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Abstract. Micromechanics is employed in order to define the whole nonlinear inelastic       
behavior of a structure at meso/macro scale level where the presence of the inelastic pheno-
mena (plasticity and/or damage) affects the material constitutive response depending on the 
loading conditions. This concept is important in the design of civil and mechanical             
engineering applications. This study illustrates a comprehensive theoretical formulation for a 
coupled damage-plasticity model and its numerical implementation under an extreme loading 
type such as an earthquake, which causes cyclic response and can lead to failure. Irreversible 
plastic deformation by plasticity, elastic response modification by the damage and the cyclic 
accumulation of deformation are modeled. A couple of numerical examples are presented in 
order to show the capability and efficiency of the proposed model for 2D membrane element, 
by using the operator split methodology.   
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1 INTRODUCTION 
Materials, which are used in the different domains of civil and mechanical engineering, can 

most probably be heterogeneous at a micro-scale. It may be difficult to predict the response of 
the whole structure to different kinds of loading due to the material characteristics.  

Simo et al. [1] employed the stress-based formulation, which is the core of the numerical 
part of this current study for the elasto-plastic material behavior by using the classical finite 
element method [2]. Here, this type of formulation is constructed in order to couple both plas-
ticity and damage [3]. The dependent Gauss point equations, which represent the evolution 
equations of the internal variables for both inelastic behaviors just mentioned, are solved si-
multaneously, so as to provide a single return mapping algorithm per element to control the 
equilibrium equations at macro scale. We use the operator split method to simplify the details 
of the numerical implementation, concerning the calculation of internal variables and equili-
brium equations resulting with finite element approach at the structural state. 

Study realized by Drucker and Palgen [4] stated that the material behavior under cyclic 
loading are much more complex than monotonic loading and cannot be modeled by isotropy 
alone. Therefore, the purpose of the present research is to present a plasticity model, in which 
both isotropic and kinematic hardening is taken into account. This will also be coupled with 
the damage model, which is defined in an analogous way as the plasticity model. 

There are some important notifications based on researches [5, 6] for cyclic inelastic mod-
els; (i) symmetric stress and strain cycles occur with a well defined kinematic hardening, (ii) 
unsymmetrical stress cycles cause the ratcheting effect and (iii) unsymmetrical strain cycles 
cause the progressive relaxation.  

This paper is organized as follows. In section 2, we describe basic concepts of inelastic be-
havior of the model. In section 3, the computational algorithm is presented. Section 4 is de-
voted to numerical examples for illustrating the proposed model. Finally, a brief conclusion is 
presented in section 5. 

2  MODEL FORMULATION 

2.1 Basic concepts of internal variables  

 State variables defining the inelastic behavior of the material, which are composed of 
the plastic strain ( pε ), damage compliance ( D ), the internal variables ( ,p pξ κ ), which control 
isotropic and kinematic hardening of the plasticity, and the internal variable ( dξ ) of damage, 
are obtained by using the standard thermodynamic consideration  

                 0 :σ ψ≤ = −ε& &&D                                                  (1) 

and the principle of maximum plastic and damage dissipations, which are decomposed from 
total inelastic dissipation D , with these three fundamental equations firstly defining;  

• the decomposition of the total strain 

   e p d= + +ε ε ε ε                     (2) 

• the total strain energy 

            ( , , , , , , ) ( ) ( , ) ( ) ( ) ( )d d p p p e e d e p p d d p pψ ξ ξ ψ ψ ξ ξ= + + Ξ + Ξ + Λε ε D ε κ ε ε D κ            (3) 

• the yield criteria of plasticity and damage 
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where ,p dq q  are the stress-like variables describing the hardening phenomena, α is the      
deviatoric back stress representing the kinematic hardening behavior and  ,y fσ σ are the yield 
and fracture stresses, respectively. 

The principle of maximum inelastic (plastic and damage) dissipation states that among all 
the admissible values of dual variables ( , , , )p dq qσ α , those, which maximize the plastic and 
damage dissipation, must be selected. This maximization problem is presented as a             
minimization problem by introducing Lagrange multiplier. We obtain the evolution equations 
of internal variables for plasticity and damage phenomenon separately by using the Kuhn-
Tucker optimality conditions. Once the suitable values of internal variables are obtained, we 
can go through the finite element calculation. 

2.2 Variational formulation 
We use the mixed variational formulation of the Hellinger-Reissner type in order to couple 

both plastic and damage behaviors for fixed given values of internal variables.  

                                 ( )( , ) ( ) ( , ) .e e d d

V V

dV dSψ ψ
∂

Π = + −∫ ∫σ u ε ε D t u                                    (5) 

where we can rewrite the same functional by using the complementary energies instead of  the 
strain energies.  

