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Abstract. This paper analyzes the dynamic behavior of partially restrained seismically 

isolated (PRSI) bridges. These are a particular class of multi-span seismically isolated 

bridges in which isolation bearings are posed only at the top of the piers, while seismic 

stoppers restrain the transverse motion of the superstructure at the abutments. 

The transverse dynamic behavior of these partially-restrained bridges is described 

analytically by considering a two-dimensional simply supported beam model, with 

intermediate visco-elastic restraints whose properties are calibrated to describe the 

substructures’ behavior. Particular simplified configurations are considered which allow to 

identify a minimal set of characteristic problem parameters that completely describe the 

dynamic response. The properties of the dynamic systems are analyzed by considering 

separately the undamped and the damped case. 

The results of the study contribute to improve the understanding of the dynamic behavior of 

partially restrained seismically isolated bridges and allow to draw some conclusions useful 

for their preliminary assessment and design.    
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1 INTRODUCTION 

 Seismic isolation in bridges has proven to be an effective method for the mitigation of the 

forces induced by the seismic actions ( [1], [2]). It usually consists in the introduction of 

isolation/dissipation devices between the bridge substructures and the superstructure, in order 

to decouple their motion, shift the natural period of vibration away from the dominant period 

of earthquake excitation and introduce additional sources of damping. 

Partially restrained seismically isolated (PRSI) bridges ( [3]) are a particular class of 

isolated bridges in which isolation bearings are posed only at the top of the piers, with seismic 

stoppers restraining the transverse motion of the superstructure at the abutments. This restraint 

is usually introduced in order to avoid the use of bi-directional joints at the abutments and to 

exploit the abutment contribution in resisting the inertia forces, thus reducing the forces acting 

on the piers.  

Recently, many authors have investigated the dynamic behavior of PRSI bridges ( [3],  [4], 

 [5]). Tsai  [3] evaluated the effectiveness of the partially restrained seismic isolation and 

describes the difference of the behavior of PRSI bridges with respect to fully isolated bridges. 

Analytical expressions were also proposed for estimating the transverse effective period and 

composite damping ratio of PRSI bridges. Makris et al.  [4] examined the eigenvalues of PRSI 

bridges under transverse and longitudinal vibration, by considering the two cases of 

elastomeric bearings and friction-pendulum bearings. They concluded that regardless of the 

value of the isolation period along the longitudinal direction, there is a certain length beyond 

which the transverse period of the deck will exceed the longitudinal isolation period. Tubaldi 

and Dall’Asta  [5] analyzed the dynamic problem of PRSI bridges in a variational form, in 

order to obtain a simplified solution based on assumed vibration shapes which coincide with 

the Fourier sine-only series terms. They also defined a design procedure for dimensioning the 

properties of the isolation system, with the objective of controlling the internal actions on the 

piers. The applications to realistic PRSI bridges allowed to highlight the following results: a) 

the response in terms of some quantities of interest in the seismic analysis (e.g., the abutment 

reactions and the superstructure transverse bending moments) can be strongly influenced by 

higher vibration modes, b) the response according to the higher modes of vibration is less 

affected by the pier-bearing restraint action and depends mostly on the superstructure 

properties, c) neglecting the non-classically damped nature of the problem may induce some 

inaccuracies in the assessment of the seismic response of this particular type of system.   

In summary, PRSI bridges show a complex dynamic behavior in the transverse direction 

and many modal properties related to the seismic response, such as modal shapes and extent 

of non classical damping, significantly change by varying the properties and geometry of the 

deck and properties and location of the intermediate supports.  

This study aims at providing some contribution to the further advancement in the 

understanding of the dynamic behavior of PRSI bridges. Under a qualitative point of view, the 

dynamic properties of a linear system, such as the ones analyzed in the present study, can be 

measured by solving the free vibrations problem. Thus, the focus of the paper is on the free-

vibration response of PRSI bridges only. 

The transverse dynamic behavior of PRSI bridges is described  [5] by considering a model 

which consists in a continuous 2-dimensional simply supported beam resting on discrete 

visco-elastic supports. The properties of the intermediate supports can be calibrated to 

represent the behavior of the pier-bearing systems. Numerous studies are devoted to the 

analysis of the free vibration problem of continuous beams elastically restrained by 

intermediate linear springs ( [6], [7], [8]) or dampers ( [9], [10]). However, many of these studies 

analyze the problem from a purely mathematical perspective and are mostly focused on the 
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influence of the restraint on the eigenvalues or in the observation of the transition condition in 

which multiple coincident eigenvalues are observed. Thus, there is a need for an engineering 

interpretation of the complex behavior of PRSI bridges in terms of physical quantities which 

can be of interest in the seismic analysis, e.g., displacement and bending moment shapes, 

participation factors, abutment reactions, vibration periods, damping properties and extent of 

non classical damping. 

