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Abstract. This paper deals with the incorporation of model uncertainties and the usage of ro-
bust control techniques in active vibration suppression of smart structures. The used advanced
control techniques are based on the H∞ criterion and m-analysis. Both techniques allow us
to take into account the worst case scenario of uncertain disturbances and noise of the system.
The presented results demonstrate remarkable efficiency of the proposed techniques.
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1 INTRODUCTION

The field of smart structures has been an emerging area of research for the last few decades
[2, 3, 4, 5, 9]. Smart structures are equipped with sensors, actuators and controlunits, and are
able to respond in a smart way to external stimuli. The importance of this field is supported
by developments in the field of materials science and technology and in the fiels of control and
electronics. In materials science, new smart materials are developed that can be used for sensing
and actuation in an efficient and controlled manner. These smart materials can be integrated into
structures so they can be employed as actuators and sensors for the resulting smart composite
structure. On the other hand the applicability of a smart structure strongly depends on the
efficient design and implementation of the control systems. Critical issues, like deviation of the
structure or the environment from their nominal values or time-delay, must be addressed. In
this paper we focus our attention on the existence of uncertainties in smart structures. A finite
element based model of a smart beam equipped with uncertainties is used. Based on this model
an H∞ and a µ-controller are designed which effectively suppress the vibrations of the smart
beam under stochastic wind-type loading. The advantage of the H∞ criterion is its ability to
take into account the worst influence of uncertain disturbances or noise in the system. By using
this technique it is possible to synthesize a H∞ controller which will be robust with respect to a
prespecified number of errors in the model.

Uncertainties in a structural model may arise from non-linearities which are not taken into
account in a linear model, from inaccurate knowledge of certain parameters (for example, damp-
ing), from unmodelled dynamics in higher frequencies, as well as from their variations over the
life of the structure. On the structural model with uncertainties a robust µ-controller is analyzed
and synthesized, using the D −K iterative method. The results are compared and commented
upon using the various controllers. The results are very good: the oscillations were suppressed
even for a real aeolian load, with the required voltages of the piezoelectric components taking
values within their endurance limits.

Figure 1: Beam with piezoelectric sensors/actuators.

2 MATHEMATICAL MODELLING

A cantilever slender beam with rectangular cross-section is considered. Four pairs of piezo-
electric patches are embedded symmetrically at the top and the bottom surfaces of the beam,
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as shown in Fig. 1. The beam is made from graphite- epoxy T300 − 976 and the piezoelec-
tric patches are PZTG1195N . The top patches act like sensors and the bottom like actuators.
The resulting composite beam is modelled by means of the classical laminated technical theory
of bending. Furthermore, we assume that the mechanical properties of both the piezoelectric
material and the host beam are independent in time. The thermal effects are considered to be
negligible as well [9].

The beam has length L, width b and thickness h. The sensors and the actuators have width bS

and bA and thickness hS and hA, respectively. The electromechanical parameters of the beam
used for the application of the method in this paper are given in the table.

Parameters Values
Beam length, L 0.3m
Beam width, W 0.04m

Beam thickness, h 0.0096m
Beam density, ρ 1600kg/m

Youngs modulus of the beam, E 1.5× 1011N/m2

Piezoelectric constant, d31 254× 10−12m/V
Electric constant, ξ33 11.5× 10−3V m/N

Young’s modulus of the piezoelectric element 1.5× 1011N/m2

Width of the piezoelectric element bS = ba = 0.04m
Thickness of the piezoelectric element hS = ha = 0.0002m

Table 1: Parameters of the composite beam.

2.1 Piezoelectric equations

In order to derive the basic equations for piezoelectric sensors and actuators (S/As), we
assume that:

• The piezoelectric S/A are bonded perfectly on the host beam;

• The piezoelectric layers are much thinner then the host beam;

• The piezoelectric material is homogeneous, transversely isotropic and linearly elastic;

• The piezoelectric S/A are transversely polarized (in the z-direction)[9].

