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Abstract. The dynamic vehicle-track-bridge-soil interaction is studied on high speed lines. The
analysis is carried out using a general and fully three dimensional multi-body-finite element-
boundary element model, formulated in the time domain to predict vibrations due to the train
passage over the bridge. The vehicle is modelled as a multi-body system, the track and the
bridge are modelled using finite elements and the soil is considered as a homogeneous half-
space by the boundary element method. Usually, moving force model and moving mass model
are employed to study the dynamic response of bridges. In this work, the multi-body system
allows one to consider the quasi-static and dynamic excitation mechanisms. Soil-structure
interaction is taken into account on the dynamic behaviour on simply-supported short span
bridges. The influence of soil-structure interaction is analysed in both resonant and non-
resonant regimes.
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1 INTRODUCTION

Resonance phenomenon on railway bridges occurs when ttm¢parequency is close to
a multiple of a natural frequency of the structure. In stspdn bridges, actual operation ve-
locity could be higher than resonance velocities. In thaecaigh level vibrations reached on
resonance regime can result in problems to the securitgepger comfort and track stabil-
ity. Therefore, the dynamic behaviour of railway bridgesdmaes an important design issue.
Bridge behaviour is influenced by many factors such as thelasld, successive load passage
and track irregularities. These effects are evaluated byhyc amplification factors on railway
bridge standards, which represent the amplification in ymachic response in relation with the
static response for a single moving load [1]. However, theaaiyic amplification factors do not
account for the resonance effects and its use is limitectogispeed belo@20 km/h. In other
cases, it is required further analysis.

References about the dynamic response of railway bridgegpdie extensive. Frybal[2] pre-
sented a theoretical model of a bridge using the integrasfoemation method. An estimation
of the amplitude of the free vibration was given. Li et al. {®B}estigated the influence of the
vehicle-bridge interaction on resonant vibrations. Theyauded that the maximum response
in resonant regime is reached at the first resonance velatitet al. [[4] suggested a three-
dimensional finite element model to study resonant effestenalti-span bridges, concluding
that loading frequencies and natural frequencies of badduld be as different as possible
to avoid resonance phenomenons. Xia et al. [5] investigdtedesonance mechanisms and
conditions of train-bridge system, analysing the resoregitnens according to their excitation
mechanisms.

One of the first steps in the study of railway bridge vibrasios to develop an accurate
model of the induced force by the train. Different vehick&dhe interaction models have been
used: moving load model, moving mass model and moving asoi models. The moving
force model is the simplest vehicle-bridge interaction glodThe model can be used if the
train speed is low enough to neglect its inertia. The modsldeen widely employed by the
scientific comunity[[6] 7, 18,19]. Most sophisticated modethe moving mass model. This
model takes into account the mass of the vehicle, but the hows not consider the effect
of the suspension. Finally, comprehensive moving osoillatodels have been used by several
authors|[3/ 4, 5, 10, 11]. Pesterev et al.|[10] examined thmptotic behaviour of the moving
oscillator for large and small values of the suspension.ifforite spring stiffness, the moving
oscillator model is not equivalent to the moving mass model et al. [11] studied under
which conditions dynamic train-bridge interaction mustbesidered for the dynamic analysis
of railway bridges. They have concluded that the dynamidckefbridge interaction is more
important for large train-bridge mass ratio. Li and Su [3péfished that the dynamic vehicle-
bridge interaction leads a lower level dynamic responsédeflridge than the moving force
model.

The number of publications about the influence of soil-dtriecinteraction (SSI) on railway
bridges vibrations is reduced. Takemiya et al.| [12, 13]istthdhe soil-foundation-bridge in-
teraction under moving loads using a dynamic substructwthod in the frequency domain.
RecentlyUlker-Kaustell et. al[14] presented a qualitative anaysidynamic the soil-structure
interaction on a frame railway-bridge. That work is basedakemiya’s work.