In this paper, the free vibration problem of a set of simplified PRSI bridges configuration is 

considered, assuming constant stiffness, mass and support spacing for the superstructure. This 

allows to identify a minimal set of characteristic problem parameters that completely describe 

the dynamic response of partially restrained bridges and to shed light on the relationship 

between these parameters and the response quantities of interest in the seismic analysis. 

Furthermore, the consideration of the simplified cases permits deriving an analytical solution 

of the free-vibrations problem and developing analytical relationships between the 

characteristic parameters and the system response.  

The influence of the characteristic problem parameters on the free vibrations is analyzed 

through an extensive parametric analysis by considering separately the case of support 

systems without damping, and the case of support system with damping, thus generating a 

non-classical dynamical system. The results of the parametric analysis undertaken permit to 

draw important information which can be useful for the preliminary assessment and design of 

the particular class of bridges analyzed. 

 

2 DYNAMIC BEHAVIOR OF PRSI BRIDGES 

The continuous isolated bridge with partial restraint can be modeled as a 2-dimensional 

simply-supported beam resting on intermediate discrete visco-elastic supports that represent 

the pier-bearing systems (Fig. 1). 

 

 

kc,r cc,r 

xr 

L  

Fig. 1. Analytical 2-dimensional model for bridges with partial restraint. 

Let ( ) [ ] ( ) ( ){ }2 0, : 0 0V v x H L v v L= ∈ = = 1
 be the space of displacement functions 

defined along the bridge length L and satisfying the kinematic (essential) boundary conditions 

and ( ) [ ]( )10 ,;; ttVCUtxu =∈  be the motion, defined in the time interval considered [t0, t1]. 

The differential dynamic problem can be derived from the D'Alembert principle  [11] and 

can be posed in the following form, [ ]0 1; ,V t t tη∀ ∈ ∀ ∈ : 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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ɺɺ

 (1) 

                                                 
1
 The form H

m
(Ω) denotes the space of functions defined on Ω for which the derivatives with respect to x of 

order less than or equal to m are on L
m
(Ω). 
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The functions m(x), b(x) and cd(x) are piecewise continuous and denote the mass per unit 

length, the transverse stiffness per unit length and the distributed damping constant. The 

constants kc,r and cc,r are the stiffness and damping constant of the visco-elastic support 

located at the r-th position x=xr. Finally, ( )gu tɺɺ  denotes the ground motion input. It is 

noteworthy that although various models are available for describing the dissipation of energy 

in the deck  [12], [13], in the present study the deck damping is simply described in terms of a 

force proportional to velocity. More cumbersome descriptions are avoided since the deck 

damping is usually smaller than the intermediate supports’ damping and, moreover, the focus 

of the paper is on the influence of the intermediate supports on the response. 

In the present work, particular simplified configurations of bridges are analyzed in order to 

identify the parameters which influence the most the bridges’ dynamic properties. In these 

configurations, the mass per unit length, the beam transverse stiffness and the external 

damping coefficient are assumed constant and equal respectively to md, EId, cd. Furthermore, 

the values of kc,r and cc,r at the N different intermediate supports are assumed constant and 

equal to kc,r=kT/N. Finally, the intermediate restraints are assumed equally spaced and the 

length of each span is set equal to L/(N+1), where L is the total length of the bridge. 

After these positions, the equation of motion can be expressed as: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]

10 0 0

0 1

1 0

, , , '' , ''

,      ; ,

L L LN
T

d d r r d

r

LN
T

r r d g

r

c
m u x t x dx c u x t x dx u x t x EI u x t x dx

N

k
u x t x m u t x dx V t t t

N

η η η η

η η η

=

=

+ + + +

+ = − ∀ ∈ ∀ ∈

∑∫ ∫ ∫

∑ ∫

ɺɺ ɺ ɺ

ɺɺ

 (2) 

Both the members of Eqn. (2) are divided by md, as usual, thus yielding: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]
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LN
T

r c r g

r d

Lc
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m N

k
u x t x x dx u t V t t t

m N

ω
η ω γ η η η

π

η η η

=

=

+ + + +

+ = − ⋅ ∀ ∈ ∀ ∈

∑∫ ∫ ∫

∑ ∫

ɺɺ ɺ ɺ

ɺɺ

 (3) 

In deriving eqn.(3) the two following parameters have been introduced: 

 

4

4

2

d

d

d

d

d

d d

EI

m L

c

m

π
ω

γ
ω

=

=

 (4) 

The first one, ωd, denotes the circular frequency of the first mode of vibration of the deck 

alone, i.e., the deck without intermediate supports  [13]. The second one, γd, denotes the 

corresponding damping factor, i.e., the ratio between the energy dissipated by the external 

damping and the maximum strain energy attained due to deck bending, for an harmonic 

motion at the frequency ωd, whose shape coincides with the first sinusoidal modal shape  [13]. 