Under these assumptions the three-dimensional linear constitutive equations are given by [8],

{
σxx

σxz

}
=

[
Q11 0
0 Q55

] ({
εxx

εxz

}
−

[
d31

0

]
Ez

)
(1)

Dz = Q11d31εxx + ξxxEz (2)

where σxx, σxz denote the axial and shear stress components, Dz, denotes the transverse elec-
trical displacement; εxx and εxz are axial and shear strain components; Q11, and Q55, denote
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elastic constants; d31, and ξ33, denote piezoelectric and dielectric constants, respectively. Equa-
tion 1 describes the inverse piezoelectric effect and equation 2 describes the direct piezoelectric
effect. Ez, is the transverse component of the electric field that is assumed to be constant for
the piezoelectric layers and its components in the xy-plain are supposed to vanish. If no electric
field is applied in the sensor layer, the direct piezoelectric equation 2 is fermed like this,

Dz = Q11d31εxx (3)

and it is used to calculate the output charge created by the strains in the beam.[7]

2.2 Equations of motion

We assume that:

• The beam centroidal and elastic axis coincides with the x-coordinate axis so that no
bending-torsion coupling is considered;

• The axial vibration of the host beam is considered negligible;

• The displacement field {u} = (u1, u2, u3) is obtained based on the usual Timoshenko
assumptions [1],

u1(x, y, z) ≈ zφ(x, t)

u2(x, y, z) ≈ 0

u3(x, y, x) ≈ w(x, t)

(4)

where φ is the rotation of the beam’s cross-section about the positive y-axis and w is the trans-
verse displacement of a point of the centroidal axis (y = z = 0).
The strain displacement relations can be applied to equation 4 to give,

εxx = z
ϑφ

ϑx
εxz = φ +

ϑw
ϑx

(5)

We suppose that the transverse shear deformation εxx is equal to zero[2].
In order to derive the equations of the motion of the beam we use Hamilton’s principle,[11]

∫ t1

t2

(δT − δU + δW )dt = 0, (6)

where T is the total kinetic energy of the system, U is the potential (strain) energy and W is
the virtual work done by the external mechanical and electrical loads and moments. The first
variation of the kinetic energy is given by,

δT =
1

2

∫

V

ρ

{
ϑu

ϑt

}r {
ϑu

ϑt

}
dV (7)

=
b

2

∫ L

0

∫ h
2
+hs

−h
2
−ha

ρ

(
z
ϑφ

ϑt
δ
ϑφ

ϑt
+

ϑw
ϑt

δ
ϑw
ϑt

)
dzdx
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The first variation of the kinetic energy is given by,

δU =
1

2

∫

V

δ{ε}T{σ}dV (8)

=
b

2

∫ L

0

∫ h
2
+hs

−h
2
−ha

[
Q11

(
z
ϑw
ϑx

δ

)(
z
ϑw
ϑx

)]
dzdx

If the load consists only of moments induced by piezoelectric actuators and since the structure
has no bending twisting couple then the first variation of the work has the form [11],

δW = b

∫ L

0

Maδ

(
ϑφ

ϑx

)
dx (9)

where Ma is the moment per unit length induced by the actuator layer and is given by,

Ma =

∫ −h
2

−h
2
−ha

zσa
xxdz =

∫ −h
2

−h
2
−ha

zQ11d31E
a
z dz (10)

(
Ea

z =
Va

ha

)

2.3 Finite element formulation

We consider a beam element of length Le, which has two mechanical degrees of freedom at
each node: one translational ω1 (respectively ω2) in direction y and one rotational ψ1 (respec-
tively ψ2), as it is shown in Fig. 2. The vector of nodal displacements and rotations qe is defined

Figure 2: Beam finite element.

as [8],

qe = [ω1, ψ1, ω2, ψ2] (11)

The transverse deflection ω(x, t) and rotation ψ(x, t) along the beam are continuous and they
are interpolated by Hermitian linear shape functions Hω

i and Hψ
i as follows[5],

ω(x, t) =
4∑

i=1

Hω
i (x)qi(t) (12)

