
 COMPDYN 2011
III ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.)

Corfu, Greece, 25–28 May 2011

ERROR ESTIMATION AND IMPROVEMENT OF CONVERGENCE OF
A TIME STEPPING ALGORITHM BASED ON A FINITE ELEMENT

APPROACH IN TIME

Dirk Ostermann1

1 Klosterhofstraße 28, 69469 Weinheim, Germany
www.dirk-ostermann.de

e-mail: kontakt@dirk-ostermann.de

Keywords: Finite Element Method, Betsch-Method, Time Stepping Algorithm, Convergence.

Abstract. In seismic engineering either a modal analysis (based on the response spectra
method) or a time history analysis may be performed. The response spectra method usually
over-estimates the dynamic reactions of the structure. Therefore, the time history analysis is
more appropriate if realistic results shall be obtained. In time history analysis the
convergence of the times stepping algorithm that is used is of key importance.

In the current paper an error estimation is performed for a time stepping algorithm based on
a Finite Element approach in time (the so-called Betsch method, see [1] and [2]). The
convergence rate of the time stepping algorithm is derived analytically and proofed
numerically for different polynomial degrees of the shape functions. In order to increase the
convergence rate a 3-step algorithm according to Tarnow [6] is implemented into the Betsch
method. This allows high accurate results even when large time steps and only linear shape
functions are used.

Dirk Ostermann

 2

1 INTRODUCTION

The Finite Element Method is an approximation method. Hereby the accuracy of the
results depends on the discretization (i.e. the number of elements used) and the quality of the
elements (i.e. the polynomial degree of the shape functions). When the accuracy of the results
is insufficient, the user has two methods to improve the accuracy: He can either increase the
number of elements (h-method) or he can use elements with shape functions of higher
polynomial degree (p-method).

The Finite Element method is not limited to a spacial discretization. It is also possible to

derive a time stepping algorithm that is based on a Finite Element Approach in time, see [2].
Then the h-method means smaller time steps. The p-method is often not possible, because in
most commercial Finite Element programs only very few time stepping algorithms are
implemented and time stepping algorithms based on approaches of high polynomial degree
are rarely available.

In the current contribution a third possibility to increase the accuracy of the solution is

introduced: A 3-step algorithm according to Tarnow [6] is described. Hereby the step size is
chosen in a way, that the errors of first and second order are eliminated and the method has
the same order of convergence as if elements with quadratic shape functions were used.

2 ABREVIATIONS AND NOMENCLATURE

e Error
hn Time step size
p Generalized momentum
q Generalized displacement
t Time
F Force
H Hamiltonian function of total energy
M I Shape function
M Mass matrix
α Local coordinate 0 ≤ α ≤ 1

3 TIME STEPPING ALGORITHM

The time stepping algorithm that is presented in this section goes back to an idea of Betsch
and is described in detail in [1] and [2]. In this section a brief summary of the Betsch method
is given.

The basis for the time stepping algorithm is formed by Hamilton’s equations of motion:

∂ − =
∂
∂ + =
∂

q 0
p

p 0
q

ɺ

ɺ

H

H
 (1)

Dirk Ostermann

 3

These equations can be transferred into the variational form either by multiplication with

test functions and integration over the time domain or by formal variation of the Lagrangian
function. Both methods lead to

0

 0
 ∂ ∂− ⋅δ − + ⋅δ = ∂ ∂

∫ q p p q
p q
ɺ ɺ

T H H
dt (2)

Now the time domain is subdivided into time steps of size hn=tn+1 – tn and the abbreviation

α=(t-tn)/hn is introduced. The local coordinate α is 0 at the beginning of each time step and 1
at the end of each time step. The generalized coordinate q and the momentum p are
interpolated with the functions MI of polynomial degree k, which are continuous at the
element borders:

() ()

() ()

1

1

1

1

+

=
+

=

α = α

α = α

∑

∑

q q

p p

k
h

I I
I

k
h

I I
I

M

M

 (3)

