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Abstract. In seismic engineering either a modal analysis (based on the response spectra
method) or a time history analysis may be performed. The response spectra method usually
over-estimates the dynamic reactions of the structure. Therefore, the time history analysis is
more appropriate if realistic results shall be obtained. In time history analysis the
conver gence of the times stepping algorithm that is used is of key importance.

In the current paper an error estimation is performed for a time stepping algorithm based on
a Finite Element approach in time (the so-called Betsch method, see [1] and [2]). The
convergence rate of the time stepping algorithm is derived analytically and proofed
numerically for different polynomial degrees of the shape functions. In order to increase the
convergence rate a 3-step algorithm according to Tarnow [ 6] is implemented into the Betsch
method. This allows high accurate results even when large time steps and only linear shape
functions are used.
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1 INTRODUCTION

The Finite Element Method is an approximation mdthHereby the accuracy of the
results depends on the discretization (i.e. thebmirof elements used) and the quality of the
elements (i.e. the polynomial degree of the shapetions). When the accuracy of the results
is insufficient, the user has two methods to imprtive accuracy: He can either increase the
number of elements (h-method) or he can use elameith shape functions of higher
polynomial degree (p-method).

The Finite Element method is not limited to a sphdiscretization. It is also possible to
derive a time stepping algorithm that is based éiinge Element Approach in time, sgg.
Then the h-method means smaller time steps. Thetped is often not possible, because in
most commercial Finite Element programs only veey ftime stepping algorithms are
implemented and time stepping algorithms basedpmmoaches of high polynomial degree
are rarely available.

In the current contribution a third possibility tacrease the accuracy of the solution is
introduced: A 3-step algorithm according to Tarn@®)vis described. Hereby the step size is
chosen in a way, that the errors of first and sdamder are eliminated and the method has
the same order of convergence as if elements widldigtic shape functions were used.

2 ABREVIATIONSAND NOMENCLATURE

Error

Time step size

Generalized momentum
Generalized displacement

Time

Force

Hamiltonian function of total energy
Shape function

Mass matrix

Local coordinate § a < 1

QzTIN~ToT SO

3 TIME STEPPING ALGORITHM

The time stepping algorithm that is presented is $kction goes back to an idea of Betsch
and is described in detail [&] and[2]. In this section a brief summary of the Betscbthod
is given.

The basis for the time stepping algorithm is forrbgdHamilton’s equations of motion:

oH

- = q - O

P» 0
oH .

-+ p = 0

aq
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These equations can be transferred into the vamatiform either by multiplication with
test functions and integration over the time donwity formal variation of the Lagrangian
function. Both methods lead to

i
[ [ —q|zp-[ % +p|Bg dt=0 ®)
o \Op oq

Now the time domain is subdivided into time stepsipe h=t,.1 — t, and the abbreviation
a=(t-t,)/hy is introduced. The local coordinateis O at the beginning of each time step and 1
at the end of each time step. The generalized cwirlq and the momentunp are
interpolated with the functions Wbf polynomial degree k, which are continuous & th
element borders:

¢" ()= 3 M, (@) g
= ©

ph(a)=;M, (a) p,

The same is done for the virtual generalized coatdidq and the virtual generalized

momentumop. Hereby shape functions of polynomial degree (kal§ used, which are
discontinuous at the element borders:

& () =3 M, () &
. )
3p" (o) :1M

2.

() 3p,

The time derivatives af andp can be expressed by the derivatives of the shapidns
M

afa)= 324 g =30, @),
p(a)=i Zk:dM,(a)p :i'\ﬁ ()5 (5)
h, 75 da | =1 | !

