance for the first and the second symmetric mode, respectively, is 
verified. With the equivalent SDOF model having only one frequency, it is not possible to 
predict this second superharmonic resonance for the mode of higher order. In addition, the 
SDOF model, having only a cubic nonlinear term, cannot detect 2:1 superharmonic 
resonances. 
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Figure 21: Response diagrams of the central node deflection for Ω/ωp=0.53: a) time history diagram,  
b) response spectrum 
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5.3.4. Subharmonic resonance 

Based on the parametric analysis of section 5.2.4, assuming a load amplitude on every 
node equal to (P0)p=51kN, with a load frequency equal to Ω=3.44ωp, and an initial deflection 
and velocity on every node, so that the ones for the central node are 2.30m and 16m/sec, 
respectively, subharmonic resonance should be developed, but before the first cycle of the 
oscillation concludes, cable tensile failure occurs. The same also occurs for load amplitude 
(P0)p=56kN, loading frequency Ω=3.32ωp and initial conditions, corresponding to a deflection 
and velocity for the central node, 1.48m and 16m/sec, respectively (Figure 22). For smaller 
load amplitudes, a larger initial deflection is required, and for smaller initial deflection, a 
larger load amplitude can cause a subharmonic resonance. Both cases lead to cable tensile 
failure. Thus, for this cable net, it is impossible for the subharmonic resonance to evolve, 
because the large load amplitude and the large initial conditions required for such a resonance, 
cause cable tensile failure as soon as the vibration starts. 
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Figure 22: Time history response of the central node for: a) (P0)p=51kN and Ω/ωp=3.44  
b) (P0)p=56kN and Ω/ωp=3.32 

6 EVALUATION OF THE METHOD 
The pros of the proposed method are the following: 

− The computational time required to solve the equation of motion and have an assessment 
of the response of the MDOF system is minimal. 

− The intensity of the geometrical nonlinearity of the MDOF system can be estimated very 
satisfactorily, by means of the bending of the response curve, the jump phenomena and the 
existence of double response amplitudes due to the initial conditions. 

− The loading frequency detuning, for which nonlinear resonances for the first symmetric 
mode occur, can be estimated with good accuracy. 
The cons of this method are the following: 

− The equivalent SDOF model, having only one eigenfrequency and eigenmode, cannot 
detect resonances for higher modes for a MDOF cable net. 

− The equivalent SDOF model, having only a cubic nonlinear term, cannot predict 2:1 
superharmonic or 1:2 subharmonic resonances for the large system.  

− The analytical solution of the SDOF cable net is given for the vertical load applied on the 
central node, causing a vertical vibration. Thus, only the oscillation amplitude of the 
central node of the MDOF system can be estimated. 

− In addition, this vertical motion corresponds to the first symmetric mode of the cable net. 
Hence, the method of the equivalent SDOF model cannot be used to estimate the response 
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of the MDOF cable net for other modal shapes, or for other spatial loading distributions, 
such as anti-symmetric ones about one or two horizontal axes. 

− The analytical solution of the SDOF cable net gives the steady state amplitude of the 
response but not the maximum transient response, for which a cable tensile failure is 
possible to occur, before the steady state response is reached. 

7 SUMMARY AND CONCLUSIONS 
A method of an equivalent single-degree-of-freedom cable net is introduced, in order to 

predict the nonlinear dynamic response of a multi-degree-of-freedom cable net. The 
geometrical and mechanical characteristics of the large cable net are transformed to the 
corresponding ones of the small cable net, using similarity relations. The analytical solution 
of the SDOF model is explored, in order to detect nonlinear phenomena, such as the bending 
of the response curve, the occurrence of superharmonic and subharmonic resonances, jump 
phenomena and the double response amplitudes with respect to the initial conditions. The 
results of the SDOF model, by means of the maximum load, the maximum deflection and the 
loading frequency, are transformed to the ones of the MDOF system, by using the inverse 
similarity relations. Conducting nonlinear dynamic analyses and numerical simulation of the 
MDOF cable net, the nonlinear phenomena are verified. 

This investigation verifies that the saddle form cable nets have cubic nonlinearities, but 
also quadratic ones. Near resonances, although damping exists, a small change of the loading 
frequency may cause large difference in the oscillation amplitude. The initial conditions 
influence significantly the response of the cable net, as occurs in nonlinear systems. Jump 
phenomena and superharmonic resonances are also confirmed. Concerning the subharmonic 
resonances, it is very difficult to detect them for a MDOF system, because they require 
specific load amplitude, load frequency and initial conditions. It is impossible to know which 
load amplitude and frequency and which initial deflection and velocity can cause this kind of 
nonlinear resonance, because no analytical solutions are available. The investigation of the 
SDOF model showed that subharmonic resonances may occur under certain conditions, but 
for the MDOF they are difficult to exhibit, because the large initial conditions and the large 
load amplitude required for this phenomenon lead to cable tensile failure at the beginning of 
the vibration.  

The numerical investigation of the overall nonlinear dynamic behaviour of a MDOF cable 
net system is a time consuming procedure. It requires much computational time and a large 
number of nonlinear time history analyses, for different load amplitudes and for very small 
time steps and frequency steps. This method, estimating the loading amplitudes and 
frequencies for which nonlinear phenomena take place, can be a very useful guideline for the 
design of such cable structures.  
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