The same is done for the virtual generalized coordinate δq and the virtual generalized

momentum δp. Hereby shape functions of polynomial degree (k-1) are used, which are
discontinuous at the element borders:

() ()

() ()
1

1

=

=

δ α = α δ

δ α = α δ

∑

∑

q q

p p

ɶ

ɶ

k
h

I I
I

k
h

I I
I

M

M

 (4)

The time derivatives of q and p can be expressed by the derivatives of the shape functions

M I:

() () ()

() () ()

1 1

1 1

1

1

= =

= =

α
α = = α ⋅

α
α

α = = α ⋅
α

∑ ∑

∑ ∑

q q q

p p p

ɶɺ ɶ

ɶɺ ɶ

k k
I

I I I
I In

k k
I

I I I
I In

dM
M

h d

dM
M

h d

 (5)

As the polynomial degree decreases by derivation for the time derivatives of q and p the

virtual functions ɶM of polynomial degree (k-1) can be used. Inserting this into the variational
form of Hamilton’s equations leads to

Dirk Ostermann

 4

()

1 11
1

1 1 10 0

1 1

int
1 1 0 0

 0

 0

+
−

= = =

= =

δ α − α =

δ α + − α =

∑ ∑ ∑∫ ∫

∑ ∑∫ ∫

p q M p

q p F F

ɶ ɶ ɶɶ

ɶ ɶ ɶɶ

k k k
T

I J I J n J I J
I J J

k k
T

I J I J n ext I
I J

M M d h M M d

M M d h M d

 (6)

For linear shape functions MI one obtains a residual equation that can be solved for the

unknown vector qn+1:

 () ()
1

1 int

0

2
 2 += − − + − α =∫R M q q p F F 0n n n n ext

n

h d
h

 (7)

For quadratic shape functions MI one obtains

() ()()

() ()1
2

1

1 int

0

1

1 int

0

1
 1

1
5 8 3

+

++

− − + − α − α

 = =

 − + + + α − α

∫

∫

M q q p F F

R 0

M q q q p F F

n n n n ext
n

n n n n extn
n

h d
h

h d
h

+

 (8)

And for cubic shape functions one obtains

() ()

() () ()

() ()

1 2
3 3

1 2
3 3

1 2
3 3

1
2

1 int

0

1
2

1 int

0

2
1 int

1 5 3 3 1
 2 3 1

2 2 2 2

1
3 3 3 3 4 4

1
7 15 12 4 2

++ +

++ +

++ +

 − + + − − + α − α + − α

= − − + + − α + α − α

− + − + − + α − α

∫

∫

M q q q q p F F

R M q q q q F F

M q q q q p F

n n n n extn n
n

n n n extn n
n

n n n nn n
n

h d
h

h d
h

h
h

()
1

0

 =

 − α

∫

0

Fext d

 (9)

The procedure for shape functions of higher polynomial degree is described in [5].

Dirk Ostermann

 5

4 THEORETICAL DERIVATION OF THE CONVERGENCY RATE

The Betsch algorithm described in section 3 can only be an approximation of an exact
solution q*(t). The exact solution q*(t) can be developed into a Fourier series:

() () () () () ()

()

* *
20* *

0

...
1! 2!

∞

=

′ ′′
= + − + − +

= −∑

q q
q q

a

n
n n n

i

i n
i

t t
t t t t t t

t t

 (10)

with
()*()

!
=

q
a

i
n

i

t

i

The solution qh(t) is approximated by the shape functions MI of polynomial degree k as

described in section 3.

 ()
1

1

+

=

=∑q q
k

h
I I

I

t M (11)

When both expressions are compared it is found that the exact solution q*(t) contains all

terms with polynomial degree i ≥ 0. However, the approximation qh(t) does only contain
terms with polynomial degree 0 ≤ I ≤ k.

Therefore the difference between the exact solution q*(t) and the approximation qh(t) is of

order () 1+− k

nt t :

 () () () 1*
0

+− −q q ∼
kht t t t (12)

Hereby the term (t-t0) is limited by the time step size hn.