In this work, a three dimensional numerical model is devetbpo study vehicle-track-
structure-soil interaction (Figll 1). The numerical modebased on the three dimensional
finite element and boundary element formulation in the timedin. The articulated train con-



A. Romero, J. Dominguez, P. Galvin

figuration is modelled as a multi-body system. Therefor@stystatic and dynamic excitation
mechanisms are considered.

Figure 1: Vehicle-track-structure-soil interaction.

The outline of this papers is as follows. First, the numémeadel is presented, including a
brief summary of finite element and boundary element timealorformulation, and the multi-
body model used to represent the vehicle-track-strucail@nteraction. Second, the influence
of soil-structure interaction on the dynamic propertiesha bridge is analysed. Third, the
contribution of the dynamic excitation mechanisms due g¢hlsipeed train passage are studied.
Finally, induced vibrations on a simply-supported shodrspridge are computed for several
train speeds. Resonant and non-resonant regimes aredstudie influence of soil-structure
interaction in the vibrations of railway bridge is consielér

2 Soil-structure interaction model

The model is based on the three-dimensional finite elem&hidd boundary element [16]
time domain formulations.

The boundary element method system of equations can bedsstise-by-step to obtain the
time variation of the boundary unknowns; i.e. displacermanid tractions. Piecewise constant
time interpolation functions are used for tractions ana@mase linear functions for displace-
ments. Nine node rectangular quadratic elements are usexpdtial discretization. Explicit
expressions of the fundamental solution of displacememdisteactions corresponding to an
impulse point load in a three dimensional elastic full-spean be seen in reference[17].

Once the spatial and temporal discretizations are carngdtas obtained the following
equation for each time step:

H™"u" = G""p"+

n—1 (1)

Z(Gnmpm — H™u™) exp [-27ma(n — m)At]

m=1
where,u” is the displacement vector apd is the traction vector at the end of the time interval
n, andH"" andG"" are the full unsymmetrical boundary element system mairicethe time
intervaln, « is the soil attenuation coefficient add is the time step. An approach based on the
classical Barkan expressian [18] is employed to accountifiermaterial damping in the soil;
the right hand side term derived from previous steps is dayen exponential coefficient
using a linearly increasing exponent with time.

The equation which results from the finite element methodeaexpressed symbolically as
follows if an implicit time integration Newmark method is@ped [19]:

D™ = f* 4 (@)
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whereD"™ is the dynamic stiffness matrixi” the displacement vector ariti the equivalent
force vector, in the time intervail.
In this paper, damping matrik is considered proportional to mass matkixand stiffness
matrixK:
C=aooM + 1K (3)

oo anda; are obtained fron¥" and;™ modal damping ratios{ and¢;, respectively). The

modal damping ratio is [20]:
(&%) QW

= 4
2wy, 2 ()
Thei'" andj** modes should be chosen to obtain the damping ratios for alesithat con-

tribute at the response. If both modes have the same dangting it is obtained:

Cn

2w 2
ag = ¢ : a; =(

w; + W w; + W

()

Coupling boundary element and finite element sub-regiotalesatisfying equilibrium and
compatibility conditions at the interface between bothaerg [21].

3 Vehicle model

The multi-body model used to represent the vehicle-straeesoil dynamic interaction is
shown in figuré R.(a). Axles and car bodies are considered pigrts. Primary and secondary
suspensions are represented by spring and damper elei@ghts [

Xeq X2 X
4 4 4
’ (pc,1 fD Mc,1 Jc,1 (pc,z fD Mc’z vaz i}. ee (; (pc,i fD M
7 B0,
* : 3
(a)
T Xbc,1 T Xbc,2 T Xbc,S T Xbc,4 T Xbc,j-1 Txbc,j

3T T0 99 0

Figure 2: (a) The multi-body model for an articulated HST). Umcoupled bogies.