The properties of the system of visco-elastic intermediate supports can be conveniently 

described by introducing three non-dimensional parameters α, β and γc, defined as follows: 
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2
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2

1

2 2

T T

d d d

T dT
c
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EI Lm

N

cc
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α
π ω
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ω
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α ω

= =

=

= =

 (5) 

The parameter α expresses the relative importance of the total spring stiffness with respect 

to a generalized measure of the global deck transverse stiffness. Low values of α
2
 correspond 

to a stiff deck relative to the springs while high values correspond to a slender deck relative to 

the springs. The limit case α
2

 =0 corresponds to the simply supported beam with no 

intermediate restraints.  

The parameter β measures the degree of regularity of the total support stiffness’ 

distribution along the bridge. It is inversely proportional to the number of intermediate springs 

and assumes values spanning from 0 to 1. The case β  =1 corresponds to the case of support 

stiffness concentrated at a single point while the limit case β =0 ( ∞→N ) corresponds to a 

beam resting on continuously distributed springs (Winkler beam). 

The parameter γc describes the energy dissipation in the piers or the pier/bearing systems 

and it has the following physical interpretation: it is the ratio between the energy dissipated by 

the dampers and the maximum strain energy in the springs, for a rigid transverse harmonic 

motion of the deck with frequency ωd. 

After substituting eqn.(5) into eqn.(3) one obtains, [ ]0 1 ; ,V t t tη∀ ∈ ∀ ∈ : 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
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2 4
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, 2 , 2 ,
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L L N

d d c d r r

r

L LN
d
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r

u x t x dx u x t x dx L u x t x

L
u x t x dx L u x t x x dx u t

η ω γ η α βγ ω η

ω
η α βω η η

π

=

=

+ + +

+ + = − ⋅

∑∫ ∫

∑∫ ∫

ɺɺ ɺ ɺ

ɺɺ

 (6) 

In order to cut off also dimensional aspects related to the length, the variable y=x/L can be 

introduced and accordingly the motion can be described by 

 ( ) ( ), ,u y t u x t=ɶ  (7) 

Upon substitution in eqn.(6), one obtains: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ] ( ) ( ){ } [ ]

1 1 12

2

4
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1

2 2 2
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1 0

, 2 , 2 ,

   0,1 : 0 1 0 ; ,

N
d

d d c d r r

r

N

d r r g

r

u y t y dy u y t y dy u y y u y t y dy

u y y y dy u V v y H v v t t t

ω
η ω γ η α βγ ω η η

π

α βω η η η

=

=

′′ ′′+ + + +

+ = − ⋅ ∀ ∈ = ∈ = = ∀ ∈

∑∫ ∫ ∫

∑ ∫

ɺɺ ɺ ɺɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶɶ ɶ ɶɶ ɺɺ ɶ ɶ ɶ

(8) 

The corresponding local form of the problem is obtained by integrating by parts and can be 

written as: 

 
( ) ( ) ( ) ( )

( )
1

0

, , ,

'' , ' 0

gMu y t Cu y t Ku y t Mu t

u y t η

+ + = −

=

ɺɺ ɺɶ ɶ ɶ ɺɺ

ɶɶ

 (9) 

where M ,C , K  are formal linear operator related to the mass, damping and stiffness: 
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r
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∑

∑

 (10) 

and δ(·) denotes the Dirac delta function. 

3 FREE VIBRATIONS PROBLEM  

3.1 Form of the characteristic equation 

Under a qualitative point of view, the dynamic properties of a linear system, such as the 

ones analyzed in the present study, can be measured by solving the free vibrations problem 

that corresponds to eqn.(9) for 0gu =ɺɺ . Thus, the study will proceed with the assessment of 

the influence of the parameters α, β, γd on the response in the most significant vibration modes. 

For this purpose, the differential boundary problem of eqn.(9) is reduced to an eigenvalue 

problem through the separation of variables technique. The transverse displacement uɶ  is 

decomposed into the product of a spatial function and a time-dependent function, thus 

yielding: 

 ( ) ( ) ( ),u y t y Z tψ=ɶ  (11) 

where ψ(y) is a space-only dependent function while Z(t) is a time function, whose expression 

is:  

 ( ) 0

tZ t Z eλ=  (12) 

After substituting eqns.(10), (11) and (12) into eqn.(9), one obtains the characteristic 

equation for the free-vibration problem: 

 ( ) ( ) ( )
4

2 2 2 2

4 4
1 1

1
2 0

N N

d c r d r d

r r

y y y y y
x

λ γ α βγ δ ω λ α β δ ω ψ
π= =

  ∂  
+ + − + + − =    ∂     

∑ ∑  (13) 

It is noteworthy that if λ1 and ψ(y) are solutions of eqn. (13) for a particular value of the 

deck circular frequency ωd=ωd1 then σλ1 and ψ(y) are solution of eqn.(13) for ωd=σωd1. Thus, 

the particular choice of the characteristic parameters leads to a formulation such that the 

vibration shape ψ(y) does not depend on the particular value of ωd but it only varies by 

varying the parameters α, β, γd and γc. This makes it possible to obtain qualitative results that 

are not dependent on the deck stiffness or on the deck mass. 

