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Abstract. In modern constructions, thin-layer coats are often used as protecting or strengthen-
ing elements. Deformations of such constructions may cause significant stresses on the interface
between the base and the coat because of the difference in their physical-mechanical proper-
ties, which leads to the destruction or delamination of the cover. Of special interest is strength
analysis under dynamical or vibrational impacts because of the possibility of localizing oscilla-
tions in a neighborhood of the initial inhomogeneities (such as inclusions, defects, construction
elements, etc.). In this paper, on the example of the delamination of a string from an elastic sub-
strate, the possibility of localizing oscillations on a delamination defect is demonstrated and
the effect of this localization on the growth of the delamination zone is analyzed. A simplified
setting of the problem is considered. The possibility of localizing oscillations on a delamination
defect is demonstrated and an approximate analytical solution is constructed, which takes into
account only the first symmetric form of oscillations describing the development of the initial
delamination. A numerical modeling of the problem is performed, and the results of modeling
are compared with the approximate analytical solution.
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1 INTRODUCTION

In modern constructions, thin-layer coats are often used as protecting or strengthening el-
ements. Deformations of such constructions may cause significant stresses on the interface
between the base and the coat because of the difference in their physical-mechanical properties,
which leads to the destruction or delamination of the cover. Delamination of multilayer con-
structions under static and dynamic (shock) loads have an extensive bibliography. We mention
the fundamental works [1-8]. The impact of static or shock loads on the emergence and devel-
opment of delamination in multilayer constructions has been studied fairly well, but much less
is known about destructions of this type under nonstationary (vibrational) loads. The interest
in the latter is caused by the fact that even small variable actions may cause the localization
of oscillations in a neighborhood of inhomogeneities (such as inclusions, defects, construction
elements, etc.) [9] and lead to the emergence and growth of defects, which strongly affects the
reliability and functionality of the whole construction.

An example of such coated constructions in which delamination destructions are observed is
the blades of a wind turbine, which are becoming increasingly popular because of the interest
in alternative energy sources. In recent years, the increase in the power of wind turbines has
enhanced requirements to rotor blades.

During the operation of the rotor, the top coat of a blade, which is a thin film, may detach
on some part of its length. To estimate the functionality of the construction, it is important to
know the further scenario of the behavior of such a film with a detached fragment. Such defects
may appear and grow for several reasons, which include wind loads and stationary oscillations
arising in blades during their operation.

This paper studies the possibility of oscillation localization near delaminations from cracks
and the impact of localization on the growth of the defects. We suggest a model for analyzing
conditions under which a delamination zone grows or ceases to grow.

2 STATEMENT OF THE PROBLEM

Taking into account the fact that the thickness of a thin-layer coat is usually much less than
the characteristic size of the substrate, in the first approximation, we replace a coat attached to
a substrate by a film on an elastic substrate.

The main purpose of this paper is to show that, if an elastic substrate has an inhomogeneity
(the coefficient of the elastic substrate vanishes for some part of the film length), then, under a
non-stationary harmonic load, some part of the propagating wave energy is localized near the
inhomogeneity. Depending on the parameters of the film and the elastic substrate, various sce-
narios of the film behavior are possible: the length delamination zone may increase unlimitedly,
or it may cease to grow at some time.

Note that if there are only propagating waves in the film, then the wave processes only
insignificantly affect the behavior of the delamination zone, because the excited wave process
rapidly fades out. The situation changes if the waves in the film-waveguide localize near the
defect. As is known, in the absence of dissipation, localized oscillations of certain frequencies
may not attenuate for an infinitely long time [9], thereby substantially affecting the behavior
of the delamination zone. The existence of standing waves localized near the delamination
zone means that the corresponding spectral problem has not only continuous but also discrete
spectrum of eigenfrequencies.

This paper considers the simplest mathematical model for the behavior of such a film under
the action of a transverse non-stationary harmonic load. The film is attached to an elastic Win-
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Figure 1: A scheme of film delamination

kler foundation, which models an element of a blade. In the framework of this model, the birth
of a delamination is not studied; it is assumed that, at initial moment of time, a film fragment of
length 2l0 is torn away from the elastic substrate.

