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Abstract. One approach to the numerical analysis of complex waveguides is the Wave Finite
Element (WFE) method. In this method conventional Finite Elements (FEs) are used to dis-
cretise a small segment of a waveguide. The FE model of just this small part of the structure
is post-processed using periodicity conditions, and an eigenproblem is then solved to predict
dispersion characteristics and wavemodes. Once the wave characteristics are predicted, free
vibration and response of the structure as a whole can be modelled in terms of these waves.
This paper presents an extension of the method to moving one-dimensional waveguides. In par-
ticular an axially moving beam is considered. The FE formulation of a moving beam element is
developed and the WFE method is applied to find the wave properties of such a beam. Natural
frequency are obtained using the Phase Closure Principle and the Dynamic Stiffness Matrix,
both formulated in terms of wavemodes and dispersion relation obtained from the WFE eigen-
problem. The analytical equation of transverse motion of the travelling beam is also solved
in terms of propagating and decaying waves, and the frequency equation is obtained using the
phase closure principle. Numerical results are shown.
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1 INTRODUCTION

The research on the dynamics of moving media has had a renewedinterest in the last few
decade giving rise to large scientific production. There area number of applications which
involve moving structures and fluids, and the necessity to improve their performance has mo-
tivated the development of numerical and analytical methods to investigate the dynamics of
mechanical models involving transport of mass. Studies on the dynamics of axially moving
structures have been made by several authors, and many original and interesting studies have
been produced. To cite just a few, the works [1, 2, 3, 4] can be listed.

In this paper the dynamics of a travelling one-dimensional waveguides is investigated using
a Wave Finite Element method [5, 6]. The method is an FE post-processing technique for
obtaining numerical prediction of wave characteristics. The method involves conventional FE
analysis of a small segment of the structure. Typically thisconsists of just a single finite element,
or a stack of elements meshed through the cross-section. TheFE matrices of this segment are
then post-processed using periodicity conditions, resulting in an eigenproblem, whose solutions
yield the dispersion curves, frequency evolution of the wavenumber, and wavemodes. Once the
dispersion characteristics are known, existing wave propagation methods can be applied to take
into account boundary conditions, calculate natural frequencies, forced response or determine
the systems stability [7].

An axially moving beam, modelled using the classical lineartheory, is studied in the present
paper. The FE element formulation of a linear moving beam element is derived following [8],
and application of the WFE method is briefly described. Free vibrations of the moving beam are
predicted using the Phase Closure Principle [9] and the Dynamic Stiffness Matrix [10] formu-
lated in terms of wavemodes. These are applied once the wave characteristics are known from
the WFE model. An analytical wave approach is also presentedto show some characteristics
of the elastic waves propagating in such a beam. Numerical results are shown and the accuracy
of the proposed approach is discussed. The theory used in this paper is linear, therefore results
are consistent with ‘low’ axial velocity and small deformation. However, this linear model well
approximates the behaviour of many real cases, and it can be helpful for predicting instability
region, where nonlinear terms become significant [11]. It must be pointed out that wave prop-
agation in a travelling beam were also investigated by Chakraborty and Mallik in [12], and a
Dynamic Stiffness Formulation of a moving beam was given by Banerjee and Gunawardana
[13]. Both these works involve an analytical formulation ofthe equation of motion, while the
present work concerns the application of a numerical technique based on FE analysis.

Although for the case of a moving beam there are no practical advantages in calculating
dispersion curves and natural frequencies using the proposed method, this work shows that
the WFE method can provide results for moving waveguides. This is of particular interest
in more complicated cases where analytical formulation of the problem can be difficult and
computational cost using standard numerical approaches can be very large.

2 EQUATION OF MOTION AND FE FORMULATION OF A MOVING BEAM ELE-
MENT

A prismatic axially moving beam is considered. The beam is modelled using an Eulero–
Bernoulli beam with constant mass per unit lengthρ and constant flexural rigidityEI. The
beam moves with axial speedv(t), and its transverse displacement, measured by a stationary
observer, is denoted byy(x, t), figure 1. External excitation are not taken into account.
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Figure 1: Schematic model of an axially moving beam.

Time differentiation of the displacement yields

dy
dt

=
∂y
∂t

+ v
∂y
∂x

;

d2y
dt2

=
∂2y
∂t2

+ 2v
∂2y
∂x∂t

+ v2 ∂2y
∂x2 + ∂v

∂t
∂y
∂x

.

