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Abstract. This study aims to analyze the propulsive efficiency of a swimming multi-layers fin.
For this purpose, we develop a finite element model accounting for the fluid-structure interaction
and the structural anisotropy of each layer. Two types of fins have been tested by comparing
their eigenfrequencies. A dynamical situation has been simulated by imposing a translation
(heaving) and a rotation (pitching) motions at the end of the fin, using in some sense a relative
frame attached to the ankle joint. Thrust, lift and pitching moment are evaluated and compared
for the two types of fins.
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1 INTRODUCTION

The aquatic locomotion of animal constitutes a fascinating research domain in biomechan-
ics. The search for performance of aquatic propulsion generated by a foil undergoing harmonic
flapping, including translation (heaving) and rotation (pitching) motions, has stimulated numer-
ous works during these last years e.g. [4], [10], [13], [17] . In the case of swimming with
fins, the propulsive efficiency depends on several factors. Most previous models evaluate the
dynamic performances, including drag and lift which are the two parameters usually considered
as relevant to quantify the propulsive efficiency of a fin e.g. [12]. Some models are essentially
of discrete type[11], [8], while others, inspired from propulsion of marine cetaceans, use con-
tinuous models [1], [18]. Most of these authors do not always demonstrate the highly coupled
nature of the problem. In fact, for range of stresses observed in actual swimming, the cou-
pling between the fluid and the fin cannot be neglected. Another aspect is the accounting of
the ankle muscle for the propulsion. The frequency determination is deemed necessary since
the muscle activity during fin swimming has important correlation with the oscillating flapping
frequency e.g. [9]. The activation of muscles increases up to 25 % when the swimming fre-
quency increases from 0.8 [Hz] to 1 [Hz]. In order to improve the adequation of fin with muscle
activities, previous studies highlight the role of structural composites and their arrangement for
optimizing the propulsion of fin. The static deformation together with the eigenfrequencies of
the fin are considered as basic parameters for optimization e.g. [7]. Unfortunately most of them
do not account for the water interaction with the fin.

This work is mainly numerical and develops a continuous model in the framework of the
fluid-structure interaction approach and constitutes a continuation of a previous study in [2].
The goal is to undertake a parametric analysis of two different designs of multi-layers fin by
comparing their eigenfrequencies by accounting for the water interaction. We simulate the
evolution of thrust and lift forces, together with the moment (torque about the pitch axis) during
a steady propulsion. This approach enables a parametric study, where we can vary some data
related to the geometrical, physical and kinematic model. The study consists of three parts. The
first part sets out the different assumptions underlying, the development of the theoretical basic
model. In the second part, we focus on the modal analysis. To this end, we analyze the changes
of eigenfrequencies when varying the physical characteristics of the fin. We are interested on
the influence of the layers arrangement and on the influence of the interacting water on the fin
eigenmodes. The third part deals with the dynamics. For this purpose, we consider a frame
attached to the fin, or more precisely at the foot of the swimmer, and impose a translational
(heaving) and rotational (pitching) motions. Two types of multi-layers fins are also studied.

2 Theoretical model of the multi-layers fin

We assume an amateur swimmer, where the range of velocity U0 is assumed to be small
compared to the compression wave celerity cL within the material of the fin. The ratio ε =
U0/cL << 1, called displacement parameter, allows to characterize the nature of the coupling
considered in this work. It has been shown in [3] that the adapted model is the inertial coupling.

The model is bidimensional (since we are mainly interested in the first bending modes in
this preliminary analysis) and the (thin) fin is immersed in a large swimming pool. The fin
is modeled by a multilayer linear elastic transverse anisotropic material. The fluid domain is
denoted Ωf , while each layer constituting the fin is denoted by Ωi and has the density ρi.
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Figure 1: Geometry of 3D fin (dimensions are given below) and scheme of the computational domain (Dimensions
of the swimming pool : length 5 [m], depth 2 [m]).