The error e can also be written as a product of an (unknown) coefficient C and the time

step size hn with exponent (k+1):

 () ()* 1 += − = ⋅q qh k
ne t t C h (13)

Normally the error is displayed in a diagram with double-logarithmic axes. Then the

equation describes a straight line with slope (k+1):

 ()log log 1 log= + + ⋅ ne C k h (14)

Dirk Ostermann

 6

However, when the error is evaluated only in the nodes (i.e. at the end of each time step

and not within each time step), the slope of the convergence line is (2k) instead of (k+1). A
detailed proof can be found in [4].

5 NUMERICAL DERIVATION OF THE CONVERGENCY RATE

The convergence rate can also be calculated numerically. Therefore the “accurate” solution
is calculated with the algorithm explained in section 3 with a very small size of time steps.
Then the error is negligibly small, so that this displacement-time process may be used as a
reference solution q*(t).

The diagram in Figure 1 shows the displacement-time process for the reference solution q*

(continuous line) and for an approximation qh with time step size hn=0.5s (dashed line).

Figure 1: Displacement time process for reference solution q* (continuous line)

and for the approximation qh (dashed line)

During the first seconds both solutions are almost identical. But with the time both

solutions are drifting apart. After about 24s the reference solution q* and the approximation
qh are out of phase.

The error can be calculated as the sum of the differences between the reference solution q*

and the approximation qh over the investigated time domain:

 ()
1

22*

2

 = − ⋅ ∆

∑ h

i i iL
i

e q q t (15)

Hereby the time interval ∆t can either be equal to the time step size hn (when the error is

evaluated only in the nodes, i.e. at the end of each time step) or the time interval ∆t can be less
than the time step size hn (when the error is evaluated also within each time step).

The couple of time step size hn and error e gives one particular point of the convergence

line in Figure 2. When the displacement-time process is calculated with other time step sizes
and the error is evaluated for each of these calculations more points of the convergence line

Dirk Ostermann

 7

are obtained and a trend of the convergence line can be found. This has already been proofed
in [1].

Figure 2: Convergence line

For very small time step sizes (in this particular case hn < 0.01s) the convergence line tends

to the horizontal. Here the accuracy of the computer is reached because the calculations are
performed only with a fixed number of digits. A further reduction of the time step size does
not result in a more accurate solution.

5.1 Linear Shape Functions

For linear shape functions one obtains the convergence lines displayed in Figure 3. The left
diagram is obtained when the error is evaluated only in the nodes (i.e. at the end of each time
step). The slope of the convergence line is (2k)=2.

The right diagram is obtained when the error is evaluated also within the time steps.

Hereby the displacement within the time steps is approximated with the shape functions MI.
Then the slope of the convergence line is (k+1)=2. This has already been proofed in [1]. Both
findings confirm the theoretical considerations from section 4.

Figure 3: Convergence for linear shape functions
(left diagram: error evaluation only in the nodes, right diagram: error evaluation also between the nodes)

Dirk Ostermann

 8

5.2 Quadratic Shape Functions

For quadratic shape functions one obtains the convergence lines displayed in Figure 4.
Again, the left diagram shows the convergence line when the error is evaluated only in the
nodes. This gives a slope of the convergence line of (2k)=4.

The right diagram shows the convergence line when the error is evaluated also between the

nodes. In this case, the slope of the convergence line is (k+1)=3. The lower slope of the
convergence line (3 instead of 4) is only due to a different definition of the error evaluation.
Of course, the results in the nodes are of the same accuracy in both cases.

Figure 4: Convergence for quadratic shape functions
(left diagram: error evaluation only in the nodes, right diagram: error evaluation also between the nodes)

5.3 Cubic Shape Functions

The convergence lines for cubic shape functions are displayed in Figure 5. In the left
diagram (evaluation of the error only in the nodes) the slope of the convergence line is (2k)=6
while the slope of the convergence line in the right diagram (evaluation of the error also
between the nodes) is (k+1)=4.