We assume that the delamination emerges not near the blade boundaries, which is confirmed
by in-situ observations. The tension of the detached part of the film differs from the tension of
the film on the elastic substrate, and when the detached part oscillates, the interaction between
the film and the elastic substrate has the character of a one-sided contact, and the interaction of
the film with the substrate has a relay characteristic. These two factors significantly complicate
constructing a solution; for this reason, at the present stage of modeling, we assume that tension
is constant over the entire film and the detached part does not interact with the elastic substrate.
Vibro-impact loads in the delamination zone and a variable tension of the film will be taken into
account at the next modeling stage.

As the simplest model we consider the following case, in which the problem under consider-
ation reduces to a one-dimensional problem: the delamination zone is contained in the domain
−l0 < x < l0, −∞ < y < ∞, and the force is applied along the line x = xp, −∞ < y < ∞. In
this case, the problem reduces to the problem about oscillations of a string on an elastic substrate
with variable stiffness k[x, l(t)]: namely, stiffness vanishes on the detached part of the string,
and on remaining part of the string, it equals k0. The equation describing the displacement of a
string on an elastic substrate under a load applied at a point x = xp has the form

ρutt − Tuxx + k[x, l(t)]u = −P (x, t), −∞ < x < ∞, (1)
u, ux → 0 |x| → ∞

Here, ρ is the specific density of the string, u is the vertical displacement of the string, T is the
tension of the unperturbed string, and P (t)δ(x − xp) is the exciting force. We assume that, at
the initial moment of time t = 0, there is a film fragment of length 2l0 detached from the elastic
substrate. For the delamination criterion we take the following deformation criterion: when the
displacement of at least one end of the detached part attains a critical value ∆, the delamination
zone grows with rate β (see Fig. 1). The equation describing the growth of the delamination
zone has the form [8]

dl
dt

= β
{
H

[
u(x, t)|x=l−(t) −∆

]
+H

[
u(x, t)|x=l+(t) −∆

]}
(2)

Here, l−(t) is the coordinate of the left end of the detached fragment, l+(t) is the coordinate of
the right end of the detached fragment, 2l(t) = l− + l+ is the length of the detached fragment,
u(x, t) is the displacement of the string point with coordinate x at a moment t, H is the Heavi-
side function, β is the coefficient determining the growth rate of the delamination, and ∆ is the
critical displacement, under which the film separates from the elastic substrate.
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Under certain conditions, oscillations may localize on the initial delamination fragment of
length 2l0 (see [9]), and the amplitude of oscillations at the endpoints of the delamination zone
may surpass the critical displacement value ∆ at some moment of time, which leads to the
growth of the delamination zone. The increase in the length of the detached film fragment, in
turn, affects the localization of oscillations near the defect, so that the passage to other forms of
localized oscillations may occur. Therefore, we must solve the system of equations (1) and (2)
under the initial conditions

l|t=0 = l0; u, ut|t=0 = 0 (3)

and the following boundary conditions for any fixed t:

u, ux → 0 |x| → ∞ (4)

Thus, we have obtained a connected problem about non-stationary oscillations of a string on an
elastic substrate and the growth of the zone of the delamination of a part of this string from an
elastic substrate, which is described by the system of equations (1)-(4).

3 STEADY-STATE OSCILLATIONS OF A STRING. LOCALIZED MODES

First, consider the case where the length of the delamination domain is constant: 2l = 2l0.
The corresponding spectral problem u(x, t) = v(x)eiωt takes the form

Tvxx − [k(x)− ρω2]v = 0, −∞ < x < ∞, (5)
v, vx → 0 |x| → ∞

Here, ω is the frequency and k = k0[H(x+ l0)−H(x− l0)]. The specific density of the string
is assumed to be constant. We denote the sound speed in the string by c =

√
T/ρ and the cut-off

frequency by ωb =
√
k0/ρ .

This spectral problem is a special case of the problem about oscillations of a string with a
distributed elastic-mass inclusion, which was considered in detail in [9]. It was shown that prob-
lem (5) has not only continuous spectrum of oscillation eigenfrequencies, which begins with the
cut-off frequency ωb, but also discrete spectrum, which goes before the cut-off frequency con-
sists of finitely many eigenfrequencies. The eigenforms of oscillations corresponding to the
discrete spectrum, known as localized (trapped) modes, are localized near the inclusion and do
not carry energy away to infinity.