2.1 Basic equations

We denote ui the displacement field in the fin and p the pressure field in the water, which
is considered as non viscous compressible fluid. The quantities c0 and ρ0 denote the sound
velocity and density of the water respectively. We accordingly remain in the framework of
vibro-acoustic problems. The longitudinal axis of the fin is denoted x. Use of the ALE method
is not necessary in this study because the material is assumed linear and the deformation is
assumed small. In the frame attached to the fin, the problem is to find (ui, p) solutions

ρi
∂2ui

∂t2
= ∇ · σ(ui) + ρiF (Ωi)

1

ρ0c20

∂2p

∂t2
= ∇ ·

[
1

ρ0
(∇p− ρ0F)

]
(Ωf )

u = 0 (Γ0)
σ(u)n = −pn (Γ)

[∇p− q] · n = −ρ0
∂2u

∂t2
· n (Γ)

[∇p− q] · n = 0 (Γ1)
p = 0 (ΓL)

σ(ui) = K(θi)ε(ui) (Ωi)

(1)

where F is the relative and Coriolis force induced by the heaving and pitching motions (relative
frame concept) of the fin. The angle θi denotes the orientation of fibers relative to the longitudi-
nal axis x on the fin. In our case, each layer is made of matrix and carbon fibers. The orientation
of fibers is usually 0◦ or 90◦ relative to the axis of the fin. The physical properties of each layer
defined by the tangent stiffness K(θi) are well defined for anisotropic componenet e.g. [14].
However, some characteristic values are not displayed for industrial confidentiality reason. In
this study, each layer has the same properties, only the fiber orientation is different for each
layer as indicated below.

2.2 Modal analysis of coupled problem

For the modal analysis, we search for the eigenfrequencies and modal shapes of the fin in
vacuum and in water. Indeed, to test the quality of a fin, it is usual to determine its quasi-static
deformed shape and dynamic response in air (approximately as in vacuum). The objective
here is to test if the presence of the surrounding fluid can or cannot be quantitavely neglected.
The frequencies provide key information for the dynamic behavior of the fin e.g. [8]. The
modal problem associated with the system (1) is to find the displacement, the pressure and the
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eigenfrequencies (ui, p, ω) solutions

−ρiω2ui = ∇ · σ(ui) (Ωi)

− p

ρ0c20
ω2 = ∇ ·

[
1

ρ0
∇p
]

(Ωf )

u = 0 (Γ0)
σ(u)n = −pn (Γ)
∇p · n = ρ0ω

2u · n (Γ)
∇p · n = 0 (Γ1)
p = 0 (ΓL)

σ(ui) = K(θi)ε(ui) (Ωi)

(2)

By introducing the spaces of test functions V = {v ∈ H1(Ω1), v = 0 (Γ0)} for displacement
and Q = H1(Ω) for pressure, the variational formulation of boundary value problem (2) holds

d2

dt2

∫
Ωs

ρu · vdx+
∫
Ωs

σ(u) : ε(v)dx+

∫
Γ1

pv · ndΓ = 0

d2

dt2

(∫
Ωf

pϕ

ρ0c20
dx+

∫
Γ1

u · nϕdΓ

)
+

∫
Ωf

1

ρ0
∇p · ∇ϕdx = 0

∀(v, ϕ) ∈ V ×Q (3)

with
∫
Ωs

ρu · vdx =

NL∑
i=1

∫
Ωi

ρiui · vidx and
∫
Ωs

σ(u) : ε(v)dx =

NL∑
i=1

∫
Ωi

σ(ui) : ε(vi)dx,

where NL is a number of layers. Using Lagrange finite elements, where uh ∈ P2 × P2 and
ph ∈ P1, discretization of the variational problem (3) leads to the system{[

K1 B1

O Kp

]
− ω2

[
M1 O
M1a Mp

]}
X = 0 (4)

This non symetric system is solved using the commercial software Comsol Multiphysics. Two
types of calculations were carried out. The first is when the fin is plunged into a vacuum and the
second interacting with water. We give below the results for a model up to five layers (NL = 5)
and the eigenfrequencies in vacuum (V) and in the water (W).

