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Abstract. Viscoelastic (VE) dampers are now among preferable energy dissipation devices 
used for passive seismic response control. It is the aim of this paper to find the optimal 
damper placement and to determine the optimal parameters of dampers. The dynamic behav-
ior of VE dampers, as described by the fractional Maxwell rheological model, is written in the 
form of a fractional differential equation. Fractional models have an ability to correctly de-
scribe the behavior of VE materials and dampers using a small number of model parameters. 
The equation of motion for the structure considered is expressed in the state space. The struc-
ture is subjected to a base acceleration. For the harmonic external forces the displacement 
response of the structure is determined. Solving the equation of motion yields an input-output 
relationship with the matrix frequency response function. The objective function, which we 
minimize, is the weighted sum of amplitudes of the transfer functions of interstorey drifts, 
evaluated at the fundamental, natural frequency of the frame with the dampers. The solution 
is obtained using the sequential optimization method and the particle swarm optimization 
method (PSO). The results obtained by both methods are compared. 
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1 INTRODUCTION 

Viscoelastic dampers are successfully applied to reduce excessive vibrations of buildings 
caused by winds and earthquakes. Incorporation of the VE dampers into a structure leads to a 
significant reduction of undesirable vibrations, see Soong [1]. A number of applications of 
VE dampers in civil engineering are listed in [2]. The dampers’ behavior depends mainly on 
the rheological properties of the VE material the dampers are made of and their geometric pa-
rameters. In the past, several rheological models were proposed to describe the dynamic be-
havior of VE materials and dampers. Both the classic and the so-called fractional-derivative 
models of dampers are available. In the classic approach, mechanical models consisting of 
springs and dashpots are used to describe the rheological properties of VE dampers [3]. 
A good description of the VE dampers requires mechanical models consisting of a set of ap-
propriately connected springs and dashpots. In this approach, the rheological properties of VE 
dampers are described using the fractional calculus and the fractional mechanical models. The 
fractional calculus has received considerable attention and has been used in modeling the 
rheological behavior of VE materials [4] and dampers [5]. The fractional models have an abil-
ity to correctly describe the behavior of VE materials and dampers using a small number of 
model parameters. A single equation is enough to describe the VE damper dynamics, which is 
an important advantage of the discussed model. However, in this case, the VE damper equa-
tion of motion is the fractional differential equation. The dynamic analysis of frame or build-
ing structures with dampers is presented in many papers [6, 7], where the fractional-derivative 
rheological model is used to model the dampers’ behavior. 

In this paper, planar frame structures with VE dampers mounted on them are considered. 
The VE dampers are modeled using the three-parameter fractional rheological Maxwell 
model. The structures are treated as linear elastic systems. The equations of motion of the 
whole system (structure with dampers) are written in terms of both physical and state-space 
variables. The proposed approach to the state space formulation is new. This is the main ad-
vantage of the proposed formulation, which does not require matrices with huge dimensions. 
However, the resulting matrix equation of motion is a fractional differential equation. 

It is aim of the present paper to find the optimal placements of the dampers and to deter-
mine their optimal parameters. The objective function, which we minimize, is the weighted 
sum of amplitudes of the transfer functions of interstorey drifts, evaluated at the fundamental, 
natural frequency of a frame with dampers. The optimality criterion is expressed by the vector 
consisting of the values of the above mentioned transfer functions of the interstorey drifts.  

The solution to the considered optimization problem is arrived at using the sequential op-
timization method and the particle swarm optimization method (PSO), which is based on the 
study of social behavior in a self–organized population system [8, 9]. Numerical tests carried 
out for a multi-storey building structure modeled as a shear plane frame with VE dampers 
mounted on it show that the presented methods are simple and efficient. 

2 THE RHEOLOGICAL MODEL OF DAMPER 

In this paper, the fractional Maxwell model is used to represent the rheological properties 
of VE dampers. The considered model consists of a fractional dashpot with the constants: ic , 

iα  ( 10 ≤< iα ) and a spring of the stiffness ik . The equations of motion for the Maxwell 

model could be written using the so-called relative internal variable iv  (see Figure 1). The 

above-mentioned equations of motion for the damper are as follows: 
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where iu  is the damper force and ix  is the relative damper displacement. Moreover, )(•i
tDα  

denotes the Riemann-Liouville fractional derivative of the order iα  with respect to time, t. 
 
