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Abstract. Viscoelastic (VE) dampers are now among preferable energy dissipation devices
used for passive seismic response control. It is the aim of this paper to find the optimal
damper placement and to determine the optimal parameters of dampers. The dynamic behav-
ior of VE dampers, as described by the fractional Maxwell rheological model, is written in the
form of a fractional differential equation. Fractional models have an ability to correctly de-
scribe the behavior of VE materials and dampers using a small number of model parameters.
The equation of motion for the structure considered is expressed in the state space. The struc-
ture is subjected to a base acceleration. For the harmonic external forces the displacement
response of the structure is determined. Solving the equation of motion yields an input-output
relationship with the matrix frequency response function. The objective function, which we
minimize, is the weighted sum of amplitudes of the transfer functions of interstorey drifts,
evaluated at the fundamental, natural frequency of the frame with the dampers. The solution
is obtained using the sequential optimization method and the particle swarm optimization
method (PSO). The results obtained by both methods are compared.
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1 INTRODUCTION

Viscoelastic dampers are successfully applied thuage excessive vibrations of buildings
caused by winds and earthquakes. IncorporatioheoVE dampers into a structure leads to a
significant reduction of undesirable vibrationse seoong [1]. A number of applications of
VE dampers in civil engineering are listed in [Zhe dampers’ behavior depends mainly on
the rheological properties of the VE material tlaengers are made of and their geometric pa-
rameters. In the past, several rheological models wroposed to describe the dynamic be-
havior of VE materials and dampers. Both the ctaasid the so-called fractional-derivative
models of dampers are available. In the classicoggh, mechanical models consisting of
springs and dashpots are used to describe theodieal properties of VE dampers [3].
A good description of the VE dampers requires meidah models consisting of a set of ap-
propriately connected springs and dashpots. Inaghsoach, the rheological properties of VE
dampers are described using the fractional cal@mdsthe fractional mechanical models. The
fractional calculus has received considerable atterand has been used in modeling the
rheological behavior of VE materials [4] and dangg®]. The fractional models have an abil-
ity to correctly describe the behavior of VE mattriand dampers using a small number of
model parameters. A single equation is enough $ordee the VE damper dynamics, which is
an important advantage of the discussed model. Mewen this case, the VE damper equa-
tion of motion is the fractional differential eqiat. The dynamic analysis of frame or build-
ing structures with dampers is presented in mapgsa6, 7], where the fractional-derivative
rheological model is used to model the dampersabiei.

In this paper, planar frame structures with VE darepmounted on them are considered.
The VE dampers are modeled using the three-paranfetetional rheological Maxwell
model. The structures are treated as linear elagstems. The equations of motion of the
whole system (structure with dampers) are writteterms of both physical and state-space
variables. The proposed approach to the state $pevnalation is new. This is the main ad-
vantage of the proposed formulation, which doesrequire matrices with huge dimensions.
However, the resulting matrix equation of motiom iBactional differential equation.

It is aim of the present paper to find the optipl@cements of the dampers and to deter-
mine their optimal parameters. The objective fuorctiwhich we minimize, is the weighted
sum of amplitudes of the transfer functions of risterey drifts, evaluated at the fundamental,
natural frequency of a frame with dampers. Theroaglity criterion is expressed by the vector
consisting of the values of the above mentioneasfea functions of the interstorey drifts.

The solution to the considered optimization problsmarrived at using the sequential op-
timization method and the particle swarm optimmatmethod (PSO), which is based on the
study of social behavior in a self-organized popaoasystem [8, 9]. Numerical tests carried
out for a multi-storey building structure modelesl @ shear plane frame with VE dampers
mounted on it show that the presented methodsrapesand efficient.

2 THE RHEOLOGICAL MODEL OF DAMPER

In this paper, the fractional Maxwell model is usedepresent the rheological properties
of VE dampers. The considered model consists cd@ibnal dashpot with the constants;
a, (0<a, <1) and a spring of the stiffness. The equations of motion for the Maxwell
model could be written using the so-called relaiviernal variablev, (see Figure 1). The
above-mentioned equations of motion for the damapemas follows:
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u =¢ D (% —V,)
u =kv,

(1)

whereu, is the damper force anl is the relative damper displacement. MoreouEf,(+)
denotes the Riemann-Liouville fractional derivatofehe ordera; with respect to timd,
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Figure 1: Rheological model of fractional Maxwedirdper

The equation of motion of the classical Maxwell ralsdcould be obtained after substituting
a, =1 into Equations (1).