3.2 Analytical solution of the eigenvalue problem 

In order to solve analytically the free vibrations problem it is convenient to divide the 

beam into a set of Ns segments, each bounded by two consecutive restraints (external or 

intermediate). The motion of the s-th segment is described by the function ( ),s su z tɺɺɶ  as follows: 

 ( ) ( ) ( ) [ ]2

4

1
, 2 , , 0   with   0,1 /s s d d r s d s s s su z t u z t u z t z Nγ ω ω

π
+ + = ∈ɺɺ ɺɶ ɶ ɶ  (14) 
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The transverse displacement suɶ  is decomposed into the product of the spatial function ψs(y)  

and the time-dependent function Z(t) of eqn.(12), thus yielding the following equation of 

motion: 

 ( ) ( ) ( )
2

2

4
2 , , 0IVd

d d s sy t y t
ω

λ γ ω λ ψ ψ
π

+ + =  (15) 

which is rewritten as: 

 ( ) ( )4, ,IV

s sy t y tψ ψ= Ω  (16) 

having posed 
( )4 2

4

2

2 d d

d

π λ γ ω λ

ω

+
Ω = − , or  ( )

4 2
2

4

d
d d d di

ω
λ γ ω γ ω

π
 Ω

= − + − 
 

. 

The solution to eqn.(15) is: 

 ( ) ( ) ( ) ( ) ( )4 3 4 2 4 1 4sin cos sinh coshs s s s sy C y C y C y C yψ − − −= Ω + Ω + Ω + Ω  (17) 

with 4 3iC − , 4 2iC − , 4 1iC − , 4iC  to be determined based on the boundary conditions at the 

external supports and the continuity conditions at the intermediate restraints. This involves the 

calculation of higher order derivatives up to the third order.   

In total, a set of 4Ns conditions is required to determine the vibration shape along the whole 

beam. At the first span, i.e., for s =1, the conditions ( ) ( )1 10 '' 0 0ψ ψ= =  apply while at the last 

span, i.e., for s =Ns, the support conditions are ( ) ( )s s1 / 1 / 0
s sN NN Nψ ψ ′′= = . The boundary 

conditions expressing the continuity of the functions 1iψ −  and iψ  at each of the Ns-1 spring 

locations can be expressed as: 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

1 s

1 s

1 s

4 2

4 2

1 s

1 / 0

1 / 0

1 / 0

2
1 / 0 0 0

s s

s s

s s

c

s s s

d

N

N

N

N

ψ ψ

ψ ψ

ψ ψ

λπ α γ
ψ ψ β π α ψ

ω

−

−

−

−

=

′ ′=

′′ ′′=

 
′′′ ′′′− − + =    

 

 (18) 

By substituting eqn. (17) into the boundary (supports and continuity) conditions, a system 

of 4Ns homogeneous equations in the constants 1C ,…, 4 SNC  is obtained. Since the system is 

homogeneous, the determinant of coefficients must be equal to zero for the existence of a 

nontrivial solution. This procedure yields the following frequency equation in the unknown 

Ω : 

  ( )2, , , , 0d cG α β γ γΩ =  (19) 

It is noteworthy that the particular choice of the set of characteristic adimensional 

parameters results in an function G  which is independent from ωd.  

In the general case of non-zero damping, the solution of the equation must be sought in the 

complex domain. Since the system is continuous, an infinite set of Ω  values satisfying 

eqn.(19) is obtained. However, only selected values of Ω  are significant, because they 

correspond to the first vibration modes which are usually characterized by the highest 

participation factors. For a given value of Ω satisfying eqn. (19), the corresponding modal 
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shape can be calculated, together with the corresponding circular frequency ω and damping 

factor ξ. It is remarked that the eigensolutions Ω are complex conjugate. Thus, if the couple 

r iiΩ = Ω + Ω  and r iiλ λ λ= +  is a solution of eqn.(19), then the couple r iiΩ = Ω − Ω  

and r iiλ λ λ= −  is a solution, too. The corresponding eigenvectors are complex conjugate, too. 

Finally, for zero-damping iλ ω=  where /d dEI mω = Ω . 