 
 
 
 
 
 

Figure 1: Rheological model of fractional Maxwell damper 

The equation of motion of the classical Maxwell models could be obtained after substituting 
1=iα  into Equations (1). 

3 EQUATIONS OF MOTION 

The frame with VE dampers is treated as the elastic linear system, which could be modeled 
as the shear frame. The mass of the system is lumped at the level of storeys. 

3.1 The equations of motion expressed in physical coordinates 

The equation of motion of the whole system (structure with dampers) can be written as fol-
lows: 

 )()()()()( ttttt ssssss psqKqCqM +=++ &&&  (2) 

where the symbols sM , sC  and sK  denote the mass, the damping, and the stiffness (nn× ) 
matrices, respectively. Moreover, ),...,,...,()( ,,1, nsjsss qqqcolt =q  and ),...,,...,()( 1 nj pppcolt =p  

denote the vector of displacements of the structure and the vector of excitation forces, respec-
tively. The ),...,,()( 21 nssscolt =s  vector is the ( 1×n ) vector of interaction forces between the 

frame and the dampers [10].  
For the Maxwell model of dampers, the vector of interactive forces )(ts  is treated as a sum 

of two vectors, i.e., )()()( 21 ttt sss += . The vector )(1 ts  contains interactive forces which are 
reactions of the elastic part of the Maxwell dampers to the frame, while the vector )(2 ts  con-
tains interactive forces which are reactions of the dashpot part of the dampers. It is assumed 
that the dashpot part of the Maxwell model is joined with the upper storey while the elastic 
part is joined with the lower storey. Moreover, the brace stiffness could be taken into account 
in the stiffness parameter of the Maxwell model. If a structure with only one damper, denoted 
as the damper number i, mounted between two successive storeys, j and j+1 , is considered 
then the vectors )(1 ts  and )(2 ts  could be written in the following form: 
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Taking into account that )(~))(, ttq s
T
ijs qe=  and )(ˆ)(1, ttq s

T
ijs qe−=+ , the damping force )(tui  of 

the Maxwell damper could be shown in two equivalent forms: 
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and the interaction force vectors )(,1 tis  and )(,2 tis  are given by: 
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where the vector of internal variables ))(),...,(),...,(()( 1 tvtvtvcolt mir =q  and the vector 

)0,...,1,...,0( == ii hcolh  have the dimension ( 1×m ). Moreover, from the equilibrium condition 
of the internal node of the Maxwell model of damper we obtain: 

 0)()()()( ,1, =+−+− + tvktqktvDctqDc iijsiitijsti
ii αα  (6) 

In the matrix notation, Equation (6) for mi ,...2,1= , may be rewritten in the form: 
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When m dampers are present in the frame, and all the fractional parameters are equal, (i.e., 
.consti == αα ) then the interaction force vectors are: 
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After pre-multiplying Equation (7) by ih  and summing up all equations with respect to i, we 
have: 
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Taking into account that )()()( 21 ttt sss +=  and substituting Equations (8) into (2) we obtain 
the following equation of motion for the frame with the Maxwell dampers: 
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Equation (9) could be rewritten in the form: 
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were introduced in Equations (10) and (11). The system of fractional differential Equations 
(10) and (11) constitute a set of equations from which the dynamic response of the structure 
with the Maxwell dampers can be determined. 

3.2 The equations of motion expressed in the state space  

In many cases it is very convenient to use the equation of motion expressed in the state 
space. In the case of frames with the Maxwell dampers the vector of state variables and the 
vectors of state variables’ derivatives are defined as: 
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Moreover, when the following additional matrix equation: 

 0qMqM =− )()( 11 tDtD stssts  (13) 

is appended to the Equation (10) and (11) a set of equations is obtained which could be rewrit-
ten using the state variables defined above. The resulting matrix equation is in the form: 
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The above approach to the state space formulation is new. In comparison with previous ones, 
such as those given in [11, 12], matrices with huge dimensions were not required which is the 
main advantage of the proposed formula. Moreover, all of the matrices appearing in Equation 
(14) are symmetrical. 