The symmetric localized modes corresponding to the eigenfrequencies ωsn, which are deter-
mined by the dispersion relation

tan
l0
c
ω =

√
ω2
b − ω2

ω
, (6)

have the form

vsi =


cos γ1x, |x| < l0,

cos γ1l0 e−γ0|x−l0|, |x| > l0

(7)

where γ1 = ω/c and γ0 =
√
ω2
b − ω2/c.
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Figure 2: The eigenfrequencies.

The antisymmetric localized modes are determined by the spectrum of frequencies deter-
mined from the dispersion relation

tan
l0
c
ω = − ω√

ω2
b − ω2

(8)

and have the form

vai =


sin γ1l0 e−γ0|x−l0|, x > l0
sin γ1x, |x| < l0,

− sin γ1l0 eγ0|x+l0|, x < −l0.
(9)

The scheme of the determination of the roots of the frequency equations (6) and (8) is shown in
Fig.2. The abscissas of the intersection points of the curves determining the right- and left-hand
sides of the frequency equations give the required eigenfrequencies, provided that the parameter
values ωb, c, and l0 are known. Note that the first eigenfrequency corresponds to a symmetric
localized mode, the second corresponds to an antisymmetric mode, etc. The number of eigen-
frequencies before the cut-off frequency is determined by the parameters of the waveguide and
the length of the delamination zone.

The eigenfunctions corresponding to frequencies ω > ωb from the continuous spectrum (we
call them traveling modes) are determined in [9].

It can be shown that the localized modes (7)-(9) and traveling modes are orthogonal in the
sense of generalized functions [10].

4 THE NON-STATIONARY PROBLEM: EXPANSION IN EIGENFORMS

As above, we assume that the length of the delamination zone is constant and equals 2l0. Let
vi(x) denote the localized modes (eigenfunctions) corresponding to the discrete eigenfrequen-
cies ωi (i = 1, 2, ..., N), and let vω(x) be the traveling modes (eigenfunctions) corresponding
to frequencies from the continuous spectrum.

Then we seek a solution of (1) in the form of an expansion in the eigenfunctions of the
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spectral problem (5) [10]

u(x, t) =
N∑
i=1

vi(x)qi(t) +
∫ ∞

ωb

vω(x)qω(t)dω. (10)

where qi(t) and qω(t) are unknown functions so-called generalized coordinates.
Substituting (10) into (1), multiplying by eigenfunctions, integrating with respect to x, and

applying the dispersion relations (6) and (8), we obtain

q̈i + ω2
i qi =

Qi(t)

Mi

, qi, q̇i|t=0 = 0, i = 1, 2, ..., N (11)

q̈ω + ω2qω =
Qω(t)

Mω

, qω, q̇ω|t=0 = 0. (12)

Here, Qi are generalized forces acting on the forms from the discrete spectrum, the Qω are
generalized forces acting on the forms from the continuous spectrum, and the Mi and Mω are
generalized masses, which are determined as follows:

Qi =
∫ −∞

−∞
vi(x)P (x, t)dx, Mi =

1

c2

∫ −∞

−∞
v2i (x)dx

Qω =
∫ −∞

−∞
vω(x)P (x, t)dx, Mω =

1

c2

∫ −∞

−∞
v2ω(x)dx

Solving the system of equations (11)-(12), we obtain the following expression for the string
deflection:

u(x, t) =
N∑
i=1

vi(x)

Mi ωi

∫ t

0
sinωi(t− τ)Qi(τ)dτ +

∫ ∞

ωb

vω(x)

Mω ω

∫ t

0
sinω(t− τ)Qω(τ)dτdω. (13)

Thus, we have obtained a solution of Eq.(1) in the form of an expansion in localized and trav-
eling modes for the string with a distributed inclusion. Using the Riemann-Lebesgue lemma,
we can show that the integral determining the expansion in the continuous spectrum in formula
(13) tends to zero as t → ∞, and for large t, the solution of problem (1) is determined only by
localized forms of oscillations:

u(x, t) →
N∑
i=1

vi(x)

Mi ωi

∫ t

0
sinωi(t− τ)Qi(τ)dτ for t → ∞. (14)

Thus, an external action leads to the localization of waves in the film delamination zone, and in
the absence of dissipation in the system, these localized waves may exist infinitely long.

5 FILM DELAMINATION

After the localization of oscillations on a defect of fixed length is analyzed, we proceed
to study the initial problem (1)-(4) on film delamination, that is, on the growth of the initial
delamination zone.