3.3 Generalized orthogonality conditions for vibration modes and modal properties 

Eqn.(13) for mode i is multiplied by jψ  and eqn.(13) for mode j is multiplied by iψ . After 

integrating over the entire length of the beam one obtains: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2

10 0

12

2 2

4
10

2

0

N

i i j d i d i j c i r j r

r

N
IVd

i j d i r j r

r

y y dy y y dy y y

y y dy y y

λ ψ ψ ω λ γ ψ ψ α βγ ψ ψ

ω
ψ ψ α βω ψ ψ

π

=

=

 
+ + + 

 

+ + =

∑∫ ∫

∑∫
 (20) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2

10 0

12
2 2

4
10

2

0

N

j j i d j d j i c j r i r

r

N
IVd

j i d j r i r

r

y y dy y y dy y y

y y dy y y

λ ψ ψ ω λ γ ψ ψ α βγ ψ ψ

ω
ψ ψ α βω ψ ψ

π

=

=

 
+ + + 

 

+ + =

∑∫ ∫

∑∫
 (21) 

By integrating twice by parts the terms with the fourth order derivative and recalling the 

support boundary conditions, one finally obtains: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2

10 0

12

2 2

4
10

2

0

N

i i j d i d i j c i r j r

r

N
d

i j d i r j r

r

y y dy y y dy y y

y y dy y y

λ ψ ψ ω λ γ ψ ψ α βγ ψ ψ

ω
ψ ψ α βω ψ ψ

π

=

=

 
+ + + 

 

′′ ′′+ + =

∑∫ ∫

∑∫
 (22) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2

10 0

12

2 2

4
10

2

0

N

j j i d j d j i c j r i r

r

N
d

j i d j r i r

r

y y dy y y dy y y

y y dy y y

λ ψ ψ ω λ γ ψ ψ α βγ ψ ψ

ω
ψ ψ α βω ψ ψ

π

=

=

 
+ + + 

 

′′ ′′+ + =

∑∫ ∫

∑∫
 (23) 

By subtracting eqn.(23) from eqn.(22), for i jλ λ≠ , one obtains the first orthogonality 

condition: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

2

10 0

2 2 0
N

i j i j d d i j d c i r j r

r

y y dy y y dy y yλ λ ψ ψ ω γ ψ ψ α βω γ ψ ψ
=

+ + + =∑∫ ∫   (24) 

By subtracting eqn.(23) multiplied by iλ  from eqn.(22) multiplied by jλ  and dividing by 

( )j iλ λ−  one obtains the second orthogonality condition: 
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 ( ) ( ) ( ) ( ) ( ) ( )
1 12

2 2

4
10 0

2 0
N

d
i j i j i j d i r k r

r

y y dy y y dy y y
ω

ψ ψ λ λ ψ ψ α βω ψ ψ
π =

′′ ′′ − + =∑∫ ∫  (25) 

which upon substitution of eqn.(24) may also read as follows: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 12

4

0 0

2 2 2

1 1

2

2 2 0

d

i j i j d d i j i j

N N

d c i r j r d i j i r j r

r r

y y dy y y dy

y y y y

ω
λ λ ψ ψ ω γ λ λ ψ ψ

π

α ω βγ ψ ψ α βω λ λ ψ ψ
= =

′′ ′′+ + +

+ + + =

∫ ∫

∑ ∑
 (26) 

For the case of zero damping, the two orthogonality conditions reduce to the well 

expression already derived in  [8]: 

 ( ) ( )
1

0

0i jy y dyψ ψ =∫  (27) 

 ( ) ( ) ( ) ( )
12

2 2

4
10

2 0
N

d
i j d i r j r

r

y y dy y y
ω

ψ ψ α βω ψ ψ
π =

′′ ′′ + =∑∫  (28) 

Similarly to  [14], the generalized orthogonality conditions are employed to derive the 

analytical expressions of the circular frequency of vibration ωi and of the damping factor ξi 

for the i-th vibration mode. By setting j iλ λ=  in eqn.(25) and in eqn.(24), and recalling that 

2

i i iλ λ ω=  and 2i i i iλ λ ξ ω+ = − , one obtains: 

 

( ) ( )

( )

1
2 2 2

42
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2 1

2

0

1
2

N

i i r

ri

d

i

y dy y

y dy

ψ α β ψ
πω

ω
ψ

=

′′ +  
=

∑∫

∫
 (29) 

 

( ) ( )

( )

1

2 2 2

10

1

2

0

N

d i c i r

r d

i

i

i

y dy y

y

γ ψ α βγ ψ
ω

ξ
ω

ψ

=

+

= ⋅
∑∫

∫
 (30) 

The circular frequency ωi, normalized in eqn.(29) with respect to ωd , is simply expressed 

in terms of the ratio between the potential energy of the deck and the restraints, and the 

kinetic energy of the deck mass. It can be observed that the contribution to the potential 

energy of the deck is proportional to the deck curvature and becomes more and more 

important with respect to the other term when the number of the vibration mode increases. 