3 Numerical results

Two designs of multi-layers fins are compared in this section. Both of them are analyzed
first in a vacuum and second in the swimming pool, and then interacting with water. Each
layer is a biphasic composite and the matrix (m) and fiber (f) have the following properties
respectively: Volume fraction Vm = 0.4 and Vf = 0.6, Young’s modulus : Em = 3.45E9[GPa],
and 38E9[GPa]; Density ρm = 1200[kg/m3], and ρf = 1950[kg/m3]; Poisson’s ratio : νm =
0.3, and νf = 0.22.

3.1 Fin with Oriented fibers : 0◦/90◦/0◦/90◦/0◦

The fibers of each layer are arranged alternately along the two directions orthogonal axis x
and y of the mean plane of the fin.

For this first fin, the first layer is oriented along x. The length of each layer is not the same.
Lengths of layers are respectively ℓ := ℓ1 = 0.8[m], ℓ2 = 0.6[m], ℓ3 = 0.5[m], ℓ4 = 0.4[m],
and ℓ5 = 0.3[m]. Layer’s length corresponds to the ply drop in [7]. The total thickness of the
fin is maintained constant e = 5.8[mm], and it is not depending on the number of layers. The
fin is clamped at the end x = 0 and free of stress at end x = ℓ.
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1. Eigenfrequencies of fin in the vacuum

The three-layers fin presents the highest eigenfrequencies in either a vacuum or in the
water (see table 1), at least for the first frequencies.

f1 f2 f3 f4 f5 f6 f7 f8
2L(V) 12.62 76.02 205.33 389.27 628.95 929.39 1293.32 1717.79
3L(V) 29.38 122.99 265.07 555.85 825.17 1326.14 1764.36 2321.13
4L(V) 22.68 90.16 192.04 404.72 600.38 958.85 1303.21 1692.38
5L(V) 28.82 79.74 185.16 373.97 560.99 904.69 1185.87 1632.83

Table 1: Eigenfrequencies fn [Hz] of the multi-layers fin in vacuum. Row 2L up to 5L indicates the number of
layers of the fin.

2. Eigenfrequencies of fin interacting with water

f1 f2 f3 f4 f5 f6 f7 f8
2L(W) 1.71 46.06 103.15 180.88 186.73 232.08 297.77 342.08
3L(W) 3.52 21.72 55.17 136.63 181.29 222.63 232.10 341.95
4L(W) 2.42 14.56 37.35 92.22 150.82 181.27 232.08 263.14
5L(W) 2.77 11.85 33.49 78.53 128.93 181.22 227.74 232.11

Table 2: Eigenfrequencies fn [Hz] of the multi-layers fin interacting with water. Row 2L up to 5L indicates the
number of layers of the fin.

The fundamental eigenfrequency f1 (and the others) depends on the arrangement of the lay-
ers. The two-layers fin has mostly the lowest fundamental frequency either in the vaccum or in
the water (see table 2). There is systematically a peak of frequencies for the three-layers fin, not
depending on the environnement (vacuum or water). This means that this arrangement induces
the stiffest fin, at least for a dynamics point of view. The fundamental eigenfrequency of the
coupled fin-water is far lower than of the fin in vacuum. This observation does not depend on
the number of layers. To give an idea of the eigenmodes, we display on figure 2 the first six
modal shapes of the fin interacting with the water for a five-layers case (5L(W )).

Figure 2: The first six mode shapes of the five-layers fin (5L(W )).

These are mainly bending modes for this 2D model. Due to the clamping at x = 0, and due to
the progressive ply drop, the largest deformation is mainly located at the free end of the fin. For
the terminolgy, if the first and second modes are involved for the propulsion, the fin swimming
could be considered as undulatory type (anguilliform), whereas if the higher mode ranks are
involved (oscillation of posterior part of the fin) then the fin swimming could be considered as
carangiform e.g. [17].
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3.2 Fin with Oriented fibers : 90◦/0◦/90◦/0◦/90◦

As for previous fin, fibers of each layer are arranged alternately along the two directions
orthogonal axis x and y of the mean plane of the fin. However for this second fin, the first layer
is oriented along y. The length of each layer is not the same. Lengths of layers are respectively
ℓ := ℓ1 = 0.8[m], ℓ2 = 0.6[m], ℓ3 = 0.5[m], ℓ4 = 0.4[m], and ℓ5 = 0.3[m]. The total thickness
of the fin is also maintained constant e = 5.8[mm], and it is not depending on the number of
layers. The fin is also clamped at the end x = 0 and free of stress at x = ℓ.