As the polynomial degree decreases by derivatiorthie time derivatives af andp the

virtual functionsM of polynomial degree (k-1) can be used. Inserting)into the variational
form of Hamilton’s equations leads to
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> éq.T(

1=1

(6)

For linear shape functions Mne obtains a residual equation that can be sdiwethe

unknown vectogn.1:

1
R=—M (qn+1_qn) - a)n + hnI(Fint_Fm)da =0 (7)
n 0
For quadratic shape functions bhe obtains
F . -
EM (_qn +qn+1)_ pn + th-(l_a)(Fint _Fext) da
R= 0 . =0 (8)
1
EM (5qn _&n-}% + 3:1n+1) + pn + th-a(Fint _Fext) da
L 0 |
And for cubic shape functions one obtains
I 5 3 3 1 t |
M(_Eqn+_2qn+§+_2qn+§ __qulj —P. +hn£( 3]+]) int ext)da
1
R: M(3qn_mn+%_3:]n+§+3qn+l) +hnj(_ C42+ m) (Fint_Fext) da :O (9)
0

Sl Pl 7

M (—7qn +1$n+é - 121n+§ + 4]n+1) ~Pn

—0() (Fy-F,) do

+h[( @

The procedure for shape functions of higher polynomial degree is dabanih].
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4 THEORETICAL DERIVATION OF THE CONVERGENCY RATE

The Betsch algorithm described in secti®rcan only be an approximation of an exact
solutiong*(t). The exact solutiom*(t) can be developed into a Fourier series:

SN ) (tn) B (to) z
q (t)_q (tn)+q 1! (t_tn)+qT(t_tn) T (10)

=Ya(t-t,)

()
with &, =qi—'(t”)

The solutionq"(t) is approximated by the shape functions d¥ polynomial degree k as
described in sectio8.

k+1

q"(t)=2M, q (11)

When both expressions are compared it is foundthieaexact solutio*(t) contains all
terms with polynomial degrees 0. However, the approximatioq(t) does only contain
terms with polynomial degree0I < k.

Therefore the difference between the exact solwit) and the approximatioq"(t) is of
order (t-t,)" :

o (£)=a"(1)] ~ (t-t,)" (12)

Hereby the term (to} is limited by the time step sizg.h

The error e can also be written as a product ofuaknown) coefficient C and the time
step size hn with exponent (k+1):

e= Hq (t)—q“(t)” = C* (13)

Normally the error is displayed in a diagram witbuble-logarithmic axes. Then the
equation describes a straight line with slope (k+1)

loge = logC +(k + 1) Cogh, (14)
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However, when the error is evaluated only in thdao(i.e. at the end of each time step
and not within each time step), the slope of theveogence line is (2k) instead of (k+1). A
detailed proof can be found [i4].

5 NUMERICAL DERIVATION OF THE CONVERGENCY RATE

The convergence rate can also be calculated nuatigri€herefore the “accurate” solution
is calculated with the algorithm explained in seet3 with a very small size of time steps.
Then the error is negligibly small, so that thisplacement-time process may be used as a
reference solutiog*(t).

The diagram in Figure 1 shows the displacement-proeess for the reference solutigin
(continuous line) and for an approximatighwith time step size&0.5s (dashed line).

Coordinate q

Time t

Figure 1: Displacement time process for referembetion g* (continuous line)
and for the approximatioq (dashed line)

During the first seconds both solutions are almdsitical. But with the time both
solutions are drifting apart. After about 24s thé&rence solutiog* and the approximation
q" are out of phase.

The error can be calculated as the sum of therdiifies between the reference solutdn
and the approximatioqh over the investigated time domain:

lel., :( Z(qa“ -q) o, Jz (15)

Hereby the time intervalt can either be equal to the time step sizénthen the error is
evaluated only in the nodes, i.e. at the end dfi éawe step) or the time intervat can be less
than the time step size fwhen the error is evaluated also within each tEtep).

The couple of time step sizg &nd error e gives one particular point of the @vgence
line in Figure 2. When the displacement-time predsscalculated with other time step sizes
and the error is evaluated for each of these caioms more points of the convergence line
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are obtained and a trend of the convergence linébeadound. This has already been proofed
in [1].

L N LA e aom

log(e)

b,d W & b

-3 2.5 2 A1 -0.5 0

15
log(hn)
Figure 2: Convergence line

For very small time step sizes (in this particdase h < 0.01s) the convergence line tends
to the horizontal. Here the accuracy of the compisteeached because the calculations are
performed only with a fixed number of digits. A tioser reduction of the time step size does
not result in a more accurate solution.