ψ(x, t) =
4∑

i=1

Hψ
i (x)qi(t)
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This classical finite element procedure leads to the approximate (discretized) problem. For
a finite element the discrete differential equations are obtained by substituting the discretized
expressions 13 into equations 8 and 9 to evaluate the kinetic and strain energies. Integrating
over spatial domains and using the Hamilton’s principle 6 the equation of motion for a beam
element are expressed in terms of nodal variable q as follows [2, 6, 8],

Mq̈(t) + Dq̇(t) + Kq(t) = fm(t) + fe(t) (13)

where M is the mass matrix, D is the viscous damping matrix, K is the stiffness matrix, fm

is the external loading vector and fe is the generalized control force vector produced by elec-
tromechanical coupling effects. The independent variable vector q(t) is composed of transversal
deflections ωi and rotations ψi, i.e.,[4]

q(t) =




ω1

ψ1
...

ωn

ψn




(14)

where n is the number of nodes used in the analysis. Vectors w and fm are positive upwards.
For the state-space control transformation,we are presented with,

ẋ(t) =

[
q(t)
q̇(t)

]
(15)

Furthermore to express fe(t) in the form of Bu(t) we write it as the product f ∗e u, where f ∗e is
the piezoelectric force for a unit applied on the corresponding actuator, and u represents the
voltages on the actuators. Finally, d(t) = fm(t) is the disturbance vector[3]. Then,

ẋ(t) =

[
02n×2n I2n×2n

−M−1K −M−1D

]
x(t) +

[
02n×n

M−1f ∗e

]
u(t) +

[
02n×2n

M−1

]
(16)

= Ax(t) + Bu(t) + Gd(t) = Ax(t) +
[

B G
] [

u(t)
d(t)

]
= Ax(t) + B̃ũ(t) (17)

The previous description of the dynamical system will be augmented with the output equation
(displacements only measured)[5],

y(t) = [x1(t) x3(t) . . . xn−1(t)]
T = Cx(t) (18)

In this formulation u is n× 1 (at most, but can be smaller), while d is 2n× 1. The units used
are compatible for instance m, rad, sec and N. [6, 8]

3 DESIGN OBJECTIVES AND SYSTEM SPECIFICATIONS

The structured singular value of the transfer function to what matrix is defined as,

µ(M) =

{
1

minkm{det(I−kmM∆)=0, σ̄(∆)≤1}
0, ∆ det(I −M∆) = 0

(19)
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This quantity defines the smallest structured µ(M)(measured in terms of σ̄(∆))which makes
det(I −M∆) = 0: then µ(M) = 1

σ̄(∆)
. It follows that values of µ smaller than 1 are desired

[12, 13]
The design objectives fall into two categories:

1. Stability of closed loop system (plant+controller).

(a) Disturbance attenuation with satisfactory transient characteristics (overshoot, set-
tling time).

(b) Small control effort.

2. Robust performance

Stability of closed loop system (plant+controller) should be satisfied in the face of modelling
errors. [10]

In order to obtain the required system specifications with respect to the above objectives we
need to represent our system in the so-called - ∆ structure. Let us start with the simple typical
diagram of Fig. 3. [14, 15]

Figure 3: Classical control block diagram (P : plant dynamical system, C: controller)

In this diagram there are two inputs, d and n, and two outputs, u and x. In what follows it is
assumed that,

∥∥∥∥
d
n

∥∥∥∥
2

≤ 1,

∥∥∥∥
x
u

∥∥∥∥
2

≤ 1 (20)

If this is not the case, appropriate frequency-dependent weights can transform original sig-
nals so that the transformed signals have this property. The details of the system are given in
Fig.4:

In this description,

z =

[
u
x

]
, w =

[
d
n

]
(21)

where z are the output variables to be controlled, and w the exogenous inputs.

