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Abstract. This paper shows that conventional Timoshenko theory for bending waves is a 
member of a two-parameter family (m; n) of approximations to the exact equations of linear 
elasticity. Higher members of the family are shown to represent the exact dispersion relation 
with extraordinary accuracy; in particular, an arbitrary number of branches can be captured 
accurately over their entire length, i.e. up to arbitrarily high frequencies and wavenumbers. 
The theory admits a rational accuracy analysis, and resolves certain controversies about the 
validity of higher-branch approximations. The paper demonstrates conclusively that Ti-
moshenko theory is a completely rational theory, thus ending decades of doubt on the matter. 
The standard Euler-Bernoulli theory is a lower member of the two-parameter family. Espe-
cially useful is Timoshenko (1; 2) theory, which extends conventional Timoshenko (0; 1) the-
ory by capturing the first four branches of the exact dispersion relation rather than merely the 
first two. 
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1 INTRODUCTION 
In the hierarchy of bending-wave theories for plates and beams, the first and simplest the-

ory is Euler-Bernoulli theory, valid at the lowest frequencies and wave numbers; next comes 
Timoshenko theory, with or without various correction factors, valid to higher frequencies 
and wavenumbers; and finally comes exact linear theory, based on the full equations of linear 
elasticity, valid to any frequency and wavenumber for which linear theory still holds. The aim 
of this paper is to fill the very large gap between these last two theories, but use only polyno-
mials. The gap is worth filling, because the dispersion relations obtained from exact linear 
theory are transcendental (when they can be obtained analytically at all), i.e. do not have the 
simple polynomial form of the earlier two theories, and engineers concerned with bending 
waves have overwhelmingly preferred the simplicity of polynomial theories  

 We shall fill the gap by means of a hierarchy of Timoshenko-type theories, in which the sim-
plicity and accuracy of Timoshenko-type polynomial dispersion relations are maintained at very 
high frequencies and wavenumbers. At first sight, the quest for such dispersion relations would 
appear to be a hopeless undertaking. One reason is that the conventional Timoshenko dispersion 
relation is invariably derived from a kinematic hypothesis about the shape of frequencies. Another 
reason is that any truncated Taylor-series expansion of an exact dispersion relation must likewise 
fail at higher frequencies, because of the known finite radius of convergence of such an expansion. 
Thus strategies based on more elaborate kinematic hypotheses, or on ever-longer Taylor-series 
truncations, can at best succeed in a limited range of frequency and wavenumber.  

The fundamental idea of this paper is to separate completely the derivation of a Timoshenko-
type dispersion relation from any dependence on a kinematic hypothesis or a Taylor-series ap-
proximation. Instead, we use two families of finite-product polynomials, namely ‘sine-based’ 
polynomials Sm of degree m, and ‘cosine-based’ polynomials Cn of degree n. These polynomials 
are products of factors corresponding to a specified finite number of roots of a sine or cosine func-
tion. The roots correspond to the cut-on frequencies of different types of modes. The result is a 
two-parameter family (m, n) of polynomial approximations to the exact dispersion relation, of 
which the member (m, n)= (0, 1) is a conventional Timoshenko approximation.   

If an analytical expression is available for the exact dispersion relation, the method is triv-
ial to implement: for any (m, n), the corresponding finite-product approximation may be writ-
ten down; and numerical computation of all of its roots, real or complex, is instantaneous on 
any computer, because of the universal availability and reliability of software for calculating 
the roots of polynomials. If, instead of an analytical expression, a numerical code is available 
for calculating the dispersion relation, the method may be implemented by first computing the 
cut-on frequencies of the low-order modes; these frequencies are then used to determine the 
appropriate finite-product polynomials.  