4 DYNAMIC ANALYSIS  

4.1 Dynamic characteristics of structures  

Applying the Laplace transform, taking into account that 0p =)(~ t : 

 ( )[ ] Zz =tL , [ ] Zz
αα

stDt =)(L , [ ] Zz stDt =)(1
L , (15) 

the equation of motion (14) can be written as 

 ( ) 0ZBAA =++  1
αss , (16) 

Equation (16) constitutes a non-linear eigenproblem which can be solved using the continua-
tion method. The solution to the considered non-linear equation could be shown as a curve in 
the configuration space, i.e., the s, Z  space. The first point in this curve is obtained for 1=α , 
in this case Equation (16) expresses the linear eigenvalue problem. Next, the solution to the 
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eigenproblem (16) for the chosen value of )1 ,0(∈α  is investigated. The incremental-iteration 
method, presented in detail in [10], is used. Usually, one incremental step and three or four 
iterations are enough to reach the solution for the final value of the fractional parameter. The 
continuation method enables the eigenvalues is  to be determined. 

The dynamic behavior of a frame with viscoelastic dampers is characterized by the natural 
frequency iω  and the non-dimensional damping parameter iγ . Similarly to viscous damping, 

the above-mentioned properties are defined as follows: 

 222
iii ηµω += , iii ωµγ /−= , (17) 

where )Re( ii s=µ , )Im( ii s=η . 

4.2 Frequency response functions 

In this section we investigate the steady state harmonic responses of structures governed by 
Equations (14). For the harmonic external forces described by:  

 )exp()( tit λPp = , (18) 

where 1−=i , λ  is the frequency of excitation, the displacement response of the structure 
can be expressed as: 

 )exp()()( tit ss λλQq = . (19) 

If relationships (18) and (19) are substituted into the equation of motion (14), written in the 
state space, the following equation is obtained: 

 PHQ
~

)(
~

)( λλ =s , (20) 

where: 

 ( ) [ ] 1

1)( 
~ −

++= BAAH αλλλ ii . (21) 

When the structure is subjected to a base acceleration )(tug&& , the excitation vector is written as 

)()( tut g&&rMp −= , where { } 1,.....,1 ,1 col=r . For the harmonic external forces, 

)exp()( tiUtu gg λ&&&& = . The displacement response of the structure is given by relationship (19) 

and )(λsQ  is determined from: 

 gs U&&)()( λλ HQ = . (22) 

where the vector MrHH )(
~

)( λλ −=  will be called the vector of frequency transfer functions 
of displacements. 

5 OPTIMIZATION PROBLEM  

It is the aim of this paper to find the optimal dampers’ placements and to determine the op-
timal parameters of the dampers dik  and dic . The objective function, which is minimized, is 

the weighted sum of amplitudes of the transfer functions of interstorey drifts, )(λih , evaluated 

at the fundamental, natural frequency ( 1ωλ = ) of the frame with the dampers. The optimality 
criteria may by described as follows: 
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 )( 1ωhwTF = . (23) 

where the vector ))(),.......,(),(()( 112111 ωωωω nhhhcol=h  consists of the values of the above 

mentioned amplitudes of transfer functions of interstorey drifts, ),...,,( 21 nwwwcol=w  is the 

vector of weight coefficients, and n  stands for the number of the structure’s degrees of free-
dom. 
The considered optimization problem is subjected to some constraints. We assume that the 
sum of damping coefficients and the sum of stiffness parameters are known and constant. 
Moreover, the values of the parameters of damping, idc , , and stiffness, idk , , for every damper 

must be non-negative. The above constraints are written as: 

 d

m

i
id Cc =∑

=1
, ,  d

m

i
id Kk =∑

=1
, ,  min, cc id ≥ ,   min, kk id ≥  . (24) 

where minmin ,kc  represent the assumed low-value positive numbers ( mNc /sec0.1min
α=  was 

chosen in our example). 
The vector )(λdH of the frequency transfer functions of interstorey drifts can be calcu-

lated from the following formula: 

 )()( λλ THH =d , (25) 

where the transformation matrix is: 
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The solution is obtained using the sequential optimization method and the particle swarm 
optimization method (PSO). In the first case, for every possible location of one damper the 
values of the objective function are calculated. The right fixed location of the damper is the 
position for which the minimum value of the objective function is obtained. When the first 
damper’s location is determined the procedure is repeated until all locations are found for the 
dampers. However, there is no proof for the solution’s convergence although many examples 
show that this method is simple and efficient in many engineering applications (for instance 
[13]). 