3 EQUATIONSOFMOTION

The frame with VE dampers is treated as the eléisgar system, which could be modeled
as the shear frame. The mass of the system is Wiatbe level of storeys.

3.1 Theequationsof motion expressed in physical coordinates

The equation of motion of the whole system (strrectuith dampers) can be written as fol-
lows:

M8 (1) + Cq,(t) + K q,(t) = s(t) +p(t) 2

where the symbols _, C, andK ¢ denote the mass, the damping, and the stiffness )
matrices, respectively. Moreoveq,(t) = col(q,;,....q5;.--.0s,) and p(t) =col(p,...,p;,....P,)
denote the vector of displacements of the struaarkthe vector of excitation forces, respec-
tively. The s(t) =col(s,s,.,...,S, ) vector is the ( x1) vector of interaction forces between the
frame and the dampers [10].
For the Maxwell model of dampers, the vector oéiattive forces(t) is treated as a sum

of two vectors, i.e.s(t) =s,(t) +s,(t). The vectors,(t) contains interactive forces which are
reactions of the elastic part of the Maxwell damsperthe frame, while the vectss(t) con-

tains interactive forces which are reactions ofdashpot part of the dampers. It is assumed
that the dashpot part of the Maxwell model is jdiveith the upper storey while the elastic
part is joined with the lower storey. Moreover, thrace stiffness could be taken into account
in the stiffness parameter of the Maxwell modeh Btructure with only one damper, denoted
as the damper numbermounted between two successive storgys)dj+1, is considered
then the vectors, (t) ands,(t) could be written in the following form:

s (t) =s; (t) =col(0,....s; = u;,.....0) = §u; ()

_ _ _ . 3)
S,(t) =s, (t) =col(0,...,5;,; = -U;,.....0) =g U, (t)

where®g =col(0,....¢, =1€,, =0,..0), & =col(0,....6; =0,&,,, =-1...0).
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Taking into account thad, ; (t)) =§"q(t) andqs.,(t)=-& q.(t), the damping forcey (t) of
the Maxwell damper could be shown in two equivafenns:

U (1) =k (v (t) — G ; (1)) = kv; (1) —k 8" a4 (1)

a; a; a; 2 aj (4)
U, (t) =G (Dt lqs,j+1(t) - Dt Vi (t)) =G Dt 'V (t) _CieiT Dt lqs(t)
and the interaction force vectosg (t) ands,, (t) are given by:
s’ (1) =&k, (1) -8k & q,(t) =8k hlq, (1) - k&', () ©)

s9(t) = -&,¢, DV, (t) 8,68 D, (t) = -&,chT D7 q, (t) -8 D g, (1)

where the vector of internal variableg (t) = col(v,(t),...,v, (t),...,v,,(t dnd the vector
h, =col(0,...,h, =1,...0) have the dimensiom{x1). Moreover, from the equilibrium condition
of the internal node of the Maxwell model of damyerobtain:

=GD g .1 (1) + ¢ D (1) — kg (1) + kv, (1) =0 (6)
In the matrix notation, Equation (6) for 12,..m, may be rewritten in the form:
G& D a,(t) +chi D g, (t) —k & a,(t) +khiq, (1) =0 (1)

Whenm dampers are present in the frame, and all theidraadt parameters are equal, (i.e.,
a, = a = const) then the interaction force vectors are:

s.)=Y.8khla, (0~ Y &kE a,)
|=1m i=1 . (8)
s, (t) = —Z éch'D/q, (t) - Zéi c.& D q.(t)

After pre-multiplying Equation (7) by, and summing up all equations with respedt, wwe
have:

ZhiciéiT D{a,(t) +ZhicihiT D/, (1) _Zhikiéqu(t) +ZhikihiTC]r t)=0 9)
= =1 i1 =1

Taking into account thad(t) =s, (t) +s,(t) and substituting Equations (8) into (2) we obtain
the following equation of motion for the frame witie Maxwell dampers:

M (D{q,(t) + C.D/a, (t) + C&DIa, (1) + (K +K L) a () +

y (10)
+CoD{q, (1) -K5a, (t) =p(t)
Equation (9) could be rewritten in the form:
CDI () +Cr DI, (t) ~K{qs(t) +K q, () =0 (11)

The following symbols

m m m m
CgszzéiciéiT , CS :ZéicihiT , Cie :ZhicléiT =(CH)". Ch :Zh_c_h_T
= = = =



Zdzislaw Pawlak, Roman Lewandowski

Ke =3 hKk& =(K9), KL =S hkh', K& = &kh, K=Y akF
i=1 i=1 i=1 i=1

were introduced in Equations (10) and (11). Theesyof fractional differential Equations
(10) and (11) constitute a set of equations frontiwvkhe dynamic response of the structure
with the Maxwell dampers can be determined.

3.2 Theequationsof motion expressed in the state space

In many cases it is very convenient to use the temuaf motion expressed in the state
space. In the case of frames with the Maxwell damgee vector of state variables and the
vectors of state variables’ derivatives are defiagd

2(t) = col(q, (1), q.(t), Dig. (1))
D;z(t) =col(Dq, (t), D{g,(t), Dfg,(t) (12)
D{"z(t) = col(D{q, (t), D{q,(t), D "a,(t))
Moreover, when the following additional matrix etjoa:
M .D{q,(t) ~M ,D{q(t) =0 (13)

is appended to the Equation (10) and (11) a setjoétions is obtained which could be rewrit-
ten using the state variables defined above. Thdtieg matrix equation is in the form:

A D;z(t) + A, Dz(t) + Bz(t) = p(t) (14)
where
000 Ci CcL o0 Ké  -K9% 0 0
A=l 0 C, M, |, A =|C; Ci 0|,B=|-Kg K +Kg 0 |, p(t)=1p(t)
0M, O 0 0O 0 0 -M 0

The above approach to the state space formulatioew. In comparison with previous ones,
such as those given in [11, 12], matrices with hdiggensions were not required which is the
main advantage of the proposed formula. Moreovkof@ahe matrices appearing in Equation
(14) are symmetrical.

4 DYNAMIC ANALYSIS

4.1 Dynamic characteristics of structures
Applying the Laplace transform, taking into accothat p(t) =0:

£lzt)=z, £[D{’ z(t)] =s" 7, £plzt)=z, (15)
the equation of motion (14) can be written as
(sA+s7A, +B)z =0, (16)

Equation (16) constitutes a non-linear eigenproblgmch can be solved using the continua-
tion method. The solution to the considered noadmequation could be shown as a curve in
the configuration space, i.e., tlie Z space. The first point in this curve is obtainedd =1,

in this case Equation (16) expresses the lineane@ue problem. Next, the solution to the
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eigenproblem (16) for the chosen valuenaf] (0,1) is investigated. The incremental-iteration

method, presented in detail in [10], is used. Uguaine incremental step and three or four
iterations are enough to reach the solution forfite value of the fractional parameter. The
continuation method enables the eigenvalge® be determined.

The dynamic behavior of a frame with viscoelastengers is characterized by the natural
frequencyw and the non-dimensional damping paramegferSimilarly to viscous damping,

the above-mentioned properties are defined aswsllio
W =ptEnt, =l (17)
where i = Re(s ), /7, =Im(s)).

4.2  Frequency response functions

In this section we investigate the steady statmbarc responses of structures governed by
Equations (14). For the harmonic external forcescdieed by:

p(t) = Pexp(At), (18)

wherei =+/-1, A is the frequency of excitation, the displaceme&sponse of the structure
can be expressed as:

a5(t) =Qs (1) explAt) . (19)

If relationships (18) and (19) are substituted ithte equation of motion (14), written in the
state space, the following equation is obtained:

Q.()=HM)P, (20)
where:
A()=fiAA+@n A, +B]". 1)
When the structure is subjected to a base accielendf(t) , the excitation vector is written as
p(ty=-M r i (t) , where r=cof11...1} . For the harmonic external forces,

Uy () = Ug exp(At). The displacement response of the structure isngby relationship (19)
and Q. (A ) is determined from:

Q,(A) =HU,. (22)

where the vectoH(A) = —ﬁ()l)Mr will be called the vector of frequency transfendtions
of displacements.