Given that P has two inputs and two outputs it is, as usual, naturally partitioned as,
[
z(s)
y(s)

]
=

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

] [
w(s)
u(s)

]
= P (s)

[
w(s)
u(s)

]
(22)
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Figure 4: Detailed two-port diagram (with a linear feedback control K)

Figure 5: Two-port diagram

In addition the controller is written,

u(s) = K(s)y(s) (23)

Substituting (22) in (23) gives the closed loop transfer function Nzw(s),

Nzw(s) = Pzw(s) + Pzu(s)K(s)(I − Pyu(s)K(s))−1Pyw(s) (24)

To deduce robustness specifications one more diagram is needed, namely that of Figure 6:
where N is defined by (24) and the uncertainty modelled in ∆ satisfies ||∆||∞ ≤ 1 (details are
given later on in this paper). Here,

z = Fu(N, ∆)w = [N22 + N21∆(I −N11∆)−1N12]w = Fw (25)
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Figure 6: Two port diagram with uncertainty

Given this structure we can state the following definitions:

Nominal stability (NS) ⇔ N internally stable
Nominal performance (NP ) ⇔ ||N22(jω)||∞ ≤ 1 ∀ω and NS

Robust stability (RS) ⇔ F = Fu(N, ∆) stable ∀∆, ||∆||∞ < 1 and NS

Robust performance (RP ) ⇔ ||F ||∞ < 1, ∀∆, ||∆||∞ < 1 and S

(26)

It has been proved that the following conditions hold in the case of block-diagonal real or
complex perturbations ∆:

1. The system is nominally stable if M is internally stable.

2. The system exhibits nominal performance if σ̄(N22(jω)) < 1

3. The system (M, ∆) is robustly stable if and only if,

sup
ω∈R

µ∆(N11(jω)) < 1 (27)

where µ∆ is the structured singular value of N given the structured uncertainty set ∆.
This condition is known as the generalized small gain theorem.

4. The system (N, ∆) exhibits robust performance if and only if,

sup
ω∈R

µ∆a(N(jω)) < 1 (28)

where,

∆a =

[
∆p 0
0 ∆

]
(29)

and ∆p is full complex, has the same structure as ∆ and dimensions corresponding to w,
z. [15]
Unfortunately, only bounds on µ can be estimated.
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3.1 Controller synthesis

All the above results support the analysis problem and provide tools to judge the performance
of any controller or to compare different controllers. However it is possible to approximately
synthesize a controller that achieves given performance in terms of the structured singular value
µ.

In this procedure, which is called (D, G − K) iteration [20] the problem of finding an µ-
optimal controller K such that µ(Fu(F (jω)), K(jω)) ≤ β, ∀ω is transformed into the problem
of finding transfer function matrices D(ω) ∈ D and G(ω) ∈ G, such that,

sup
ω

σ̄

[(
D(ω)Fu(F (jω), K(jω))D−1(ω)

γ
− jG(ω)

) (
I + G2(ω)

)− 1
2

]
≤ 1, ∀ω (30)

Unfortunately this method does not guarantee even finding local maxima. However for complex
perturbations a method known as D−K iteration is available (implemented in MATLAB). [20]
It combines H∞ synthesis and µ-analysis and often yields good results. The starting point is an
upper bound on µ in terms of the scaled singular value,

µ(N) ≤ min
D∈D

σ̄(DND−1) (31)

The idea is to find the controller that minimizes the peak over the frequency range namely,

min
K

(
min
D∈D

||DN(K)D−1||∞
)

(32)

by alternating between minimizing ||DN(|K)D−1||∞ with respect to either K or D (while
holding the other fixed).