Suppose that, at the initial moment of time, the length of the zone of film delamination
from the substrate equals 2l0. We assume that the value l0 is such that there exists a unique
eigenfrequency ω0 < ωb, which determines a symmetric eigenform according to (7). Then we
seek a solution of the initial problem (1)-(4) in the form

u(x, t) = v0(x)q0(t). (15)
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Remark. In expansion (10) only the first term corresponding to a localized mode is retained;
thus, the transition processes related to the propagation of traveling waves are not taken into
account.

Thanks to the existence of the first symmetric form of oscillations, we can assume that l+ =
l− and write Eq.(2), which describes the growth of the delamination zone, in the form

dl
dt

= β H
[
u(x, t)|x=l(t) −∆

]
. (16)

The length of the delamination zone varies in time, and now the symmetric form v0(x, l) de-
pends on time and is defined on a variable interval, namely,

v0(x, l) = cosλxH(l − x) + cosλl e−γ(x−l)H(x− l), 0 < x < ∞,

where λ = ω0/c. Substituting (15) into the equation (1) for string oscillations, multiplying the
obtained equation by v0(x, l), and integrating the result with respect to x, we arrive at a fairly
complicated nonlinear equation with respect to q0(t) and l(t). Discarding nonlinear terms, we
obtain the following equation for the generalized coordinate q0(t):

q̈0 + ω2(l)q0 =
Q0(t)

M0

, q0, q̇0|t=0 = 0,

where

ω2(l) =
[
2ω2

b

∫ +∞

l
v20 dx+ c2

∫ +∞

−∞
v0

2
x dx

]
/
∫ +∞

−∞
v20 dx.

We assume that λl̃ = ω0[l(t)− l0]/c ≪ 1. It is easy to show that, in this case, we have

ω2(l) = ω2
0 + o[(λl̃)2], l̃ = l(t)− l0.

Replacing ω(l) by ω0 in the last equation, we reduce the initial problem to the system of equa-
tions

q̈0 + ω2
0q0 =

Q0(t)

M0

, q0, q̇0|t=0 = 0, (17)

dl
dt

= βH
[
v0(l, ω0)q0(t)−∆

]
, l(t))|t=0 = l0. (18)

First, consider the simplest example of an external action, namely, the oscillations initiated by
an impulse exciting force P (t) = P0δ(t). In this case, the generalized force is

Q0(t) = P0 cosλl e−γ0(xp−l)δ(t).

The generalized mass does not depend on the exciting force and has the form

M0(t) = ρ[l + sin 2λl/2λ+ cosλl/γ0].

Thus, Eq. (17) can be rewritten in the form

q0(t) =
P0e−γ0(xp−l)

M0ω0

cosλl sinω0t (19)
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Substituting (19) into (18), we obtain

dl
dt

= βH
[P0ε cos2 λl

M0(l)ω0

sinω0t−∆
]
, l(t)|t=0 = l0 (20)

where ε = e−γ0(xp−l). We assume that the force is applied so that ε < 1. We seek an approximate
solution to Eq.(20). Since | sinω0t| ≤ 1, it follows from (20) that a necessary condition for the
growth of the delamination zone has the form

P0ε cos2 λl

M0(l)ω0

> ∆. (21)

If l0 is such that condition (21) is violated (the amplitude of string oscillations does not attain
the critical value), then the delamination zone cannot grow. If the initial conditions are such
that inequality (21) holds, then the delamination zone begins to linearly grow at rate β at the
moment t = t1, which can be approximately determined from the expression

sinω0t =
∆ω0M0(l0)

P0ε cos2 λl0

and

l(t) = l0 + β tH(t− t1).

The length of the delamination zone increases until time t = t2, at which the argument of the
Heaviside function (20) vanishes. The growth of the delamination zone resumes at time t = t3,
which can be found from the expression

sinω0t =
∆ω0M0(l2)

P0ε cos2 λl2
.

Such a step growth of the delamination zone continues until l(t) reaches a certain critical value.
Indeed, as the length of the delamination zone decreases, the amplitude of string oscillations
decreases; thus, there exists a moment of time tk and the corresponding length l = lk for which
condition (20) ceases to hold, and the growth of the delamination zone stops.