The modal damping factor in eqn.(30) corresponds to the ratio between the energy 

dissipated by the deck and by the restraints and the kinetic energy of the deck. It should be 

stressed that the term of the dissipation related to the intermediate dampers qualitatively acts a 

mass-proportional similarly to the deck damping and, thus, the damping factor is expected to 

reduce significantly when the number of the vibration mode increases. Furthermore, damping 

factor ξi is not sensitive to ωd. 
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4 PARAMETRIC ANALYSIS 

4.1 Undamped free vibrations 

This paragraph analyzes the free vibrations problem of the beam with intermediate 

restraints, disregarding the damping exerted by both the deck and the restraints. The values of 

γd and γc are assumed equal to zero at this stage, in order to describe the influence of the 

global stiffness of the supporting system, described by α
2
, and the effects related to the 

distribution of its stiffness, described by β.  

Different configurations of beams with intermediate restraints are considered which are 

representative of common short and medium span bridges (Fig. 2). They correspond to 

different values of the parameter β, i.e., β=1 (Fig. 2a), β=1/2 (Fig. 2b), β=1/3 (Fig. 2c). 

Moreover, the limit case of a beam simply supported at its extremes with no intermediate 

restraints (corresponding to α
2
=0) (Fig. 2d), and a beam resting on elastic continuous 

transverse restraints (corresponding to β=0) are also analyzed. 

 L/2 a) 

b) 

L/2 

kT 

kT/2 kT/2 

L/3 L/3 L/3 

 

 L/4 

L 

c) 

d) 

L/4 L/4 L/4 

kT/2 kT/2 kT/2 

 

Fig. 2. Different configurations of beams with intermediate restraints analyzed. 

The parameter α
2
 is varied between about zero (stiff deck, flexible supports) and 10, that 

may be regarded as a realistic upper limit for slender superstructures on stiff supports. The 

results presented in the following include the modal shapes and periods of vibration. As 

previously shown, in the considered formulation the modal shapes depend on the parameters α 

and β only, and they are invariant with respect to the deck circular frequency ωd. The 

vibration periods depend on the deck circular frequency, but they are divided by ωd in order to 

make them independent from ωd, too. Thus, the particular choice of the deck does not affect 

the following results. For the sake of completeness, the numerical results have been obtained 

by considering as reference the deck reported in  [5], whose parameters are: L=200m, 

md=16.24t, EId=1100307114 kN/m
2
, and ωd=2.03Hz. Before discussing the results, it may be 

useful to recall that, in the limit case corresponding to β=0, the vibration modes are purely 

sinusoidal, irrespectively of the value of α
2
 (see Appendix for the proof).  

Fig. 3 reports the first three modal shapes for different values of α
2
 and of β, normalized 

with respect to the L2 norm, i.e. ( )
1/2

1
2

2

0

1i i y dyψ ψ
 

= = 
 
∫ . It is recalled that the even 

modes of vibration are characterized by an anti-symmetric shape and a participating factor 

equal to zero, and thus they do not affect the seismic response of the considered 

configurations. 
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Fig. 3. Normalized first three modal shapes for different values of α
2
 and for β.  

The intermediate restraints have a remarkable influence on the first mode shape only for 

β=1. In this case, the first mode vibration shape significantly deviates from the shape of the 

deck vibrating alone (α
2
=0), for high values of α

2
. On the other hand, for β=1/2 and β=1/3, the 

vibration shape is very close to the shape of the deck vibrating alone, even for high values of 

α
2
. This can be explained recalling that the vibration shape tends, for decreasing β values, to 

the sinusoidal shape of a simply-supported beam on continuous elastic restraints. 

Globally, the influence of the restraints on the higher modes shapes is almost negligible, 

for any case of β, although a uniform trend is not observed, since the influence of the 

intermediate supports depend on their distance from the shape mode nodes.  

In order to have a full insight into the influence of the restraints on the response along the 

deck, it is of interest to analyze the effects of the variation of the support properties on the 

second order derivative ψi''(y) of the displacement shape, since this quantity is related to the 

deck’s bending moments and strain energy distribution. Fig. 4 reports the normalized shape of 

ψi''(y), for the first three vibration modes and for different values of the parameters α
2
 and β. 
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Fig. 4. Normalized second order derivatives of the first three modal shapes for different values of α
2
 and  β. 

The intermediate supports influence more significantly the shape of the second order 

derivative than the displacement shape itself. Notable variations (with respect to the case 

corresponding to α
2
=0) are observed in the first mode shape, for all the three configurations 

considered. The variations in the higher modes are less significant and different from 

configuration to configuration. 

In conclusion, the variation of the intermediate supports’ properties induces minor 

variations in the distribution of the modal shapes, and thus in the distribution of the piers 

shear and inertia forces, directly related to them. Significant variations are limited to the first 

mode and to the configuration with a single support. On the other hand, the distribution of 

internal actions in the deck is strongly affected by the intermediate restraints, for the modes 

and configuration reported. 