1. K-step. Synthesize an H∞ controller for the scaled problem minK ||DN(K)D−1||∞
with fixed D(s).

2. D-step. Find D(jω) to minimize at each frequency σ̄(DND−1(jω)) with fixed N .

3. Fit the magnitude of each element of D(jω) to a stable and minimum phase transfer
function D(s) and got to Step 1. [20]

3.2 System uncertainty

Let us assume uncertainty in the mass M and K matrices of the form,

K = K0(I + kpI2n×2nδK)

M = M0(I + mpI2n×2nδM)
(33)

Alternatively, since in general the Reyleigh damping assupmtion is,

D = aK + βM (34)

D could be expressed similarly to K, M , as,

D = D0(I + dpI2n×2nδD) (35)
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In this way we introduce uncertainty in the form of percentage variation in the relevant matrices.
More detailed correlation of uncertainty with certain properties of the structures (e.g., material
constants, flexibility of joints, cracks or delaminations) is possible and will be investigated in
the future.

Here it will be assumed,

||∆||∞ def
=

∥∥∥∥
[
In×nδK 0n×n

0n×n In×nδM

]∥∥∥∥
∞

< 1 (36)

hence mp, kp are used to scale the percentage value and the zero subscript denotes nominal
values (it is reminded here that the norm for a matrix An×n is calculated through ||A||∞ =
max1≤j≤m

∑n
j=1 |aij|)

With these definitions Eq. 13 becomes,

M0(I + mpI2n×2nδM)ẅ(t) + K0(I + kpI2n×2nδK)w(t)

+[D0 + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM ]]ẇ(t) = fm(t) + fe(t)

⇒ M0ẅ(t) + D0q̇(t) + K0w(t) =

−[M0mpI2n×2nδM ẅ(t) + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM ]ẇ(t)+

K0kpI2n×2nδKw(t)]

= fm(t) + fe(t)

⇒ M0ẅ(t) + D0ẇ(t) + K0w(t) = D̃qu(t) + fm(t) + fe(t) (37)

where,

qu(t) =




ẅ(t)
ẇ(t)
w(t)


 (38)

D̃ = − [
M0mp K0kp

] [
I2n×2nδM 02n×2n

02n×2n I2n×2nδK

] [
I2n×2n 0.0005I2n×2n 02n×2n

02n×2n 0.0005I2n×2n I2n×2n

]

= G1 ·∆ ·G2

(39)

Writing (37) in state space form, gives,

ẋ(t) =

[
02n×2n I2n×2n

−M−1K −M−1D

]
x(t) +

[
02n×2n

M−1f ∗e

]
u(t) +

[
02n×2n

M−1

]
d(t) +

[
02n×6n

M−1F1 ·∆ ·G2

]
qu(t)

= Ax(t) + Bu(t) + Gd(t) + GuG2qu(t) (40)

In this way we treat uncertainty in the original matrices as an extra uncertainty term. To
express our system in the form of Fig. 6, consider Fig. 7.

The matrices E1, E2 are used to extract,

qu(t)
def
=




ẅ(t)
ẇ(t)
w(t)


 (41)

Since,

γ =

[
ẇ(t)
ẅ(t)

]
β =

∫ [
ẇ(t)
ẅ(t)

]
dt =

[
w(t)
ẇ(t)

]
(42)
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Figure 7: Uncertainty block diagram.

appropriate choices for E1, E2 are,

E1 =




02n×2n
... I2n×2n

· · · ... · · ·
I2n×2n

... 02n×2n

· · · ... · · ·
02n×2n

... 02n×2n




, E2 =




02n×2n
... 02n×2n

· · · ... · · ·
02n×2n

... 02n×2n

· · · ... · · ·
I2n×2n

... 02n×2n




(43)

The idea is to find an N such that,




qu

· · ·
ew

uw


 = N




pu

· · ·
dw

nw


 , N =




Npuqu

... Ndwqu Nnwqu

· · · ... · · · · · ·
Npuew

... Ndwew Nnwew

Npuuw

... Ndwuw Nnwuw




=

[
N11 N12

N21 N22

]
(44)

or in the notation of Fig. 6
[
qu

w

]
= N

[
pu

z

]
(45)