1. Eigenfreqncies of fin in a vacuum

f1 f2 f3 f4 f5 f6 f7 f8
2L(V) 12.61 73.51 158.46 273.94 488.33 757.90 997.37 1284.11
3L(V) 9.52 51.39 105.50 186.01 327.05 507.18 670.71 861.59
4L(V) 21.21 56.23 115.59 237.62 395.78 560.89 773.54 1093.47
5L(V) 17.44 44.84 91.62 186.19 313.60 444.60 606.69 867.88

Table 3: Eigenfrequencies fn [Hz] of the multi-layers fin in the vacuum. Row 2L up to 5L indicates the number
of layers of the fin.

2. Eigenfrequencies of fin interacting with water

f1 f2 f3 f4 f5 f6 f7 f8
2L(W) 1.71 13.30 39.45 72.24 136.51 181.24 232.04 235.54
3L(W) 1.14 8.74 23.87 45.06 86.89 147.57 181.24 215.08
4L(W) 2.28 9.53 23.83 50.30 97.46 156.71 181.22 219.41
5L(W) 1.68 6.89 17.23 36.93 70.87 113.85 161.15 181.31

Table 4: Eigenfrequencies fn [Hz] of the multi-layers fin interacting with water. Row 2L up to 5L indicates the
number of layers of the fin.

Contrarily to the first type, the three-layers fin presents the lowest eigenfrequencies, and
it is depending neither on the environnement vacuum or water, nor on the mode rank.
Highest eigenfrequencies mostly correspond to the two-layers fin. Again, the influence
of the fin-water interaction is pointed out, the presence of water, which is more realistic,
in the model drastically decreases the eigenfrequencies of the fin.

Comparing the two types of multi-layers fins, we may observe that : the eigenfrequencies value
depends strongly on the arrangement of layers, and such is the case either in a vacuum or in
water. Fibers of the first layer along x seems to give highest fundamental eigenfrequency when
there are several layers in the fin. The frequencies of the coupled model are always lower. It
is quite understandable due to the effect of added mass from water interaction. Anticipating
a study in progress in our team, it should also be observed that accounting the 3D effects de-
creased the fundamental frequency, which also corresponds to a bending modes, for instance
the four-layers fin gives in vacuum f1 ≃ 7.74 [Hz], and in water f1 ≃ 1.13 [Hz] as fundamental
eigenfrequency.
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4 The dynamic problem

The dynamic problem was conducted using data in [15]. For this purpose, the fin is immersed
in water, and is subjected to a combined heaving and pitching motions, mimicking the ankle
joint motion. This motion is imposed at the end x = 0, the other end x = ℓ remains free. In
this case, the force F induced by the relative frame motion introduced in the equation (1) has
the expression :

F(t) = −
[
ḧ(t) sin[ω(t)]− yω̈(t)− xω̇2(t)

ḧ(t) cos[ω(t)] + xω̈(t)− yω̇2(t)

]
(5)

in which we have defined the imposed translation and rotation e.g. [15] :{
ω(t) = θ0 sin(2πft) ; h(t) = h0 sin(2πft− ψ)

θ0 = 40◦ ; ψ =
π

2
; h0 = 1c ; f = 0.225Hz

(6)

where c = 0.7 is the chord of the profile, that is to say, the length of the fin. The phase
ψ is introduced to model the muscle dissymmetry. To avoid a resonance phenomenon, the
excitation frequency is imposed small enough compared to the first natural frequency of the
coupled system. The most relevant hydrodynamic parameters are the total force R and moment
M exerted on the fin during the movement. Notice that these forces and moment are solely due
to the water reaction. These quantities are defined by

R =

∫
Γ

σ(u)ndΓ ; M =

∫
Γ

OM ∧ σ(u)ndΓ (7)