                            ( )( , ) : ( ) : ( , ) .e e d d

V V

dV dSσ χ χ
∂

Π = − + − −∫ ∫σ u ε σ σ ε σ D t u                         (6) 

The stationary conditions of the functional for each independent displacement and stress 
fields are taken into account as follows. 
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The first equation is the weak form the local equilibrium equation based on Euler-
Lagrange equation and the second one is the weak form of the additive decomposition field.  

The discretized model is constructed from the weak formulations (7) by using the interpo-
lation functions for the stress (S) and the displacement (N) fields. 

                                                                 
=
=

u NU
σ Sβ

                                                               (8) 

Next, we implement into the equation (7) the internal variables considering with the time 
integration and then define the residuals, which is commonly used for the finite element     
method. 
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3 COMPUTATIONAL ALGORITHM 
We define three levels of computations; (i) local level computation at each Gauss            

quadrature point for plastic and damage internal variables, for which the implicit backward 
Euler time integration is used, (ii) element level computation, which is characterized by the 
stress field, (iii) global level computation of the set of equilibrium equations from which we 
obtain the displacement values. We verify the convergence of the result at a given level in the 
spirit of operator-split approach before going through the subsequent level. Newton method is 
used in order to solve the nonlinear equations, for which 3 to 10 iterations are sufficient at 
each level. This computational model is implemented into FEAP [7] for numerical examples. 

4 NUMERICAL EXAMPLES 
In this part, three numerical simulations are presented for a quadrilateral element, which is 

fixed at one side with displacements or forces imposed at the other side. It is shown that dif-
ferent kinds of cyclic response can be obtained due to the loading types. A comparison is 
made between the plasticity versus coupled plasticity-damage phenomenon for the same   ma-
terial. The characteristic of the material, which is stainless steel 304, is given in Table 1.  

 
Elasticity 
Modulus 
E (MPa) 

Poisson 
ratio 

ν 

Yield 
stress 

σy (MPa)

Saturation 
stress 

σ∞ (MPa) 

Fracture 
stress 

σf (MPa) 
1,93*105 0,29 241 579 300 

 
Table 1: Characteristics of the stainless steel 304 

4.1 Cyclic response for symmetric imposed displacement 
In this example displacement is imposed at the right side of the membrane, which   value is 

between 0.05 and -0.05 in the direction of x-axis for a time interval 0 to 25 seconds, defining 
as “loading condition 1” in Fig.1.  

 

Figure 1: Comparison of the plasticity and coupled plasticity-damage behavior  
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The diagram obtained from this type of loading shows the coupled plasticity-damage effect 
over the plasticity phenomenon. It can be seen that the stress values decrease in the same im-
posed displacement by taking into account damage and plasticity together. Besides, the slope, 
which gives an idea about the tangent modulus of the material, is reduced for the coupled       
phenomenon. 

  

Figure 2: Comparison of the plasticity and coupled plasticity-damage behavior  

4.2 Progressive relaxation effect  
This response of the material is caused by the strain cycling between any two fixed values. 

We should define the cyclic loading condition in two parts. At the beginning, it takes the val-
ues between [-0.02, 0.02] in the time interval T [0, 7.5s] and then jumps to the value of 0.07. 
This type of imposed displacement is presented with the name “loading condition 2” in Fig.1.  
We can see from Fig.3 that stress attained by the element increase with these increasing levels 
of such imposed displacement.   

 
     Figure 3: Strain-stress response showing the progressive relaxation phenomenon 
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4.3 Ratcheting effect  
A cyclic loading program in tension and compression between fixed values of stress as 

seen in Fig.4 has been performed in order to simulate the ratcheting effect of the constitutive 
material behavior. 

 

     Figure 4: Stress-strain response to cyclic loading resulting in ratcheting of strain 

 Ratcheting, which is one of the characteristic of the material, is presented here for the 
asymmetrical stress cycling. The ratcheting deformation accumulates continuously with the 
applied number of cycles. It can be inferred that the strain limits of the cycles are displaced 
progressively along the strain axis from one cycle to the next one.  

 

     Figure 5: Stress-strain response to cyclic loading resulting in ratcheting of strain. 

5 CONCLUSION 
In this study, we have presented the phenomenological model of classical plasticity, which 

is capable of accounting for both isotropic and kinematic hardening effects, and damage  
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model, which is described in an analogous way to the classical plasticity model. The coupled 
plasticity-damage model points out the irreversible deformation and change of elastic         
response. The defined elasto-plastic damage model is adapted to the stress based formulation. 
The mechanism of damage and elasto-plasticity behavior depends on the stress field.  For that 
purpose, the mixed variational type of Hellinger-Reissner is used to develop the finite element 
approach.  

Numerical computations and results are shown in order to illustrate the effectiveness of the 
algorithmic procedure. The performed analysis allows to have better understanding on the in-
elastic behavior, which depend on the cyclic loading conditions.   
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