The equations of motion for the uncoupled multi-body sysgdown in Fig.[2.(b) can be
written as follows:
MX + Cx + Kx = F (6)
where M, C andK are the mass, damping and stiffness matrices, respectitaycle response

is described by the displacementand rotationy,. of the body, the displacemenj and rotation
¢y of the bogies, and the displacement of the wheglsandz,, ;.
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Figure 3: The multi-body model for a bogie.

The mass matrix of each bogie (Eq. 7) is composed of the boggsiv,, the bogie inertia
momentJ, and wheel masse¥,,:

My, = diag (0 M, Jy, M, M,) (7)
The stiffness and damping matrices of a bogie can be writen a
ko —ksy 0 0 0
—ko 2ky + ko 0 -k =k
Ky = 0 0 2k112 —kily kil (8)
0 —ky —kily, Kk 0
0 —ky k1l 0 ky
Co —Co 0 0 0
—Cy 2¢1+ co 0 -1 —C
Cb = 0 0 201l2w _Cllw Cllw (9)
0 —C1 _Cllw C1 0
0 —C1 C1ly, 0 C1

where,k; and ¢, are the stiffness and damping of the primary suspengip@and ¢, are the
stiffness and damping of the secondary suspension2gnig the distance between axles of a
bogie.

The equation of motion of the whole train can be obtained fdisplacement relationships
between car bodies and bogies. The relationshisp to olttaiaquation of motion of the front
traction car([22] are:

Toe,1 = Le,l — @c,llc

(10)
Tpe,2 = Te,1 + (pc,llc

where,z.; andp.; represent vertical displacement and rotation of the cayb@dpectively,

and2l. the bogie distance in a vehicle. Similar expression can aemlfor the first passenger
car (Fig.2). The vertical displacemeny. ,, for them! vehicle can be written as follows:

Tpen = 2 Z ((—1)n+i$cvi) + (—1)” (.:CCQ + ZCQQOQQ) (11)
=3
The relationships for the whole train can be expressed as:
Xpe = LX, (22)

5
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Figure 4: (a) Deck cross-section. (b) Abutment geometry.

Introducing Eq.[(1R) into Eq[{6) lead to:

MX + CX + Kx = F (13)

where,M, C andK are the mass, damping and stiffness matrices of the ariscutdST (Fig.
[2.(a)). The mass matrix is obtained by assembling car bocs mmeatrix:

M. = diag (M. J.) (14)

whereM.. is the mass of the car body addthe inertia moment of the car body. The degree of
freedom of rotation of the vehicle allows us to consider titehpcar inertia moment.

Finally, the equation of motion of the vehicle is introdudedhe soil-structure interaction
equation imposing equilibrium and compatibility conditgoat each wheel-rail contact point.
A Hertzian contact spring is considered between wheels aital[22,/23]. As vehicle moves
along the track according to its speed, contact points twéeels and rails change as time
goes on. A moving node is created at each wheel-rail contact p the rail to couple vehicles
and track. So the track mesh including rail changes at eawh $step. Then, mass, damping
and stiffness matrices vary at each time step and the obtémte element system of equations
becomes non-linear. Nevertheless, the time domain foitioalallows one to solve the non-
linear system of equations using, for example, the mettomygbresented in reference [24].

4 Dynamic behaviour of simply-supported short span bridge

In this section, the dynamic behaviour of a simply-suppbgieort span bridge under HST
passage is studied. First, the modal properties are obtaiceount for soil-structure interac-
tion. Second, the quasi-static and the dynamic load carttob are studied. Finally, the dy-
namic response of the bridge due to HST passage is analysaditdo account soil-structure
interaction.