In order to describe synthetically the variation of the functions ψi and ψi'' defined along the 

bridge, the following scalar variation index is introduced: 

 
, 2

, 2

     for   ,
i

i d i

f i i i

d i

f f
f

f
δ ψ ψ

−
′′= =  (31) 

where the subscript “i” denotes the i-th vibration mode while the subscript “d” refers to the 

limit case corresponding to α
2
=0. 

Other scalar quantities are of interest in the assessment of the system’s seismic response 

and their variation due to the intermediate supports can be described synthetically in a similar 

way. In particular, the following results report the variation of the vibration periods iT , of the 
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participation factors ρi, and of the values of the third order derivative at the beam ends 

( ) ( )LR iii

'''''' 0 ψψ == , that is proportional to the transverse reaction at the abutments. The 

variation indexes for these quantities are defined as: 

 
,

,

        for   , ,
i

i d i

f i i i i

d i

f f
f R T

f
δ ρ

−
= =  (32) 

Fig. 5 shows the influence of parameters α
2
 and β on the first-mode variation indexes. Fig. 

5a highlights the different trend of the mode shape (displacement) and of its second order 

derivatives (bending moments). The variation index of the abutment reactions (Fig. 5b) 

assume positive and negative values spanning from -10% to around 40%-50%. Similar trends 

are observed for all the configuration considered. Finally, minor variations are observed for 

the participation factor while the vibration period strongly decreases with increasing α
2
. Its 

sensitivity to α
2
 is very high in the initial part of the range explored. 
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Fig. 5. Variation of δ with α
2
 and β for mode 1 and relative to: a) displacements ψ (y) and bending moments 

ψ′′(y), b) abutment shear ψ ′′′(0), c) participation factor ρ, and d) vibration period T. 

Fig. 6 and Fig. 7 show the influence of parameters α
2
 and β on the variation indexes of the 

third and fifth mode. As previously noted, even modes are not of interest. Thus, the results 

concern odd terms only. 
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Fig. 6. Variation of δ with α
2
 and β for mode 3 and relative to: a) displacements ψ (y) and bending moments 

ψ’′′(y), b) abutment shear ψ ′′′(0), c) participation factor ρ, and d) vibration period T. 
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Fig. 7. Variation of δ with α
2
 and β for mode 5 and relative to: a) displacements ψ (y) and bending moments 

ψ′′(y), b) abutment shear ψ ′′′(0), c) participation factor ρ, and d) vibration period T. 

Generally, different trends can be observed in the higher-modes variation indexes. 

Variations in displacement and bending decrease for higher modes and higher number of 

supports. The reaction at the abutments, related to the third order derivative, is strongly 

influenced by the presence of intermediate supports, without distinction for the considered 
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configurations, and it shows large variations with different sign. The intermediate supports in 

general reduce the vibration period but their influence is lower and lower for increasing order 

of modes. Finally, the participation factors are not significantly influenced by the intermediate 

restraints, with the exception of the second mode’s participation factor, for β=1. 

 

4.2 Non-classically damped free vibrations 

This paragraph analyzes the damped free vibrations problem which corresponds to 

considering the deck damping and intermediate restraints with visco-elastic behavior. The 

solution to this problem is reported in Appendix A. A damping factor γd  =0.02 is employed to 

describe the dissipation in the deck  [5] while different values of γc from 0 to 0.25 are 

considered to describe the dissipation of the intermediate restraints. It is noteworthy that only 

the intermediate dampers are the cause of the non-classical damping, since the deck damping 

is assumed proportional to the mass. The most relevant effects of the variation of the 

intermediate dampers properties on the system free-vibration response are discussed below. 

Fig. 8 shows the influence of the intermediate supports damping γc on the global 

dissipative properties, described by the damping factor ξ, for vibration modes 1, 3 and 5. The 

definition and the analytical expression of ξ are reported in Appendix A. Different values of 

the parameters describing the intermediate supports stiffness (α
2
) and the bridge configuration 

(β) are considered.  

  

Fig. 8. Damping factor ξ vs. γc for different values of α
2
 and β. 
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 In general, the values of ξ corresponding to the first vibration mode (maximum value of 

0.7 for γc =0.25) are significantly higher than those corresponding to the third (maximum 

value of 0.3 for γc =0.25) and the fifth vibration mode (maximum value of 0.08 for γc =0.25). 

It is also observed that the intermediate supports damping, which is proportional to the 

displacement, have a reduced efficiency in damping the higher modes and its decay rate is 

approximately proportional to 1/i
2
 (i denotes the mode index). Furthermore, the above figures 

demonstrate that the value of ξ increases almost linearly for increasing γc and for increasing α
2
 

while decreases slightly for decreasing β. 