(1)

Accordingly, the analytical equation of transverse motionis

EI
∂4y

∂x4 + ρ

(

∂2y

∂t2
+ 2v

∂2y

∂x∂t
+ v2 ∂2y

∂x2 +
∂v

∂t

∂y

∂x

)

= 0. (2)

In order to apply the WFE approach, a small segment of lengthL is taken and discretised us-
ing FE elements. Therefore a moving beam FE element is developed. The kinetic and potential
energy of the element are

T = 1
2ρ

∫ L

0

(

∂2y
∂t2

+ 2v
∂2y
∂x∂t

+ v2 ∂2y
∂x2

)

dx;

V = 1
2EI

∫ L

0

(

∂2y
∂x2

)2

dx.

(3)

The transverse displacement of the beam element is modelledby standard cubic shape function
N(x) [14] and nodal displacementsq, that is

y = N(x)q. (4)

Substituting this equation in (3), the Lagrangian of the moving element is given by [8]

L =
1

2
q̇TMq̇ +

1

2
qTK1q − 1

2
qTK2q +

1

2
qTC1q̇ +

1

2
q̇TC2q, (5)

with

M = ρ
∫ L

0
NTN dx; K1 = ρv2

∫ L

0
N′TN′ dx; K2 = EI

∫ L

0
N′′TN′′ dx;

C1 = ρv
∫ L

0
N′TN dx; C2 = ρv

∫ L

0
NTN′ dx,

(6)

where′ denotes differentiation with respect tox. The FE equation of motion can be obtained
using Euler–Lagrangian equations. Therefore the FE equations of motion of a moving beam
element are

Mq̈ +
(

C2 −CT
2

)

q̇ +
(

Ċ2 − K2 + K1

)

q = f , (7)
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wheref are nodal forces.
Although in this section a general formulation consideringtime dependent velocity is given,

in the following sections a constant axial velocity is assumed, that is∂v
∂t

= 0 in equation (2)

andĊ2 = 0 in equation (7).

3 WAVE MOTION AND FREE VIBRATION

In this section the dynamics of the travelling beam is described using a wave approach.
Solution of equation (2) are written in terms of harmonic wavesy(x, t) = Aei(ωt−kx) which,
substituted into (2), gives the dispersion relation between wavenumbers and frequencies:

a2k4 − v2k2 + 2vwk − w2 = 0, (8)

wherea =
√

EI
ρ . The roots of this equation are

kd = −1
2

v
a + 1

2

√

v2

a2 + 4w
a ; ku = 1

2
v
a + 1

2

√

v2

a2 + 4w
a ;

kde = 1
2

√

4w
a − v2

a2 + i12
v
a ; kue = 1

2

√

4w
a − v2

a2 − i12
v
a,

(9)

and the solution of the homogeneous equation (2) can be written as a linear combination of
these four flexural waves

y(x, t) = Ade
−ikdxeiwt + Aue

ikuxeiwt + Adee
−kdexeiwt + Auee

kuexeiwt. (10)

For 0 < v < 2
√

ωa solutionskde andkue represent attenuating waves, therefore equations (9)
represent one positive-going and one negative-going propagating waves,kd andku respectively,
and one positive-going and one negative-going decaying waves,kde andkue respectively. On
the other side, forv > 2

√
ωa solutionskde andkue are real numbers representing two positive-

going propagating waves. Hence, whenv > 2
√

ωa there are four propagating waves, three
positive-going waves,kd, kde andkue, and one negative-going wave,ku. However,vg = 2

√
ωa

is the group velocity of a disturbance propagating in the beam, and it is expected that instability
occurs when the axial velocity is faster than the energy velocity in the medium considered.
Moreover, the axial speed is often much smaller than the speed of any travelling disturbance in
the beam. Therefore the inequality0 < v < 2

√
ωa is assumed in the present paper.

Using the same formalism proposed in [9], the wave amplitudeof the positive and negative
going waves is given byA+ = [Ad, Ade]

T andA− = [Au, Aue]
T , while the transfer matricesF+

andF− describe the propagation from one point to another through appropriate wavenumber

F+(x) =

[

e−ikdx 0
0 e−kdex

]

, F−(x) =

[

eikux 0
0 ekuex

]

. (11)

To evaluate the free vibration, the interaction of both propagating and decaying waves with
discontinuities is considered, and wave amplitudes and phases after reflection and transmission
are arranged in reflection and transmission matrices. The elements of these matrices are ob-
tained imposing equilibrium conditions [9]. In this paper we consider boundary conditions at
the ends of the beamA(x = 0) andB(x = Ltot), whereLtot is the total length of the beam, and
the reflection matrices at the boundaries are denoted byRA andRB.
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The wave amplitudes at each ends of the beam are denoted byA+, A−, B+ andB−. If the
incident waves impinging upon the right end atA(x = 0) are the negative-going wavesA−, then
reflected waves have amplitudeA+ = RA A−. Similarly if the incident waves impinging upon
the left end are the positive-going waves of amplitudeB+, reflected waves areB− = RB B+.
Considering the wave reflection matrices and using the transfer matrices, the following relations
can be written

A+ = RA A−; B− = RB B+; B+ = F+(Ltot) A+; A− = F−(−Ltot) B−. (12)

Combing equations in (12), the characteristic equation is obtained

[

RA F−(−L) RA F+(L) − I
]

A+ = 0. (13)

For non trivial solution, the determinant of the coefficientsA+ must be zero, that is
∣

∣det
(

RA F−(−Ltot) RA F+(Ltot) − I
)
∣

∣ = 0. (14)

Solutions of equations (14) and (13) give the natural frequencies and natural modes.