The PSO algorithm which is based on the study of social behavior in a self-organized 
population system (i.e., ant colonies, fish schools), searches a space by adjusting the trajecto-
ries of so-called particles. In the considered optimization problem, the vector of the i-th parti-
cle’s position ip  consists of damping coefficients of dampers currently mounted on the 

structure, i.e., ),....,,( )(
,

)(
2,

)(
1,

i
nd

i
d

i
di ccccol=p . The dimension of the vector ip  is equal to the 

number of building storeys. Moreover, to reduce the number of elements of the particle posi-
tion vector and because of technological requirements for the damper, the stiffness parameter 
of the damper is calculated assuming that the ratio idid kc ,, /  is given and will not change 

during iteration. 
A population of particles is initialized with random positions and velocities [9]. Taking 

into account the best positions of the particles at subsequent iteration k+1, the algorithm ad-
justs the behavior of the particles by the following rules: 
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where 1=∆t , ( )kip  is the position of i-th particle at k-th iteration, ( )kiv  is the corresponding 

velocity vector; ( )kib  and ( )kig  stand for the best position found by the particle i and the 

best position in the particle’s neighbourhood achieved so far, respectively; ( )k1R , ( )k2R  are 
the diagonal matrices of independent random numbers uniformly distributed in the range 
( )1,0 ; ( )kw  is the inertia factor providing balance between exploration and exploitation, 1c  

is the individuality constant, and 2c  is the sociality constant. To speed up convergence, the 
inertia weight could be linearly reduced. A new velocity, which moves the particle in the di-
rection of a potentially better solution, is calculated based on its previous value, and the parti-
cle location at which the best fitness so far has been achieved. 
The initial values of the elements )0(, jiv  of the velocity vector )0(iv  are calculated from the 

following formula: 

 03,   εdji Crv = , (28) 

where 3r  is the random number taken from the range (0, 1) and 0ε  is a constant ( 05.00 =ε  is 

assumed). The initial values of the elements of the vector )0(ip  are determined from the fol-
lowing relationship: 
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where ir
~  is a random number taken from the range (0, 1). The above choices assure that all 

assumed initial approximations of dampers parameters, i.e., vectors )0(ip  and )0(iv  fulfill 
the optimization constraints (24). 

An important part of the PSO algorithm is the way of handling the constraints introduced 
in the optimization problem. Here, the following very simple procedure is used to fulfill the 
constraints (24): 
● if non-admissible values 0)1(, <+kc id  result from the relationship (27) then 

min, )1( ckc id =+  is artificially introduced, 

● in order to fulfill the constraint (27.1), elements of the vector )1( +kip  are normalized in 

such a way that: 

 dm

j
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id
id C
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c
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∑
=

=

1
,

,
,

~  (30) 

The PSO procedure is ceased if the change of the objective function is sufficiently small, i.e., 
when: 

 )1()()1( 1 +≤−+ kFkFkF ε  (31) 
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where 1ε  is an assumed low-value number. 

6 NUMERICAL TEST  

In the numerical example, a ten-storey building structure modeled as a shear plane frame 
with VE dampers mounted on it is investigated. The bending rigidity of columns varies in se-
quence, for every two storeys:  kN/mkk 0.6871021 == ,  kN/mkk 0.5401043 == , 

 kN/mkk 0.4217065 == ,  kN/mkk 0.2866087 == ,  kN/mkk 0.16450109 == , but the mass 

value is the same for every floor: Mgms 07.2= . The structure’s damping ratios correspond-

ing to the stiffness of the storeys are: /m kNcc sec76.421 == , /m kNcc sec73.343 == , 

/m kNcc sec91.265 == , /m kNcc sec98.187 == , /mkNcc sec 44.1109 ==  (data taken from 

[13]). 
Firstly, the calculations were carried out for a frame without dampers (see Figure 2a), only 

the damping properties of structure were taken into account. 
 

a)  b)    c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Diagram of a 10-storey frame with different distributions of dampers 

The solution to Equation (16), where 0A =1  and 0==== d
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d
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d
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d
rr KKKK , leads to the 

eigenvalues is  which enable determination of the dynamic properties of the structure de-

scribed by Equation (17). The results, the natural frequencies of the structure and the values of 
non-dimensional damping factor are presented in Table 1. 