Now Ndwew , Nnwew , Nnwuw are known. For the rest we will use a methodology known as
“pulling out the ∆’s”. To this end, break the loop at points pu, qu (which will be used as
additional inputs/outputs respectively) and use the auxiliary signals a, β, γ. To get the transfer
function Ndwqu (from dw to qu):

qu = G2(E2β + E1γ) = G2(E2
1

s
+ E1)γ (46)

γ = GWddw + Bu + A
1

s
γ = GWddw + BKC

1

s
γ + A

1

s
γ (47)

⇒ γ = (I −BKC
1

s
− A

1

s
)−1GWddw (48)

12
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Hence,

Ndwqu = G2(E2
1

s
+ E1)(I −BKC

1

s
− A

1

s
)−1GWd (49)

Now, Npuqu , Npuew , Npuuw , are similar to Ndwqu , Ndwew , Ndwuw , with GWd replaced by Gu,
i.e.,

Npuqu = G2(E2
1

s
+ E1)(I −BKC

1

s
− A

1

s
)−1Gu

Npuew = WyJH[I + B[K(I − CHBK)−1CH]]Gu

Mpuuw = WuK(I − CHBK)−1CHGu

(50)

Finally to find Nnwqu ,

qu = G2(E2β + E1γ) = G2(E2
1

s
+ E1)γ (51)

γ = Bu + A
1

s
γ = BK(Wnnw + y) + A

1

s
γ = BKWnnw + BKC

1

s
γ + A

1

s
γ (52)

⇒ γ = (I −BKC
1

s
− A

1

s
)−1BKWnnw (53)

Hence,

Nnwqu = G2(E2
1

+
E1)(I −BKC

1

s
− A

1

s
)−1BKWn (54)

Collecting all the above yields N :

N =


G2(E2
1
s +E1)(I−BKC 1

s−A 1
s)
−1

Gu G2(E2
1
s +E1)(I−BKC 1

s−A 1
s)
−1

GWd G2(E2
1
s +E1)(I−BKC 1

s−A 1
s)
−1

BKWu

WeJH[I+BK(I−CHBK)−1CF ]Gu WeJ(I−HBKC)−1HGWd WeJ(I−HBKC)−1HBKWu

WuK(I−CHBK)−1CFGu Wu(I−KCHB)−1KCHGWd Wu(I−KCHB)−1KW


(55)

Having obtained N for the beam problem, all proposed controllers K(s) can be compared
using the structured singular value relations. [18, 19, 21]

4 ROBUSTNESS ISSUES

The superiority of H∞ control lies in its ability to take explicitly into account the worst
effect of unknown disturbances and noise in the system. Furthermore, at least in theory, it is
possible to synthesize an H∞ controller that is robust to a prescribed amount of modeling errors.
Unfortunately, this last possibility is not implementable in some cases, as it will be subsequently
illustrated.[16, 17]

In what follows, the robustness to modeling errors of the designed H∞ controller will be an-
alyzed. Furthermore an attempt to synthesize a µ-controller will be presented, and comparisons
between the two will be made.

In all simulations, routines from Matlab’s Robust Control Toolbox will be used. In particular:

1. For uncertain elements,

13
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2. To calculate bounds on the structured singular value,

3. To calculate a µ-controller,

Numerical models used in all simulations, are implemented in three ways:

1. Through Eq. 56

K = K0(I + kpI2n×2nδK)

M = M0(I + mpI2n×2nδM)

D = D0 + 0, 0005[K0kpI2n×2nδK + M0mpI2n×2nδM ]

(56)

and subsequent evaluation of matrix N for specific values of kp, mp.

2. By use of Matlab’s “uncertain element object”. As explained, this form is needed in the
D-K robust synthesis algorithm.

3. By Simulink implementation of Fig. 8.

Figure 8: Simulink diagram of uncertain plant

4.1 Robust analysis - Results

Robust analysis is carried out through the relations:

sup
ω∈R

µ∆(N11(jω)) < 1 (57)

for robust stability, and,

sup
ω∈R

µ∆a(N(jω)) < 1 (58)

for robust performance.
In all the simulations that follow the disturbance is the mechanical load, i.e. 10N at the free

end. For the H∞ found, robust analysis was performed for the following values of mp, kp.