The two components of D and L onto the axes x and y, are respectively the drag and lift of
the fin. The quantity T (t) = −X(t) is called thrust. Different types of layers exist in the
manufacture of fins, where the thickness is mostly fixed in advance. We test the same fins as in
the modal analysis. Using the same notation as before, the variational formulation of boundary
value problem (1) is then written

d2

dt2

∫
Ωs

ρu · vdx+
∫
Ωs

σ(u) : ε(v)dx+

∫
Γ1

pv · ndΓ = −
∫
Ωs

ρF · vdx

d2

dt2

(∫
Ωf

pϕ

ρ0c20
dx+

∫
Γ1

u · nϕdΓ

)
+

∫
Ωf

1

ρ0
∇p · ∇ϕdx =

∫
Ωf

1

ρ0
q · ∇ϕdx

(8)

forall (v, ϕ) ∈ V ×Q, with V = {v ∈ H1(Ω1), v = 0 (Γ0)} and Q = H1(Ω).
Using Lagrange finite elements, where uh ∈ P2 × P2 et ph ∈ P1, discretization of the

variational problem (8) leads to the semi-discretized system[
M1 O
M1a Mp

]
d2X

dt2
+

[
K1 B1

O Kp

]
X = F (9)

with X = [U,P]T and F = [F1,F2]
T . In this section, we use a particular kinematics proposed

in [15]-[16], even if our models are not exactly similar. Indeed, the kinematics will allow us in
future to develop a new experimental protocol for measuring various hydrodynamic parameters
of a fin.

4.1 Dynamic response to the fin

To better define a reasonable perfomance of the fin, we take the total expression of the exci-
tation force F(t) resulting from (6). We then obtain the different response curves where the end
x = 0 is constrained to a combined translational and rotation motions.
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4.1.1 Oriented fibers : 0◦/90◦/0◦/90◦/0◦

As a recall, fibers of each layer are arranged alternately along the two directions orthogonal
axis x and y of the mean plane of the fin. For this first fin, the first layer is oriented along x.
The length of each layer is not the same. Lengths of layers are respectively ℓ := ℓ1 = 0.8[m],
ℓ2 = 0.6[m], ℓ3 = 0.5[m], ℓ4 = 0.4[m], and ℓ5 = 0.3[m]. The total thickness of the fin is
maintained constant e = 5.8[mm], and it is not depending on the number of layers.
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Figure 3: Thrust force [N ] during the course of time [s] for the 2L, 3L, 4L, and 5L models.

The magnitude of thrust force induced by the two-layers fin is greater than the other fins,
although its value is mosty negative. Remind that the eigenfrequency of this fin is the lowest.
This nevertheless seems abnormal and requires further close analysis. The behaviours of the
other three fins are quite similar.
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Figure 4: Lift force [N ] during the course of time [s] for the 2L, 3L, 4L, and 5L models.

We remark that the lift force for the two-layers and the five-layers fins behaves similarly (they
are mostly positive), whereas the three and four-layers are quite comparable (they are mostly
negative). Magnitude of lift force is greater for the two-layers and the five-layers fins. By the
way, they are mostly positive.

The moment magnitude is lowest for the two-layers models, compared to the other fins.
Again the two- and five-layers fins have similar behaviour (positive moment), although with
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Figure 5: Moment [mN ] during the course of time [s] for the 2L, 3L, 4L, and 5L models.

different magnitude; whereas the three- and four-layers fins have negative moment.

4.1.2 Oriented fibers : 90◦/0◦/90◦/0◦/90◦

Recall also that fibers of each layer are arranged alternately along the two directions orthog-
onal axis x and y of the mean plane of the fin. However for this second fin, the first layer is
oriented along y. The length of each layer is not the same. Lengths of layers are respectively
ℓ := ℓ1 = 0.8[m], ℓ2 = 0.6[m], ℓ3 = 0.5[m], ℓ4 = 0.4[m], and ℓ5 = 0.3[m]. The total thickness
of the fin is maintained constant e = 5.8[mm], and it is not depending on the number of layers.
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Figure 6: Thrust force [N ] during the course of time [s] for the 2L, 3L, 4L, and 5L models.