Next, the authors investigated a structure with one damper mounted on every storey (see 
Figure 2b). The assumed value of the sum of the damping coefficients and the sum of the 

stiffness parameters are: mkNCd /sec 500 α= , and 2 25000kNmK d = , respectively. If damp-
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ers are uniformly distributed within a structure, the data for every single damper are: 
2  2500 kNmkd = , mkNcd /sec  50 α= , 02.0/ == ddd kcτ . The values of fractional parame-

ters for all dampers are identical, i.e., 6.0=α . Using the suggested procedure, the dynamic 
properties of the considered system were computed (see Table 1). 

A first solution to the optimization problem is obtained using the sequential optimization 
method. For every possible location of one damper, the values of fundamental frequency are 
calculated (see Figure 3). 
 

Dampers’s distribution 
No dampers 

uniform optimal Modal 
 number 

iω  iγ  iω  iγ  iω  iγ  

1 22.690 0.0008 22.816 0.0126 22.934 0.0162 
2 56.534 0.0022 58.114 0.0246 59.421 0.0338 
3 91.909 0.0035 95.255 0.0212 96.309 0.0182 
4 127.472 0.0047 132.284 0.0177 129.866 0.0094 
5 151.769 0.0061 159.807 0.0209 163.766 0.0204 
6 182.399 0.0066 188.678 0.0151 190.317 0.0213 
7 208.638 0.0073 216.278 0.0152 220.389 0.0146 
8 245.147 0.0085 252.143 0.0136 261.260 0.0210 
9 281.524 0.0097 288.274 0.0135 283.755 0.0122 
10 324.052 0.0112 330.492 0.0139 324.065 0.0112 

Table 1: Natural frequencies iω  and non-dimensional damping factors iγ  

Next, the objective function is evaluated for the frame, taking into account every possible 
position of the damper. The results are presented in Figure 4. It was assumed that the values 
of the weight coefficients iw  in Equation (23) are equal to one.  
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Figure 3: Non-dimensional damping factors versus first damper’s position 

The correct fixed location of the first damper is at the seventh storey, for which the mini-
mum value of the objective function is obtained. When the first damper’s location is deter-
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mined the procedure is repeated until all locations for the dampers are found. The optimal lo-
cations of ten successive dampers are found to be: seven at the seventh storey and three at the 
ninth storey (see also Figure 2c). The dynamic properties of structures with optimally 
distributed dampers are shown in Table 1. 

It can be noted that the non-dimensional damping ratio of the first mode of vibration is 
greater (by about 28%), compared with the same ratio for the structure with uniformly distrib-
uted dampers. Moreover, the damping ratios of the third, fourth, fifth, seventh, ninth, and 
tenth modes of vibration are smaller. 
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Figure 4: Objective function versus first damper’s position 

In the second approach, the PSO method is applied. In Equation (27), we define the values 
of coefficients 221 == cc  and the declining value of the inertia factor; starting with 9.0=w , 
it decreased by 0.005 at every step of iteration. A population of ten particles was initialized 
with random positions. The coordinates of every particle position describe the current distri-
bution of damping properties on the frame. On every storey, the value of the damping coeffi-

cient must be non-negative and smaller than the assumed constant value mkNCd /sec 500 α=  

(i.e., did Ccc ≤≤ ,min ). The stiffness parameters of the dampers are calculated from the value 

of the ratio idid kc ,, /  which is equal to 02.0  and constant for every damper. 

Changes of the best value of the objective function during the iteration process are pre-
sented in Figure 5. The solution to the optimization problem, i.e., the optimal distribution of 
VE dampers obtained with the help of both optimization methods is shown in Table 2. 

The objective function, the weighted sum of amplitudes of the transfer functions of in-
terstorey drifts is: 7053.10 =F , 3739.0=UF , 2759.0=SF  for the frame without dampers, 

for uniformly distributed dampers, and for the optimal solution obtained by the sequential and 
PSO methods, respectively. 