5 OPTIMIZATION PROBLEM

It is the aim of this paper to find the optimal dzers’ placements and to determine the op-
timal parameters of the dampeeg andc, . The objective function, which is minimized, is
the weighted sum of amplitudes of the transfer fioms of interstorey driftsh, (1) , evaluated
at the fundamental, natural frequency< ) of the frame with the dampers. The optimality
criteria may by described as follows:
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F=w'h(w). (23)

where the vectoh(w,) = col(h (), h, (), ....... Nh.(« )ronsists of the values of the above
mentioned amplitudes of transfer functions of isterey drifts,w = col(w,,w,,...,w, )is the
vector of weight coefficients, anal stands for the number of the structure’s degrédsee-
dom.

The considered optimization problem is subjecteddme constraints. We assume that the
sum of damping coefficients and the sum of stifnparameters are known and constant.
Moreover, the values of the parameters of dampipg, and stiffnessk, ; , for every damper

must be non-negative. The above constraints ateewms:

m

ch,i =Cy, de,i =Ky Cqi 2Chins Ky 2Ky, - (24)
i=1

i=1

wherec,,.,K., represent the assumed low-value positive numbers £ 1L.0Nsec’/m was
chosen in our example).
The vectorH , (A pf the frequency transfer functions of interstodiifts can be calcu-

lated from the following formula:

Hy(A)=TH(1), (25)
where the transformation matrix is:
100..0 00
-110..0 00
T= ) (26)
000..0-11

The solution is obtained using the sequential agation method and the particle swarm
optimization method (PSO). In the first case, feerg possible location of one damper the
values of the objective function are calculatede Tight fixed location of the damper is the
position for which the minimum value of the obj&etifunction is obtained. When the first
damper’s location is determined the procedurepsated until all locations are found for the
dampers. However, there is no proof for the sohisi@onvergence although many examples
show that this method is simple and efficient inngh@ngineering applications (for instance
[13]).

The PSO algorithm which is based on the study efatdehavior in a self-organized
population system (i.e., ant colonies, fish schpasarches a space by adjusting the trajecto-
ries of so-called particles. In the consideredrofation problem, the vector of tieh parti-

cle’s positionp, consists of damping coefficients of dampers culyemounted on the
structure, i.e.p; =col(cy},cl},....c{”). The dimension of the vectq; is equal to the
number of building storeys. Moreover, to reducenbeber of elements of the particle posi-
tion vector and because of technological requirdsfar the damper, the stiffness parameter
of the damper is calculated assuming that the m@tidk,; is given and will not change
during iteration.

A population of particles is initialized with ranglopositions and velocities [9]. Taking

into account the best positions of the particlesudisequent iteratiokt1, the algorithm ad-
justs the behavior of the particles by the follogvales:
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v, (k+1) = wk)v, (k) + = ~ R,(K)b, (k)-p, (k))+%R2(k)(gi (k)-p, (k) 27)
p, (k+1)=p, (k) +v, (k +1)At

whereAt = 1 p, (k) is the position of-th particle ak-th iteration, v, (k) is the corresponding
velocity vector;b, (k) andg, (k) stand for the best position found by the particknd the

best position in the particle’s neighbourhood aebikso far, respectivel;F;Ql(k), Rz(k) are
the diagonal matrices of independent random numbeif®rmly distributed in the range
(0, 1); w(k) is the inertia factor providing balance betweepl@ation and exploitationg,
is the individuality constant, and, is the sociality constant. To speed up convergetiee

inertia weight could be linearly reduced. A newoadty, which moves the particle in the di-
rection of a potentially better solution, is cakield based on its previous value, and the parti-
cle location at which the best fitness so far heenbachieved.

The initial values of the elements;  (0f the velocity vectov; (Opre calculated from the
following formula:

Vi =1, Cy &, (28)

wherer, is the random number taken from the range (Onil)sg is a constantg, = 00%

assumed). The initial values of the elements ofvéletor p; (0) are determined from the fol-
lowing relationship:

: (29)

wherer; is a random number taken from the range (0, 1§ dtove choices assure that all
assumed initial approximations of dampers paramsgies., vectorg; (0) and v; (0) fulfill
the optimization constraints (24).