4.1 Soil-structure dynamic interaction

In this paper a railway bridge with a single suported slab dfai2 m is studied. The deck
(Fig. [4.(a)) is composed of @25 m thickness concrete slab. The slab resting over five pre-
stressed concrete beams with.@ x 0.3 m rectangular cross-section. A distaricgd m be-
tween beams is considered. The concrete has a densit3500 kg/m’, a Poisson ratio = 0.2,
and a Young’s modulug’ = 31 x 107 N/m?,
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The deck leans over two concrete abutments (Eig. 4.(b)) detsityp = 2500 kg/m?, a
Poisson ratir = 0.3, and a Young’s moduluB = 20 x 10° N/m?. Beams resting on laminated
rubber bearings. The bearings have a thickneg®$ aim and the stiffness and damping values
arek;, = 560 x 10 N/m andc,, = 50.4 x 10* Ns/m.

A single ballast track is located over the deck. The trackomposed of two UIC60 rails
with a bending stiffnes& = 6.45 x 10° Nm? and a mass per unit length = 60.3 kg/m for
each rail. The rail-pads have@amm thickness and their stiffness and damping value$,gre-

150 x 10°N/m andc,, = 13.5 x 10® Ns/m, respectively. The prestressed concrete monoblock
sleepers have a length= 2.50m, a widthw = 0.235m, a heighth = 0.205m (under the
rail) and a massn = 300kg. A distanced = 0.6 m between the sleepers is considered. The
ballast has a density = 1800 kg/m’, a Poisson ratio = 0.2, and a Young’s modulus equal to

E =209 x 10 N/m?. The width of the ballast equats92 m and the height = 0.7 m.

The structure is assumed to be located at the surface of agemaous half-space that rep-
resents a stiff soil, with a S-wave velocity, = 400.0 m/s, a P-wave velocitg), = 799.4 m/s,
and a Rayleigh wave velocityr = 372.6 m/s.

Figure 5: Soil-structure discretization.

Fig. [@ shows the first four mode shapes, corresponding withitst bending (symmetric),
the first torsional, the first bending of cross-section (syetrio) and the first antisymmetric
bending deck mode shapes, respectively.

Fig.[4 shows the vertical displacement at the center of tllespan deck due to an impulsive
load P(t) = —1 N (H(t) — H(t—0.045s)) acting in both rails. The response is governed by the
first bending (symmetric) deck mode. The same structurapilagris considered for all modes
that contribute significantly to the response of the stn@fu= 2 %. Damping matrix (Ed.12) is
obtained considering; = w; andw; = wy, beingay = 2.3 anda; = 1.24 x 10~*. Fig.[7 shows
that the resonant frequency movesfto= 11.06 Hz and an amplification in the response when
SSl is considered. This effect is due to the additional le¥dexibility between the abutments
and the soil. The damping can be obtained from the free vdiraésponse. Its value increases
to ¢ = 3.9% when SSl is considered.

4.2 Quasi-static and dynamic excitation mechanisms

Induced vibrations due to HST passage are generated byasexeitation mechanisms: the
quasi-static contribution, the parametric excitation thuthe discrete support of the rails and the
dynamic contribution due to wheel and rail unevenness. ithgction, the different excitation
mechanisms are studied.
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Figure 6: First four modes of vibrations of the structure.
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Figure 7: Track-structure-soil and track-structure réaepe

Usually, the quasi-static contribution is modelled as mgwonstant forces and inertia ef-
fects of the vehicle are neglected. In this paper, the pregosulti-body system allows one
to consider the sprung masses and the vehicle’s susper&gri8 shows the articulated HST
studied in this work. The train system consists of one fraadtton car, eight passenger cars and
one rear traction car. Passenger cars adjacent to tracigrshare one bogie with the neigh-
bouring passenger car, while central passenger cars sbtrdbgies with the neighbouring

cars. Bogie distanceg, and axle distances,, are shown in Fid.18. The mechanical properties
of the HST are summarized in talle 1.
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Figure 8: HST configuration.
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Description Name Unit Traction cars Passenger cars
Mass of car-body M, kg 55790 24000
Mass of bogie M, kg 2380 3040
Mass of wheel-axle M, kg 2048 2003