A similar picture is observed in the case where the exciting force is harmonic, in which this
force has the form P (t) = P0 sin νt, where ν denotes frequency. In this case, Eq. (17) has the
approximate solution

q0(t) = P0ε
∫ t

0

cosλl(τ)

M0(τ)
sin ν(t− τ) sinω0τdτ. (22)

As well as in the case of impulse load, it can be proved that the moments of time ti determining
the growth periods of the delamination zone, can be found from the equation

q0(t) cosλl = ∆

Thus, the approximate analytic solution of the problem constructed on the basis of only the
symmetric eigenform (7) describes the step growth of the delamination zone, and the growth
rate is determined by the value of the parameter β. An analysis of Eq.(18), which describes the
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Figure 3: The behavior of the boundary of the delamination zone.

growth of the delamination zone, shows that various modes of growth are possible, which are
determined by the behavior of the argument of the Heaviside function in (18).

A numerical modeling of the initial problem (1)-(4) was performed. Motion was excited by
a harmonic force. Results of the numerical modeling of the growth of the delamination zone for
the parameter values β = 0.2, 0.1, 0.05 and ∆ = 2 · 10−6 are shown in Fig.3.

An analysis of numerical results demonstrates the possibility of the localization of oscilla-
tions near a delamination defect under certain loads and problem parameter values and of the
following three cases of the delamination development: (i) the absence of growth of the delam-
ination zone for large values of the critical displacement ∆, provided that the amplitude of the
displacements does not attain the critical value; (ii) the growth of the delamination zone up to
a certain size, after which the growth stops (see Fig.3); (iii) for very small ∆, the growth of
the delamination zone is virtually unbounded. Thus, the numerical solution of the system of
equations (1)-(4) well agrees qualitatively with the approximate analytic solution.

6 CONCLUSIONS

The delamination of thin-layer elements caused by dynamic or vibrational loads, which is
observed during the exploitation of real-life constructions, leads to the destruction of these con-
structions. Therefore, problems related to determining reasons for such destructions are of great
practical interest. In this paper, for the example of the delamination of a string from an elas-
tic substrate, the possibility of the localization of oscillations near a delamination defect was
demonstrated and the impact of this localization on the growth of the delamination zone was
analyzed. The problem considered here is only the first approximation of a fairly complicated
problem. A simplified setting of the problem under consideration was suggested. In construct-
ing an approximated analytic solution, only the first symmetric form of oscillations was taken
into account. In the future, non-symmetric forms and the transformation of oscillations as the
delamination zone grows must be taken into account. The simplest criterion for the growth of
the delamination zone was chosen, which does not take into account the real rheology near the
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boundaries of the delamination zone. It is quite natural to consider the generalization of the
obtained results to the case of the delamination of a two-dimensional film, a bar, and a thin
plate.

However, even the simplified model makes it possible to explain the destructions observed
in constructions with thin-layer coats under comparatively mild loads, which are caused by the
localization of oscillations near various defects.

REFERENCES

[1] G. P. Cherepanov, Mechanics of Destruction of Composite Materials. Nauka, Moscow,
1983 (in Russian).

[2] G. P. Cherepanov, Prikl. Mat. Mekh. 47, 832–845, 1983.

[3] V. V. Bolotin, Prikl. Mat. Mekh. 56, 150–162, 1992.

[4] V. V. Bolotin, Mekh. Kompozit. Mater., 2, 239–255, 1984.

[5] V. V. Bolotin, Mekh. Kompozit. Mater., 3, 410-418 (1988).

[6] S. S. Pos, W. Illg, and D. R. Sarber, Hidden impact damage in thick composites in Review
of Progress in Quantitative Nondestructive Evaluation, Plenum, New York, 5, 1986

[7] S. P. Joshi and C. T. Sun, Impact induced fracture in a laminated composite J. Composite
Mater. 19, 51–66, 1985.

[8] M. G. Andrews, R. Massabo, A. Cavicchi, and B. N. Cox, Dynamic interaction effects of
multiple delaminations in plates subject to cylindrical bending, Int. J. Solids Struct, 46,
1815–1833, 2009.

[9] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, and Yu. A. Mochalova, Localization of
Linear Waves. Izd. S.Peterb. Univ., 2007 (in Russian).

[10] V. M. Babich and N. S. Grigor’eva, Orthogonal Expansions and the Fourier. Izd. S.Peterb.
Univ., 1983 (in Russian).

10