An important part of the PSO algorithm is the wéyandling the constraints introduced

in the optimization problem. Here, the followingryesimple procedure is used to fulfill the
constraints (24):

e if non-admissible valuesc,;(k+1)< Oresult from the relationship (27) then
Cy; (k+1 =c,, is artificially introduced,

e in order to fulfill the constraint (27.1), elemsrdf the vectop, (k+ Iare normalized in
such a way that:

C,.
=5 C (30)

T m
D Ca
=L

The PSO procedure is ceased if the change of tleetoke function is sufficiently small, i.e.,
when:

Cq

IF(k+1) -F(k)|<&F(k+1) (31)
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where g, is an assumed low-value number.

6 NUMERICAL TEST

In the numerical example, a ten-storey buildingigtire modeled as a shear plane frame
with VE dampers mounted on it is investigated. Bbeading rigidity of columns varies in se-
quence, for every two storeysk, =k, =687100 kN/m , k, =k, =5401Q00 kN/m ,

ks = ks =421700 kN/m, k, =k, =286600 kN/m, k, =k,, =164500 KN/m, but the mass
value is the same for every floan, = 207Mg . The structure’s damping ratios correspond-
ing to the stiffness of the storeys amg:=c, = 476 kNsedm, c;=c, = 373kNsedm,

C; =Cg = 291kNsedm, ¢, =cg =198 kNsedm, ¢, =, = 144kNsedm (data taken from

[13]).
Firstly, the calculations were carried out for anfie without dampers (see Figure 2a), only
the damping properties of structure were takenactmount.

a) b) c)
10
ke /ﬁ
s /ﬁ > /ﬁ 3k, 3
K /ﬁ °
Ke /ﬁ °
- 5
K /ﬁ !
ke /ﬁ °
ke /ﬁ 2
ke /ﬁ .
N MM | /e K S

Figure 2: Diagram of a 10-storey frame with differdistributions of dampers

The solution to Equation (16), whefg, =0 andK§ =K $ =KL =K = Q leads to the

eigenvaluess which enable determination of the dynamic propertof the structure de-

scribed by Equation (17). The results, the natinegjuencies of the structure and the values of
non-dimensional damping factor are presented inerab

Next, the authors investigated a structure with damper mounted on every storey (see
Figure 2b). The assumed value of the sum of thepdegncoefficients and the sum of the

stiffness parameters ar€; =500kNse¢/m, and K, = 25000kNnT, respectively. If damp-
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ers are uniformly distributed within a structuréetdata for every single damper are:
k, = 2500 kNnT, ¢, =50 kNsed/m, 14 =c, /ky = 002. The values of fractional parame-

ters for all dampers are identical, i.e.=  .08sing the suggested procedure, the dynamic
properties of the considered system were compsesa Table 1).

A first solution to the optimization problem is abted using the sequential optimization
method. For every possible location of one damihervalues of fundamental frequency are
calculated (see Figure 3).

Dampers’s distribution

Modal No dampers uniform optimal
number ‘ ‘ ‘
Qi Vi Qi Vi Qi Y

1 22.690 0.0008 22.816 0.0126 22.934 0.0162
2 56.534 0.0022 58.114 0.0246 59.421 0.0338
3 91.909 0.0035 95.255 0.0212 96.309 0.0182
4 127.472 0.0047 132.284 0.0177 129.866 0.0094
5 151.769 0.0061 159.807 0.0209 163.766 0.0204
6 182.399 0.0066 188.678 0.0151 190.317 0.0213
7 208.638 0.0073 216.278 0.0152 220.389 0.0146
8 245.147 0.0085 252.143 0.0136 261.260 0.0210
9 281.524 0.0097 288.274 0.0135 283.755 0.0122
10 324.052 0.0112 330.492 0.0139 324.065 0.0112

Table 1: Natural frequencie®) and non-dimensional damping factgrs

Next, the objective function is evaluated for thanie, taking into account every possible
position of the damper. The results are presemtddgure 4. It was assumed that the values
of the weight coefficientsv. in Equation (23) are equal to one.