In this paper, we implement the method in complete detail for the canonical problem of the 
subject, namely bending waves in a planar elastic layer, for which exact linear theory leads to 
the Rayleigh-Lamb dispersion relation. The numerical accuracy of the approximations ob-
tained can be displayed explicitly in plots comparing the exact and approximate dispersion 
relations. It reveals the almost incredible accuracy of the above polynomials in representing 
the exact dispersion relation for small values of (m, n). Particularly accurate approximations 
are obtained when n = m+1. Hence a sequence of approximations is obtained which may be 
referred to as the Timoshenko (0, 1) dispersion relation, the Timoshenko (1, 2) dispersion re-
lation, etc. This family of approximations approaches the exact Rayleigh-Lamb dispersion 
relation arbitrarily closely at arbitrarily high frequencies and wave numbers. The structure of 
these approximations, together with a detailed account of their numerical accuracy, is fully 
presented. The fact that such approximations can exist at all is far from obvious, but was 
demonstrated by Chapman & Sorokin [1]. Especially useful is the Timoshenko (1, 2) disper-
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sion relation, which offers a massive extension of the range of validity of conventional Ti-
moshenko (0, 1) dispersion relation, and provides ample accuracy for practically all anti-
symmetric plate waves and vibrations of engineering interest. 

2 TERMINOLOGY 
We use the term Timoshenko-type theory for any theory or approach which leads to a 

polynomial dispersion relation of a certain type (specified explicitly) which generalises the 
conventional Timoshenko dispersion relation to a higher order polynomial. It must be empha-
sized that the type of theory refers only to how the dispersion relation is derived from physical 
principles and approximations, not to the final form of the dispersion relation itself. In every 
case, the dispersion relation is of the same form, namely a member of a specific two-
parameter family of dispersion relations labelled by the parameters (m, n). This codified 
scheme brings unity to what would otherwise be a ‘zoo’ of approximate methods. Two main 
aspects of the paper are, first, the demonstration that established approximations fit within the 
scheme, and second, that, when applied to slightly higher (m, n) than hitherto, the scheme 
gives new approximations displaying an extraordinary increase in accuracy and scope at al-
most no cost. Our use of the terms Timoshenko theory and Timoshenko dispersion relation is 
an extension of their familiar use, but is entirely logical in describing the results obtained in 
the paper.  

One might wonder why such a simple method as ours has not been exploited already. The an-
swer lies in Runge’s phenomenon, namely the fact that the polynomials Sm and Cn do not repre-
sent the underlying sine and cosines accurately on account of the high-amplitude oscillations 
which the polynomials display away from the centre of their range. Such oscillations are known to 
anyone who has tried polynomial interpolation with an equally spaced set of grid points. The cru-
cial fact underlying this paper is that, in a homogeneous linear combination of products of sines 
and cosines, Runge’s phenomenon cancels out almost exactly if an appropriate choice is made of 
the number of factors in the sine-based and cosine-based polynomials. With such a choice, inaccu-
racy in the individual representations of the sines and cosines does not lead to inaccuracy in the 
resulting approximation to the dispersion relation. In this context the term homogeneous means 
that in every term of the exact dispersion relation the number of sines or cosines multiplied to-
gether is the same; for the Rayleigh-Lamb dispersion relation, this number is two.    

The cancelling out of Runge’s phenomenon answers a long-standing objection to Ti-
moshenko theory from devotees of ‘rational mechanics’. It has repeatedly been claimed that 
Timoshenko theory is ‘just an engineering approximation’, and in particular that the excellent 
performance of the Timoshenko dispersion relation in capturing the first thickness-shear 
branch near cut-on is spurious. Indeed, it has been stated that Timoshenko theory is a ‘low-
frequency theory trying to be a high-frequency theory’. The key point, emphasized in this pa-
per, is that the Timoshenko dispersion relation can be derived by a method independent of a 
kinematic hypothesis or a Taylor-series truncation. This method shows that the Timoshenko 
dispersion relation is an early member of a sequence of approximations which, because of the 
cancelling-out of Runge’s phenomenon, approaches the exact dispersion relation at high fre-
quencies and wavenumbers with extraordinary rapidity. Accordingly, Timoshenko theory is 
completely rational. A mathematically rigorous justification of the above assertions is given in 
[1] for waves in a planar layer. 