Figure 5: Convergence for cubic shape functions
(left diagram: error evaluation only in the nodes, right diagram: error evaluation also between the nodes)

Dirk Ostermann

 9

6 3-STEP-METHOD FOR IMPROVEMENT OF THE CONVERGENCY RATE

As seen in the last section, it is high effort to obtain relatively accurate results. Either the
time step size has to be reduced significantly (leading to high computational costs) or the
polynomial degree of the shape functions has to be increased (often these high sophisticated
algorithms are not available). Therefore a method would be desirable that gives high accurate
results with relatively large time steps, although using linear shape functions. This goal can be
reached by implementing the Tarnow method (see [6] and [7]) into the above described time
stepping algorithm of Betsch. The procedure of the 3-step algorithm according to Tarnow is
as follows:

• The values at time tn are known from the previous time step. The values at time tn+1

shall be calculated. The Tarnow method does not calculate these values directly.
Instead, the values at time tn+α are calculated in a first step. The values are not
accurate, they include an error of second order, third order and higher order
because linear shape functions are used.

• In a second step, the values at time tn+1-α are calculated based on the results at time
tn+α. Again, the results include an error of second order, third order and higher order.

• In a third step, the values at time tn+1 are calculated based on the results at time tn+1-

α. In this step the errors are again of second order, third order and higher order.

The parameter α can now be chosen in a way that the errors of second order and third

order are compensated in the intermediate steps and only an error of forth and higher order
remains. This is the case when the parameter α is chosen to 1.3512. A detailed proof of this
method can be found in [6].

Figure 6: 3-step algorithm according to Tarnow

The above described Tarnow method has now been implemented into the time stepping

algorithm of Betsch. Figure 7 shows the results when the Betsch algorithm is used with linear
shape functions and the 3-step algorithm. The results are of 4th order accurate, therefore the
slope of the convergence line is 4. So the same accuracy is reached as for a 1-step algorithm
with quadratic shape functions.

Dirk Ostermann

 10

Figure 7: Convergence for linear shape functions with 3-step algorithm

7 SUMMARY

The convergence rate of the Betsch method depends on the polynomial degree of the shape
functions. For linear shape functions a convergence rate of 2 was found. When the 3 step
algorithm according to Tarnow is implemented into the Betsch method, the convergence rate
is increased from 2 to 4. This allows high quality results, even when only linear shape
functions and large time steps are used.

8 REFERENCES

[1] Betsch, P., Steinmann, P.: Inherently Energy Conserving Time Finite Elements for
Classical Mechanics, Journal for Computational Physics, 160, 88-116, 2000

[2] Betsch, P.: Computational Methods for Flexible Multibody Dynamics, Habilitation
Lehrstuhl für Technische Mechanik, Universität Kaiserslautern, UKL/LTM T02-02,
2002

[3] Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations, Wiley, New
York, 1962

[4] Hulme, B.L.: One-Step Piecewise Polynomial Galerkin Methods for Initial Value
Problems, Mathematics of Computation, 26, 415-426, 1972

[5] Ostermann, D.: Kontinuierliche und diskontinuierliche Galerkin-Methoden in der
Elastodynamik und ihre Anwendung auf Probleme der Strukturmechanik, Dissertation,
TU Darmstadt, Shaker, 2005

[6] Tarnow, N.: Energy and Momentum Conserving Algorithms for Hamiltonian Systems in
the Nonlinear Dynamics of Solids, Dissertation, Department of Mechanical Engineering,
Standford University, 1993

[7] Tarnow, N., Simo, J.C.: How to render second order accurate time-stepping algorithms
fourth order accurate while retaining the stability and conservation properties,
Computational Methods in Applied Mechanical Engineering, 115, 233-252, 1994

[8] Wriggers, P.: Nichtlineare Finite-Element-Methoden, Springer, 2001