Car-body inertia moment J. kgm?  1.15 x 103 1.48 x 10°

Bogie inertia moment Jy,  kgm?  1.48 x 10° 2.68 x 10°
Primary suspension stiffness  k; N/m  2.45 x 10° 1.4 x 10°
Secondary suspension stiffnessak, N/m  2.45 x 10° 0.82 x 10°
Primary suspensiondamping ¢ Ns/m 20 x 10? 10 x 103
Secondary suspension damping ¢ Ns/m 40 x 103 48 x 103

Table 1: Mechanical properties of HST

The transmitted load by an axle can be computed as the dlatstiaction forceF; at wheel-
rail contact point as follows:

where,u.. is the rail displacement at contact point, represents the wheel displacement and
kp = 1.4 x 10°N/m is a Hertzian contact spring between wheels and|rail. [E8]. [@ shows
the one-third octave band spectra of the transmitted loattdm speed) = 80 m/s andV; , =
110.14m/s. Vi, is resonant resonant speed of the bridge (see sdctibn 48).cdmputed
results are compared with those obtained using a moving foradel. Both models lead to
the same results at the bogie passing frequeficy- v/l,, and the axle passing frequency,
fo = v/l,. However, the computed transmitted forces present diffare at higher frequencies
due to inertia effects are neglected in the moving force rhode

220
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o 200t oo 2001
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2. e
o 180¢ 1 o 180¢ 1
k=) k=)
160 - - - - - - - 1604 - - - - - - -
1 2 4 8 16 315 63 125 1 2 4 8 16 315 63 125
(a) One-third octave centre frequency [Hz] (b) One-third octave centre frequency [Hz]

Figure 9: Excitation force on the track computed with a mg\viorce model (grey line) and the multi-body system
(black line) for a HST travelling at (a) = 80 m/s and (b); » = 110.14 m/s
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Figure 10: One-third octave band spectra of the verticgldcement at the wheel (red line), bogie (blue line) and
the car body (green line) due to the track unevenness (hlaekfbr a HST travelling at = 80 m/s.

The dynamic contribution account for track and wheel irtagties. The displacement vec-
tor u. is equal to the sum of rail displacementand rail unevenness, ;, perceived by an axle
[25,26]:

Ue = Up + Uy /r (16)
In this paper, random track unevenness,(z) is modelled as a stationary Gaussian random
process characterized by its one-sided PSD funcﬂpwr)q.(ky). The spectral representation
theorem is used to generate samples of track uneveapgss) as a superposition of harmonic
functions with random phase angles|[25| 26]:

U r(T) = Z \/2§uw/r(k;ym)Aky cos(kymy — Om) (17)
m=1
wherek,,,, = mAk, is the wavenumber sampling used only to compute the artifictile,
Ak, the wavenumber step arg, are independent random phase angles uniformly distributed
in the interval|0, 27]. The artificial track profile is generated from PSD functi@e@ding to
ISO 8608 [27]:

S () = S ) (£2) 19)

An artificial profile is obtained from the PSD function with, = 1rad/m andS‘uw/r(kyo) =
27 x 1078 m3. w = 3.5 is commonly assumed for wheel-rail unevenness in curreft sfipeed
lines.

Fig.[10 shows the one-third octave band spectra of the e¢displacement at the wheel, bo-
gie and body car due to the unevenness profile shown in thefsggume. Primary and secondary
suspensions system isolate body car and bogie at frequdmgieer than.2Hz y 5.5 Hz, re-
spectively.

Figs.[11(a),(b) show the one-third octave band spectraeofehtical acceleration at the cen-
ter of the mid-span deck for a train passage at 80 m/s andV; , = 110.14 m/s, respectively.
The quasi-static contribution are represented in thesesfig he deck response is governed by
the quasi-static contribution.

4.3 Induced vibrations due to HST

In this section, SSI effect on induced vibrations due to H&3gage is studied. Resonant and
non resonant regimes are analysed. The geometry and themeahproperties of the bridge
have been described in previous sections.