1. mp = 0, kp = 0.9. This corresponds to a ±90% variation from the nominal value of the
stiffness matrix K.

In Fig. 9 the displacement responses for this controller for the mechanical input are
shown. In Fig. 10 are shown the bounds on the µ values. As seen the system remains

14



Amalia Moutsopoulou, Georgios E. Stavroulakis and Anastasios Pouliezos

Figure 9: Displacement response loading equal to 10N at free end, µ-controller for mp = 0, kp = 0.9

Figure 10: µ-bounds of the H∞ controller for mp = 0, kp = 0.9

Figure 11: Displacement and control at free end for the H∞ controller with mp = 0, kp = 0.9 (extreme values)

stable and exhibits robust performance, since the upper bounds of both values remain
below 1 for all frequencies of interest. This result is validated in Fig. 11, where the
displacement of the free end and the voltage applied are shown at the extreme uncertainty.
Comparison with the open loop response for the same plant shows the good performance
of the nominal controller.
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2. mp = 0.9, kp = 0. This corresponds to a ±90% variation from the nominal value of the
mass matrix M .

In Fig. 12 are shown the bounds on the µ values. As seen the system remains stable and
exhibits robust performance, since the upper bounds of both values remain below 1 for
all frequencies of interest. This result is validated in Fig. 13, where the displacement of
the free end and the voltage applied are shown. Comparison with the open loop response
for the same plant shows the good performance of the nominal controller.

Figure 12: µ-bounds of the H∞ controller for mp = 0.9, kp = 0

Figure 13: Displacement and control at free end for the H∞ controller with mp = 0.9, kp = 0(extreme values)

3. mp = 0.9, kp = 0.9. This corresponds to a ±90% variation from the nominal values of
both the mass and stiffness matrices M , K.

In Fig. 14 are shown the bounds on the µ values. As seen the system remains stable and
exhibits robust performance, since the upper bounds of both values remain below 1 for
all frequencies of interest. This result is validated in Fig. 15, where the displacement of
the free end and the voltage applied are shown. Comparison with the open loop response
for the same plant shows the good performance of the nominal controller.
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Figure 14: Displacement and control at free end for the H∞ controller with mp = 0.9, kp = 0(extreme values)

Figure 15: Displacement and control at free end for the H∞ controller with mp = 0.9, kp = 0(extreme values)

5 CONCLUSIONS

In this paper advanced control techniques, like criterion H∞ and m-analysis, have been ap-
plied for the suppression vibrations of smart structures. Under the assumption of an uncertainty
introduced at the level of matrices in the structural analysis of the system the robust character-
istics of the H∞ controller and m-analysis were checked. There was a complete suppression
of the oscillation and rigidity of the beam up to and including 90% variation from the nominal
values.

An effort was made to find a robust µ-controller, using the recurring method D − K. In
this case the resulting order of the controller as well as the required calculation requirements
was very large. The performance of the robust µ-controller was not the one expected, some-
thing that most likely is due to the numerical properties of the system tables. Contrary to the
H∞ controller, the results are quite satisfactory and prove that the H∞ control can suppress the
oscillation of the smart beam taking into account the modelling uncertainties, external distur-
bances and the noise of the measurements.

In summary, the scientific fields which this paper has contributed to are:

• Application of the control in suppressing the oscillation of structural models.

• Introduction of the uncertainties in the mathematic model of structural elements.

• Suppression of oscillation and rejection of disturbances, by taking into account the mod-
elling error, using the criterion of the robust H∞ control.
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• Reduction of the calculation requirements of the control using optimisation algorithms.

• Finding of a robust µ-controller

Experimental verification of the very good results that were found in this work as well as
further detailed correlation of uncertainties with the real parameters of the mechanical system
(material parameters, joints, cracks and delaminations etc) remain open for future investiga-
tions.
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