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Abstract. In seismic engineering either a modal analysis (based on the response spectra 
method) or a time history analysis may be performed. The response spectra method usually 
over-estimates the dynamic reactions of the structure. Therefore, the time history analysis is 
more appropriate if realistic results shall be obtained. In time history analysis the 
convergence of the times stepping algorithm that is used is of key importance. 

In the current paper an error estimation is performed for a time stepping algorithm based on 
a Finite Element approach in time (the so-called Betsch method, see  [1] and  [2]). The 
convergence rate of the time stepping algorithm is derived analytically and proofed 
numerically for different polynomial degrees of the shape functions. In order to increase the 
convergence rate a 3-step algorithm according to Tarnow   [6] is implemented into the Betsch 
method. This allows high accurate results even when large time steps and only linear shape 
functions are used. 
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1 INTRODUCTION 

The Finite Element Method is an approximation method. Hereby the accuracy of the 
results depends on the discretization (i.e. the number of elements used) and the quality of the 
elements (i.e. the polynomial degree of the shape functions). When the accuracy of the results 
is insufficient, the user has two methods to improve the accuracy: He can either increase the 
number of elements (h-method) or he can use elements with shape functions of higher 
polynomial degree (p-method).  

 
The Finite Element method is not limited to a spacial discretization. It is also possible to 

derive a time stepping algorithm that is based on a Finite Element Approach in time, see  [2]. 
Then the h-method means smaller time steps. The p-method is often not possible, because in 
most commercial Finite Element programs only very few time stepping algorithms are 
implemented and time stepping algorithms based on approaches of high polynomial degree 
are rarely available. 

 
In the current contribution a third possibility to increase the accuracy of the solution is 

introduced: A 3-step algorithm according to Tarnow  [6] is described. Hereby the step size is 
chosen in a way, that the errors of first and second order are eliminated and the method has 
the same order of convergence as if elements with quadratic shape functions were used. 

 

2 ABREVIATIONS AND NOMENCLATURE 

e Error 
hn Time step size 
p Generalized momentum 
q Generalized displacement 
t Time 
F Force 
H Hamiltonian function of total energy 
M I Shape function 
M Mass matrix 
α Local coordinate 0 ≤ α ≤ 1 
 
 

3 TIME STEPPING ALGORITHM 

The time stepping algorithm that is presented in this section goes back to an idea of Betsch 
and is described in detail in  [1] and  [2]. In this section a brief summary of the Betsch method 
is given. 

 
The basis for the time stepping algorithm is formed by Hamilton’s equations of motion: 
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These equations can be transferred into the variational form either by multiplication with 

test functions and integration over the time domain or by formal variation of the Lagrangian 
function. Both methods lead to 
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dt  (2) 

 
Now the time domain is subdivided into time steps of size hn=tn+1 – tn and the abbreviation 

α=(t-tn)/hn is introduced. The local coordinate α is 0 at the beginning of each time step and 1 
at the end of each time step. The generalized coordinate q and the momentum p are 
interpolated with the functions MI of polynomial degree k, which are continuous at the 
element borders: 
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The same is done for the virtual generalized coordinate δq and the virtual generalized 

momentum δp. Hereby shape functions of polynomial degree (k-1) are used, which are 
discontinuous at the element borders: 
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The time derivatives of q and p can be expressed by the derivatives of the shape functions 

M I: 
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As the polynomial degree decreases by derivation for the time derivatives of q and p the 

virtual functions ɶM  of polynomial degree (k-1) can be used. Inserting this into the variational 
form of Hamilton’s equations leads to 
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For linear shape functions MI one obtains a residual equation that can be solved for the 

unknown vector qn+1: 
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For quadratic shape functions MI one obtains 
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And for cubic shape functions one obtains 
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The procedure for shape functions of higher polynomial degree is described in   [5]. 
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4 THEORETICAL DERIVATION OF THE CONVERGENCY RATE 

The Betsch algorithm described in section  3 can only be an approximation of an exact 
solution q*(t). The exact solution q*(t) can be developed into a Fourier series: 
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The solution qh(t) is approximated by the shape functions MI of polynomial degree k as 

described in section  3. 
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When both expressions are compared it is found that the exact solution q*(t) contains all 

terms with polynomial degree i ≥ 0. However, the approximation qh(t) does only contain 
terms with polynomial degree 0 ≤ I ≤  k. 

 
Therefore the difference between the exact solution q*(t) and the approximation qh(t) is of 

order ( ) 1+− k

nt t  : 

 

  ( ) ( ) ( ) 1*
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Hereby the term (t-t0) is limited by the time step size hn. 
 
The error e can also be written as a product of an (unknown) coefficient C and the time 

step size hn with exponent (k+1): 
 

  ( ) ( )* 1    += − = ⋅q qh k
ne t t C h  (13) 

 
 
Normally the error is displayed in a diagram with double-logarithmic axes. Then the 

equation describes a straight line with slope (k+1): 
 

  ( )log log 1 log= + + ⋅ ne C k h  (14) 
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However, when the error is evaluated only in the nodes (i.e. at the end of each time step 

and not within each time step), the slope of the convergence line is (2k) instead of (k+1). A 
detailed proof can be found in   [4]. 

 

5 NUMERICAL DERIVATION OF THE CONVERGENCY RATE 

The convergence rate can also be calculated numerically. Therefore the “accurate” solution 
is calculated with the algorithm explained in section   3 with a very small size of time steps. 
Then the error is negligibly small, so that this displacement-time process may be used as a 
reference solution q*(t). 