0.001
0.001

0.001

0.001

0.00l/l II I I I I
2'3'4'5'6' .8. 9.10.

0.000 Y
1 7

non-dimensional .
damping ratio

storey

Figure 3: Non-dimensional damping factors versist lamper’s position

The correct fixed location of the first damper islee seventh storey, for which the mini-
mum value of the objective function is obtained. afVtthe first damper’s location is deter-

10
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mined the procedure is repeated until all locatimnghe dampers are found. The optimal lo-
cations of ten successive dampers are found tedwen at the seventh storey and three at the
ninth storey (see also Figure 2c). The dynamic entgs of structures with optimally
distributed dampers are shown in Table 1.

It can be noted that the non-dimensional dampitig @& the first mode of vibration is
greater (by about 28%), compared with the same fatithe structure with uniformly distrib-
uted dampers. Moreover, the damping ratios of kel t fourth, fifth, seventh, ninth, and
tenth modes of vibration are smaller.

1.60
150
c 1.404
ke) i . -
3 1.30f
c pul N —— — -
2 120
% 1.10
3 100
O e ] — 1 ] — 1 — ] —
S 0.90

0-80 / L] L] L] LJ LJ LJ LJ LJ LJ LJ

1 2 3 4 5 6 7 8 9 10
storey

Figure 4: Objective function versus first dampegrisition

In the second approach, the PSO method is appfideiquation (27), we define the values
of coefficientsc, =c, =2 and the declining value of the inertia factorytatg with w= 0.9,
it decreased by 0.005 at every step of iteratiomofulation of ten particles was initialized
with random positions. The coordinates of everytigar position describe the current distri-
bution of damping properties on the frame. On ewoyey, the value of the damping coeffi-

cient must be non-negative and smaller than thenasg constant valu€, =500kNse¢/m
(i.e., Cn <Cy; <Cy). The stiffness parameters of the dampers arailleééd from the value
of the ratioc,; /ky; which is equal to 002 and constant for every jpim

Changes of the best value of the objective functlaring the iteration process are pre-
sented in Figure 5. The solution to the optimizatwoblem, i.e., the optimal distribution of
VE dampers obtained with the help of both optim@amethods is shown in Table 2.

The objective function, the weighted sum of amplés of the transfer functions of in-
terstorey drifts is:Fy =1. 7053F, =0.3739, F5 =0.2759 for the frame without dampers,

for uniformly distributed dampers, and for the ol solution obtained by the sequential and
PSO methods, respectively.

It can be concluded that results obtained by batthods yield similar dampers' distribu-
tions on the frame. Differences between the optwadles of damping coefficients obtained
as the result of optimization procedures are dbrigdfected by an incremental way of distri-
bution of damping coefficients in the sequentialimzation method. Moreover, in the PSO
method the values of the damping parameters of every damper must be non-negative.

11
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Number Damping coefficient
of storey
Sequential method PSO method
1 0 0.78
2 0 0.78
3 0 0.78
4 0 0.78
5 0 0.78
6 0 0.78
7 350 347.23
8 0 0.78
9 150 146.48
10 0 0.78
Total 500 499.95

Table 2: Optimal distribution of VE dampers

0.325 \

0.315 -
0.305 -
0.295

0.285 \\

1 2 3 456 7 8 910111213 14151617 18 19 20
iteration step

objective function .

0.275

Figure 5: Convergence of objective function at Rte@ation

7 CONCLUDING REMARKS

In this paper, frame structures with viscoelasamgers mounted on them are considered.
Viscoelastic dampers are modeled using a threevmes, fractional rheological Maxwell
model which more precisely describes the VE damnspaioperties, compared with the classi-
cal one. The resulting matrix equation of motiorthie fractional differential equation. The
problem of optimal distribution of VE dampers mastelby the fractional rheological Max-
well model is solved for the first time. The coresield optimization problem is solved by
minimization of the objective function which is theighted sum of amplitudes of the trans-
fer functions of interstorey drifts. The sequentiptimization method and the particle swarm
optimization method are used to successfully stihveoptimization problem. Examples of
numerical calculations were shown. The presentsditeedemonstrate the effectiveness and
applicability of the proposed approach.

12
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