Again, the magnitude of thrust force induced by the two-layers fin is greater than the other
fins, although its value is mosty now positive. Remind also that the eigenfrequency of this fin is
the lowest. The behaviours of the other three fins are quite similar, with a positive thrust force
for all of them (Figure 6).

The four-layers fin present the lowest magnitude for the lift force (mostly negative values),
whereas the three-layers fin has the greatest amplitude. The other three models have positive
lift force (Figure 7).

The five-layers fin induces very low moment magnitude compared to the other fins. Again
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Figure 7: Lift force [N ] during the course of time [s] for the 2L, 3L, 4L, and 5L models.
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Figure 8: Moment [mN ] during the course of time [s] for the 2L, 3L, 4L, and 5L models.

the four-layers fin has mostly negative moment (Figure 8). Such is not the case for the other
models.

Again comparing the two types of multi-layers fins, we may draw some remarks. The two-
layers model always gives a greater thrust than the other models. It should be however pointed
out that the fibers arrangement may induce negative or positive thrust for this fin. If we eliminate
this case, we may see that the five-layers fin gives the best performance.

In a general manner, the three-layers fin seems to give a better compromise. Indeed, its
thrust remains positive all the time, while its lift has negative value and nevertheless less of
lower importance than other fins. The moment magnitude associated to the three-layers model
is also the lowest. In sum, it is then shown that by varying some physical parameters, we can
significantly reduce or increase hydrodynamic quantities, such as the thrust, the moment, and
the lift.

4.1.3 Water pressure for fin with Oriented fibers : 0◦/90◦/0◦/90◦/0◦

To see how the overall response of the coupled system evolves, we display in the figures
below (Figure 9) and at different times t = 2, 4, 6, 8 [s] the pressure field within water, and
the iso-acceleration lines. We also display the deformed shapes of the fin (first layer parallel
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to x) at the associated times. The present model uses an acoustic model of the water, and

Figure 9: Pressure contour plot p (x, t), iso-acceleration lines, and associated deformed shapes of the five-layers
fin, at different times t = 2, 4, 6, 8 [s]. Remind that the fundamental frequency of this fin is f1 = 2.77 [Hz], and
the excitation frequency fexc = 0.225 [Hz]. The fin is displayed in the middle region of the pool.

neglects the viscosity, although the thrust production is thought to be strongly correlated with
the formation and shedding of leading edge vortices. In a viscous situation, the wake formed
behind the fin is affected by the interaction of the leading edge vortex with the fin and with the
training vortex. This could captured in our model. In the present study, the evolution of the field
pressure p (x, t) in the course of time shows the influence of the swimming pool dimensions on
the result. Accuracy of results may be improved by considering much larger dimensions of the
pool.

5 CONCLUDING REMARKS

A parametric analysis of eigenfrequencies of multilayers composite fin has been done by
considering the influence of the surrounding water. The fluid flow, and more precisely the
evolution of water pressure around a 2D deformable fin, and the deformation of the fin itself
in a steady motion due to a harmonic heaving and pitching motions, have been simulated by
accounting the mutual interaction of the water and the fin. From the present results, we may
draw some concluding remarks.

• The presence of layers provides some flexibility for the fin design as indicated by the
results of modal analysis. The first mode is bending type, which justifies the use of
models proposed in [11].

• Fins with anisotropic material structures allow to develop a method of layers parametriza-
tion to improve performance. It is quite possible now to bring special attention to the
structure of the layers, and types of constituent materials thereof.

• The present study points out the sensitivity of the dynamic behavior of the fin with respect
to the constitute materials, and also the influence of the boundary conditions for the fluid
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domain. Indeed, the presence of rigid walls alters significantly the eigenmodes and fre-
quencies of the coupled system. Accordingly, the dynamic behavior of a swimmer may
depend on this location at each time in the pool.

• Finally, to obtain a better thrust, the fin has to be elastic at least in rotation. The amplitude
of the vertical translation must be controlled to avoid a too great lift, which may lead to
an expenditure of extra energy of the swimmer to remain at a constant depth. The use of
multilayer fins allows to control the non desirable excessive variation of lift.

Extension of the present study to 3D fins together with viscous fluid is ongoing.
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