It can be concluded that results obtained by both methods yield similar dampers' distribu-
tions on the frame. Differences between the optimal values of damping coefficients obtained 
as the result of optimization procedures are partially affected by an incremental way of distri-
bution of damping coefficients in the sequential optimization method. Moreover, in the PSO 
method the values of the damping idc ,  parameters of every damper must be non-negative. 
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Damping coefficient Number  
of storey 

Sequential method PSO method 
1 0 0.78 
2 0 0.78 
3 0 0.78 
4 0 0.78 
5 0 0.78 
6 0 0.78 
7 350 347.23 
8 0 0.78 
9 150 146.48 
10 0 0.78 

Total 500 499.95 

Table 2: Optimal distribution of VE dampers 
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Figure 5: Convergence of objective function at PSO iteration  

7 CONCLUDING REMARKS  

In this paper, frame structures with viscoelastic dampers mounted on them are considered. 
Viscoelastic dampers are modeled using a three-parameter, fractional rheological Maxwell 
model which more precisely describes the VE damper’s properties, compared with the classi-
cal one. The resulting matrix equation of motion is the fractional differential equation. The 
problem of optimal distribution of VE dampers modeled by the fractional rheological Max-
well model is solved for the first time. The considered optimization problem is solved by 
minimization of the objective function which is the weighted sum of amplitudes of the trans-
fer functions of interstorey drifts. The sequential optimization method and the particle swarm 
optimization method are used to successfully solve the optimization problem. Examples of 
numerical calculations were shown. The presented results demonstrate the effectiveness and 
applicability of the proposed approach. 



Zdzislaw Pawlak, Roman Lewandowski 

 13 

REFERENCES  

[1] T.T. Soong, B.F. Spencer, Supplemental energy dissipation: state-of-the-art and state-
of-the-practice, Engineering Structures, 24, 243-259, 2002. 

[2] C. Christopoulos, A. Filiatrault, Principles of passive supplemental damping and seis-
mic isolation, IUSS Press, Pavia, Italy, 2006. 

[3] S.W. Park, Analytical modelling of viscoelastic dampers for structural and vibration 
control, International Journal of Solids and Structures, 38, 8065 – 8092, 2001. 

[4] R.L. Bagley, P.J. Torvik, Fractional calculus – a different approach to the analysis of 
viscoelastically damped structures, AIAA J, 27, 1412–1417, 1989. 

[5] Yu.A. Rossikhin, M.V. Shitikova, A new method for solving dynamic problems of frac-
tional derivative viscoelasticity, International Journal of Engineering Sciences, 39(2), 
200a, 149-176. 

[6] T. Chang, M.P. Singh, Seismic analysis of structures with a fractional derivative model 
of viscoelastic dampers, Earthquake Engineering and Engineering Vibration, 1: 251-
260, 2002. 

[7] M.H. Tsai, K.C. Chang, Higher-mode effect on the seismic responses of buildings with 
viscoelastic dampers, Earthquake Engineering and Engineering Vibration, 1: 119-129, 
2002. 

[8] R.E. Perez, K. Behdinan, Particle swarm approach for structural design optimization, 
Computer & Structures, 85, 1579-1588, 2007. 

[9] J. Kennedy, R. C. Eberhart, Particle Swarm Optimization, Proc. IEEE Int. Conf. On 
Neural Networks, Piscataway, 1942-1948, NJ 1995. 

[10] R. Lewandowski, Z. Pawlak, Dynamic Analysis of Frames with Viscoelastic Dampers 
Modelled by Rheological Models with Fractional Derivatives. Journal of Sound and Vi-
bration, 2011, 330: 923-936. 

[11] T. Chang and M.P. Singh, Seismic analysis of structures with a fractional derivative 
model of viscoelastic dampers, Earthquake Engineering and Engineering Vibration, 
2002, 1: 251-260. 

[12] L.E. Suarez, A. Shokooh, An Eigenvector Expansion Method for the Solution of Motion 
Containing Fractional Derivatives, Journal of Applied Mechanics, 1997, 64: 629-635. 

[13] R.H. Zhang,  T. T. Soong, Seismic design of viscoelastic dampers for structural appli-
cations, J. Structural Engineering, Vol. 118, 1375 – 1392, 1992. 

 