In a non-classically damped system such as those analyzed, the dampers may significantly 

affect the modal shape and the vibration motion may considerably vary with respect to the 

undamped case. In order to illustrate the modifications introduced by the intermediate 

dampers on the vibration shape with respect to the undamped case, a particular configuration 

is firstly analyzed which corresponds to the values of α
2
=4, β=1 and γc=0.13, leading to ξ=0.3. 

Fig. 9 shows the real and imaginary part of the normalized first modal shape ( 1,

R

ncdψ  and 1,

I

ncdψ ) 

and of its second order derivative ( 1,

R

ncdψ ′′  and 1,

I

ncdψ ′′ ) for the non-classically damped case. In 

the same figure, the normalized shape ( 1,cdψ ) and its second order derivative ( 1,cdψ ′′ ) 

corresponding to the classically-damped case (γc=0) are also shown for comparison. 
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Fig. 9. (a) Real and imaginary part of the normalized first modal shape and (b) of the second order derivative for 

the non-classically damped case and for the classically-damped case (γc=0). 

The intermediate dampers influence not only the imaginary part of the eigenvector and of 

its derivatives, but also, to a less extent, the real part. Furthermore, the imaginary part is quite 

small with respect to the corresponding real part in the displacement shape, but it assumes an 

high relevance in the moment shape. 

For design purposes, it can be interesting to analyze the envelope of the free vibration 

response in the first classically ( 1,cdψ ) and non-classically damped ( 1,ncdψ ) modes obtained 

neglecting the amplitude decay term. 

 ( ) ( ){ }1, 1 1 1 1max cos sinR I

ncd
t

t tψ ψ ω ψ ω= −  (33) 

Fig. 10a plots the envelope (acronym “env”) of the modal shape. The envelope of the 

second-order derivative, derived in a similar manner, is also reported in Fig. 10b.  



Enrico Tubaldi and Andrea Dall’Asta 

 17 

   

Fig. 10. Envelope of a) the first modal shape and b) of its second-order derivative for the non-classically damped 

case and the classically-damped case. 

It is interesting to observe that the displacements envelopes accounting for and 

disregarding damping are very similar. On the other hand, the envelope of the curvatures for 

the non-proportionally damped case significantly differs from the corresponding envelope for 

the proportionally damped case. In conclusion, with reference to this case it is observed that 

neglecting the non proportionality of the damping yields sufficiently accurate estimates of the 

displacement shape but inadequate estimates of the maximum values of the internal actions 

attained during the vibration motion.  

In order to provide information about the extent of non proportionality in the response, the 

following non-proportionality indexes are introduced for displacements, second order 

derivatives and end reactions:  
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The non-proportionality indexes generally increase for increasing α
2
 and increase almost 

linearly for increasing γc ,except for the variation index of ψ in case β=1,mode 1. They also 

decrease for increasing β as expected, since when β tends to zero the system tends to a simply 

supported beam resting on continuously distributed visco-elastic restraints, whose damping is 

proportional and whose vibration modes are real. 
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Fig. 11. Variation with γc of non-proportionality indexes relative to mode 1, for different values of α
2
. 

Fig. 12. Variation with γc of non-proportionality indexes relative to mode 3, for different values of α
2
. 
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CONCLUSIONS  

This paper examines the dynamic behavior of partially restrained seismically isolated 

bridges by studying the transverse free vibrations of a two-dimensional simply-supported 

beam model resting on intermediate visco-elastic supports.  

Particular simplified configurations with constant deck properties and uniform equally 

spaced supports are considered, with two main aims: to seek a reduced set of characteristic 

parameters describing completely the dynamic system and to obtain analytical solutions 

useful to make explicit the relationship between the bridge properties and the dynamic 

response. Three parameters are identified that describe a) the global ratio between deck and 

supports stiffness (α), b) the regularity of the support stiffness distribution (β), and c) the 

global dissipative properties of the supports (γc). 

A parametric analysis is carried out by varying the values assumed by these parameters, in 

order to highlight their influence on the dynamic properties of interest for the seismic 

response assessment. The reported results show that (a) variations in the distribution of 

displacements, related to the piers and inertia forces, are remarkable only for the first mode of 

the configuration with only one intermediate support, while minor variations are observed in 

the other cases; (b) variations in the curvatures’ shape, related to the deck bending moments, 

are very significant and cannot be neglected for all the modes and configuration reported; (c) 

the abutment reactions are also strongly affected to the presence of intermediate supports, 

without distinction for the considered configurations; (d) the damping promoted by the 

intermediate supports is proportional to the displacements, and its effectiveness decreases 

rapidly with increasing mode order; (e) for certain values of the characteristic parameters the 

non classical damping induced by the intermediate supports can play an important role in the 

dynamic response and, thus, simplified approaches neglecting it can lead to not accurate 

estimates of the maximum values of the response parameters attained during the motion; (f) 

non-classical damping induces minor variations on the displacement shape and on related 

quantities rather than on higher order derivatives. 
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