 
The diagram in Figure 1 shows the displacement-time process for the reference solution q* 

(continuous line) and for an approximation qh with time step size hn=0.5s (dashed line).  
 

 
Figure 1: Displacement time process for reference solution q* (continuous line) 

and for the approximation qh (dashed line) 

 
During the first seconds both solutions are almost identical. But with the time both 

solutions are drifting apart. After about 24s the reference solution q* and the approximation 
qh are out of phase. 

 
The error can be calculated as the sum of the differences between the reference solution q* 

and the approximation qh over the investigated time domain: 
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Hereby the time interval ∆t can either be equal to the time step size hn (when the error is 

evaluated only in the nodes, i.e. at the end of each time step) or the time interval ∆t can be less 
than the time step size hn (when the error is evaluated also within each time step). 

 
The couple of time step size hn and error e gives one particular point of the convergence 

line in Figure 2. When the displacement-time process is calculated with other time step sizes 
and the error is evaluated for each of these calculations more points of the convergence line 
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are obtained and a trend of the convergence line can be found. This has already been proofed 
in   [1]. 

 

 
Figure 2: Convergence line 

 
For very small time step sizes (in this particular case hn < 0.01s) the convergence line tends 

to the horizontal. Here the accuracy of the computer is reached because the calculations are 
performed only with a fixed number of digits. A further reduction of the time step size does 
not result in a more accurate solution. 

 

5.1 Linear Shape Functions 

For linear shape functions one obtains the convergence lines displayed in Figure 3. The left 
diagram is obtained when the error is evaluated only in the nodes (i.e. at the end of each time 
step). The slope of the convergence line is (2k)=2. 

 
The right diagram is obtained when the error is evaluated also within the time steps. 

Hereby the displacement within the time steps is approximated with the shape functions MI. 
Then the slope of the convergence line is (k+1)=2. This has already been proofed in  [1]. Both 
findings confirm the theoretical considerations from section  4. 

 

 
 

Figure 3: Convergence for linear shape functions 
(left diagram: error evaluation only in the nodes, right diagram: error evaluation also between the nodes) 
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5.2 Quadratic Shape Functions 

For quadratic shape functions one obtains the convergence lines displayed in Figure 4. 
Again, the left diagram shows the convergence line when the error is evaluated only in the 
nodes. This gives a slope of the convergence line of (2k)=4. 

 
The right diagram shows the convergence line when the error is evaluated also between the 

nodes. In this case, the slope of the convergence line is (k+1)=3. The lower slope of the 
convergence line (3 instead of 4) is only due to a different definition of the error evaluation. 
Of course, the results in the nodes are of the same accuracy in both cases. 

 

 
 

Figure 4: Convergence for quadratic shape functions 
(left diagram: error evaluation only in the nodes, right diagram: error evaluation also between the nodes) 

 

5.3 Cubic Shape Functions 

The convergence lines for cubic shape functions are displayed in Figure 5. In the left 
diagram (evaluation of the error only in the nodes) the slope of the convergence line is (2k)=6 
while the slope of the convergence line in the right diagram (evaluation of the error also 
between the nodes) is (k+1)=4. 

 

 
 

Figure 5: Convergence for cubic shape functions 
(left diagram: error evaluation only in the nodes, right diagram: error evaluation also between the nodes) 
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6 3-STEP-METHOD FOR IMPROVEMENT OF THE CONVERGENCY RATE 

As seen in the last section, it is high effort to obtain relatively accurate results. Either the 
time step size has to be reduced significantly (leading to high computational costs) or the 
polynomial degree of the shape functions has to be increased (often these high sophisticated 
algorithms are not available). Therefore a method would be desirable that gives high accurate 
results with relatively large time steps, although using linear shape functions. This goal can be 
reached by implementing the Tarnow method (see  [6] and  [7]) into the above described time 
stepping algorithm of Betsch. The procedure of the 3-step algorithm according to Tarnow is 
as follows: 

 
• The values at time tn are known from the previous time step. The values at time tn+1 

shall be calculated. The Tarnow method does not calculate these values directly. 
Instead, the values at time tn+α are calculated in a first step. The values are not 
accurate, they include an error of second order, third order and higher order 
because linear shape functions are used. 

• In a second step, the values at time tn+1-α are calculated based on the results at time 
tn+α. Again, the results include an error of second order, third order and higher order. 

• In a third step, the values at time tn+1 are calculated based on the results at time tn+1-

α. In this step the errors are again of second order, third order and higher order. 
 
The parameter α can now be chosen in a way that the errors of second order and third 

order are compensated in the intermediate steps and only an error of forth and higher order 
remains. This is the case when the parameter α is chosen to 1.3512. A detailed proof of this 
method can be found in   [6]. 

 

 
Figure 6: 3-step algorithm according to Tarnow 

 
The above described Tarnow method has now been implemented into the time stepping 

algorithm of Betsch. Figure 7 shows the results when the Betsch algorithm is used with linear 
shape functions and the 3-step algorithm. The results are of 4th order accurate, therefore the 
slope of the convergence line is 4. So the same accuracy is reached as for a 1-step algorithm 
with quadratic shape functions. 
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Figure 7: Convergence for linear shape functions with 3-step algorithm 

 

7 SUMMARY 

The convergence rate of the Betsch method depends on the polynomial degree of the shape 
functions. For linear shape functions a convergence rate of 2 was found. When the 3 step 
algorithm according to Tarnow is implemented into the Betsch method, the convergence rate 
is increased from 2 to 4. This allows high quality results, even when only linear shape 
functions and large time steps are used.  
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