3 FINITE-PRODUCT TIMOSHENKO THEORY 
The key idea in finite-product Timoshenko theory for a planar layer is to start with the exact 

dispersion relation of Rayleigh-Lamb theory, and immediately replace the sine and cosine terms 
by finite-product polynomials, chosen to have the same roots as the original sines and cosines in a 
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finite region. After this step has been taken, all calculations are performed with polynomials, and 
the original transcendental dispersion relation is not used again, unless accuracy analysis is re-
quired. The lengths of the finite regions are at the choice of the investigator: the longer the re-
gions, the higher is the polynomial order of the finite-product dispersion relation, and the greater 
is its region of accuracy in the frequency-wavenumber plane. This region of accuracy increases 
rapidly with polynomial order, and may be made arbitrarily large. In this sense, finite-product Ti-
moshenko theory fills completely the gap between conventional Timoshenko theory and 
Rayleigh-Lamb theory, referred to in the Introduction.  

The exact Rayleigh-Lamb dispersion relation for this problem is (see [2]):  
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If  or , the value of the corresponding finite product is defined as 1. Then the 
equation (1) is approximated by:  
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Equations (3) and (5) give the cut-on frequencies of the first m thickness-stretch modes and 
the first n thickness-shear modes. The reason is that these equations are satisfied if  and 
either  or 

0=K
01 =mS 02 =nC . This is the motivation for using the finite-product method, since the 

exact Rayleigh-Lamb dispersion relation (1) is satisfied if 0=K  and either ( ) 042
1 =LS  or 

( ) 04 =2
2LC

)
. The finite-product approximations (3) and (5) agree with the exact dispersion 

relation on a grid of points in the ( Ω,K  plane, for which the above cut-on points form the 
boundary; details of the grid are given in [1]. 
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The simplest way to introduce correction factors is to replace the term  on the right-hand 
side of equation (5) by the quantity  defined by : 
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At this stage, the values of γ  and δ  are arbitrary. The replacement of   by  is not 

made in any other term, thus  and  contain  not . Hence, the grid is preserved. 
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4 TIMOSHENKO (0,1) THEORY 
The finite product theory, presented above for arbitrary m and n, will now be analyzed in 

detail for . In this case, the reduced equation (6) becomes:  ( ) ( 1,0, =nm )
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      For equation (7), to recover the Bernoulli-Euler limit , we must take 42 KB =Ω
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Further analysis shows that γ  is a re-parametrization of the standard stiffness correction fac-
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    This simple equation has a truly extraordinary range of numerical accuracy. 
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6 TIMOSHENKO (M, N) THEORY  

We have seen that for the finite-product equation (7) or (10) to recover the Bernoulli-Euler 
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7 BOUNDARY CONDITIONS 
We have considered the planar elastic layer as a waveguide, i.e. as having indefinite length. 

For more general problems, boundary conditions at the ends must be included. The question 
then arises of solving a complete boundary-value problem if the Timoshenko (m, n) disper-
sion relation is to be used. Within the approach of this paper, this would be tackled by first 
formulating the problem with the exact equations of linear elasticity (either directly or using 
Hamilton’s principle with the exact Lagrangian), and then using the Timoshenko (m, n) field 
structure to reduce the problem to finite-dimensional modal form. This is an important direc-
tion for further work. 
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8 CONCLUSIONS  

The method just described provides an incentive to re-examine certain classical problems 
for which analytical dispersion relations have been derived, but for which reasonable polyno-
mial approximations have not been found. For example, the exact dispersion relation for elas-
tic waves in a cylindrical shell contains many combinations of Bessel functions, quite beyond 
the range of analysis ‘by hand’. Yet the finite-product method can be applied, yielding a fam-
ily of polynomial approximations readily obtained with a symbolic mathematical software 
package. A theoretical task would be to relate the families of approximations arising in such 
problems to the wave-hierarchy theories of Whitham [3]. 
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