5.1 Linear ShapeFunctions

For linear shape functions one obtains the convergénes displayed in Figure 3. The left
diagram is obtained when the error is evaluategt mnthe nodes (i.e. at the end of each time
step). The slope of the convergence line is (2k)=2.

The right diagram is obtained when the error isleatad also within the time steps.
Hereby the displacement within the time steps m@pgmated with the shape functions.M
Then the slope of the convergence line is (k+1)Afls has already been proofed[ij. Both
findings confirm the theoretical considerationsiireectior.

P -

log(e)
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Figure 3: Convergence for linear shape functions
(left diagram: error evaluation only in the nodeght diagram: error evaluation also between thaesd
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5.2 Quadratic Shape Functions

For quadratic shape functions one obtains the cgewnee lines displayed in Figure 4.
Again, the left diagram shows the convergence Wwhen the error is evaluated only in the
nodes. This gives a slope of the convergence hij2k)=4.

The right diagram shows the convergence line wheretror is evaluated also between the
nodes. In this case, the slope of the convergeneeid (k+1)=3. The lower slope of the
convergence line (3 instead of 4) is only due thfierent definition of the error evaluation.
Of course, the results in the nodes are of the sarmigracy in both cases.

log(e)

I R P D - T - . |
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Figure 4: Convergence for quadratic shape functions
(left diagram: error evaluation only in the nodeght diagram: error evaluation also between thaesp

5.3 Cubic Shape Functions

The convergence lines for cubic shape functionsdisplayed in Figure 5. In the left
diagram (evaluation of the error only in the nodesg)slope of the convergence line is (2k)=6

while the slope of the convergence line in the triglagram (evaluation of the error also
between the nodes) is (k+1)=4.

log(e)
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Figure 5: Convergence for cubic shape functions
(left diagram: error evaluation only in the nodeght diagram: error evaluation also between thaesd
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6 3-STEP-METHOD FOR IMPROVEMENT OF THE CONVERGENCY RATE

As seen in the last section, it is high effort taon relatively accurate results. Either the
time step size has to be reduced significantlydfleg to high computational costs) or the
polynomial degree of the shape functions has tlmbeased (often these high sophisticated
algorithms are not available). Therefore a methodld be desirable that gives high accurate
results with relatively large time steps, althowging linear shape functions. This goal can be
reached by implementing the Tarnow method (8¢@nd[7]) into the above described time
stepping algorithm of Betsch. The procedure of3kstep algorithm according to Tarnow is
as follows:

* The values at timg, are known from the previous time step. The vahtdsne .,
shall be calculated. The Tarnow method does nautzk these values directly.
Instead, the values at timg.t are calculated in a first step. The values are not
accurate, they include an error of second orderd thrder and higher order
because linear shape functions are used.

* In a second step, the values at timedt are calculated based on the results at time
th+a. Again, the results include an error of seconcnrthird order and higher order.

* In athird step, the values at time;tare calculated based on the results at time t
- In this step the errors are again of second ptded order and higher order.

The parameteo can now be chosen in a way that the errors ofrekcoder and third
order are compensated in the intermediate stepmlydan error of forth and higher order
remains. This is the case when the parantetisrchosen to 1.3512. A detailed proof of this
method can be found [6].

} t } t e Timet

Figure 6: 3-step algorithm according to Tarnow

The above described Tarnow method has now beereingpited into the time stepping
algorithm of Betsch. Figure 7 shows the resultsmwithe Betsch algorithm is used with linear
shape functions and the 3-step algorithm. The teswé of 4th order accurate, therefore the
slope of the convergence line is 4. So the sameracy is reached as for a 1-step algorithm
with quadratic shape functions.
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Figure 7: Convergence for linear shape functiortk ®istep algorithm

7 SUMMARY

The convergence rate of the Betsch method depantsegolynomial degree of the shape
functions. For linear shape functions a convergeate of 2 was found. When the 3 step
algorithm according to Tarnow is implemented irite Betsch method, the convergence rate
is increased from 2 to 4. This allows high qualigsults, even when only linear shape
functions and large time steps are used.
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