10
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Figure 12: Maximum vertical acceleration at the mid-spamteedeck computed from SSI model (black line) and
non-SSI model (grey line).

The resonant condition of a bridge excited by a row of movimigds can be expressed as
follows [2,5]:

d
Vi = fT (n=1,2,...,i=1,2,..) (19)

where,V,, ; is the train speed;,, is then resonant frequency of the bridge a#ds a charac-
teristic distance of the moving loads.

Fig. [12 shows the maximum vertical acceleration at the cearitmid-span deck in relation
to the train speed passage. There is an increase of deckeatz®i when the speed increases.
Maximum levels are reached at resonant velocities of thigoesding (symmetric) mode shape,
considering the distance between bogies 18.7m. Figure[ 12 shows the resonant velocities
Vi =110.14m/s,V; 5 = 44.06 m/s andV; 7 = 31.47 m/s. The Spanish Standard [1] sets a limit
state of vertical accelerations@t,, = 3.5 m/<, plotted in Fig[IR. The maximum acceleration
at the center of the mid-span deck is below this limit in thegeaof operating speeds on current
high speed lines. The response of the structure variesalaly when SSI is considered.
Resonant velocities decrease due to variation of the dynbehaviour of the structure. The
maximum response occurs Wt, = 103.41 m/s. Moreover, it is observed that the maximum
level of acceleration achieved in resonant regime is sicamtly lower when the soil-structure
interaction is considered. The structural damping vanesf = 2% to( = 3.9 %.

Fig. [13 shows the time histories and frequency content ofvérgcal acceleration at the
center of mid-span deck for three train speed passage: 80 m/s, 17172 = 103.41m/s and
Vi2 = 110.14 m/s. In the first case, the response obtained with both madetesponds with
a non-resonant regime. The time history shows similar gaveboth cases and the differences

11
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are not significant. The response is governed by the boggmpsequency, for the first bend-
ing (symmetric) mode and the first bending mode of the cresiem. The SSI produces an
amplification of the response at the bogie passing frequehtyaddition, the frequency re-
sponse associated with the natural frequencies of thetgteudecreases. In resonant regime,
the response of the structure shows a gradually increadeofibrations with the successive
bogie passage at the resonant velocities and V; , (Fig. [13.(c),(e), respectively). The pre-
dominant frequency in the response are asociated with gtebnding mode (Fid._13.(d),(f)).
The model without SSI does not estimate accurately the énidgponse as can be seen in Fig.
[13.(c),(d). Since the amplitude of the resonant vibratiepahd inversely on dampingl [2], the
model without soil overestimates the response, as can bdars€gys.[13.(e),(f).
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Figure 13: (a,c,e) Time histories and (b,d,f) frequencyteots of the vertical acceleration at the mid-span center
deck for a HST travelling at (a,h) = 80 m/s, (c,d)V; 2 = 103.41m/sy (e,f)V; 2 = 110.14 m/s, computed from
the SSI model (black line) and the non-SSI model (grey line).

5 Conclusions

In this paper, a numerical model to predict vibrations olway bridges has been presented.
The numerical model is based on the three dimensional fildteent and boundary element for-
mulations in time domain. The articulated HST is modelled asulti-body system. Therefore,
the different excitation mechanisms can be consideredratdy. The following conclusions
can be drawn from the obtained results:

1. Transmitted force has a high frequency content that theimgdorce model does not

12
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reproduce accurately due to vehicle’s inertia effects agdatted.

Structure soil interaction produces a reduction in thenahfrequencies and an increase
of structural damping due to the additional flexibility Iébetween the abutment and the
soil.

. Therefore, the resonant behaviour occurs at speeds haprthose predicted by the

model without soil.

. The amplitude of the resonant response regime dependeatrtictural damping ratio.

So, it is necessary to take into account the influence of thedS&stimate correctly the
response.
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