4 WAVE FINITE ELEMENT MODEL

In this section the WFE approach is briefly described. The FE equation of motion (7) of the
moving beam element is considered withĊ2 = 0. Assuming time harmonic behaviour, the
equation of motion is

(

−ω2M + iωCeq + Keq

)

q = f, (15)

whereCeq = C2 −CT
2 andKeq = K2 −K1.

qL

fL
qR

fR

Figure 2: WFE model and node numbering.

The nodal degrees of freedom (DOFs)q and the nodal forcesf are partitioned into left and
right, figure 2, that is

q = [qT
L qT

R]T ; (16)

T denoting the transpose, with a similar expression for the nodal forcesf. Under the passage of
a wave the nodal DOFs are related by periodicity conditions [15]

qR = λqL, (17)

whereλ = e−ikL andk is the wavenumber, while equilibrium at left side of the segment implies

[I λ−1I]f = 0. (18)

By substituting equation (17) in equation (15), and premultiplying both sides of equation (15)
by the matrix in equation (18), the equation of free wave motion takes the form

[Keq(kL) − ω2M(kL) + iωCeq(kL)]qL = 0. (19)
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Solutions of equation (19) yield the dispersion curves and the wavemode shapes. This involves
solving a quadratic polynomial eigenvalue problem, which is recast as the standard linear eigen-
value problem [5, 6]. Associated with eigenvalues, viz. wavenumbers, are eigenvectorsΦqj ,
which represent wavemodes, and vectors

Φfj =
[

Keq(kL) − ω2M(kL) + iωCeq(kL)
]

Φqj . (20)

These can be partitioned into positive-going and negative-going waves, which are denoted by
(λ+

j , Φ+
qj, Φ

+
fj) and(λ−

j , Φ−
qj , Φ

−
fj) respectively. Positive going waves are typically characterised

by [7]
|λ+

j | <= 1; Real[iωfLqL] < 0 if |λ+
j | = 1. (21)

Note that if there aren degrees of freedom for nodeL andR, then there are2n eigenvalues and
the eigenvectors matrixΦq andΦf aren × 2n.

5 FREE VIBRATION USING WFE DISPERSION RELATION AND WAVEMODES

Free vibration and dynamic response can be obtained using wave-based methods, in partic-
ular when the analysis focus on disturbance propagation [7]. In this section natural frequencies
are predicted using wavemodes and dispersion curves obtained from the WFE eigenproblem
(19). In the following it is assumed that nodal forces and displacements are described in terms
of wave amplitudesA using wavemodes as a basis, that is

qL = ΦqA; fL = ΦfA. (22)

In practise displacements are often expanded onto a reducedbasis and onlym < 2n pairs of
waves - positive and negative going waves - are retained, so thatΦq andΦf aren×m matrices
andλ is an array of sizem [7]. Although there is not a rigorous criterium, this reduced basis
is supposed to include all the wavemodes which mostly contributes to the structure response.
Typically all the propagating waves are retained together with the attenuating and evanescent
waves which either decay not very rapidly with distance or are becoming propagating in the
frequency band of interest.

5.1 Dynamic Stiffness Formulation

The dynamic stiffness matrix [10] of the beam is developed using wavemodes and disper-
sion curves, and subsequently used to investigate free vibration characteristics. IfN = Ltot/L,
whereLtot is the total length of the beam andN is typically an entire number, the total displace-
ment atA(x = 0) andB(x = NL) can be expanded as

Q =

[

q(0)
q(NL)

]

=

[

Φq

Φq∧N

]

A = DqA. (23)

In equation (23) the diagonal matrix∧ = diag(λ1, . . . , λm) contains the WFE eigenvalues, and
the matrixDq is a rectangular2n × m matrix. A similar expression is given for nodal forces

F =

[

f(0)
f(NL)

]

=

[

Φf

Φf∧N

]

A = DfA. (24)

Since wavemodes are assumed to be linearly independent, thematrix Dq is a full column rank
matrix, i.e. rank(Dq) = m, and the left pseudoinverseD†

q can be calculated. Hence the wave
amplitude can be obtained from

A = D†
qQ. (25)
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Substituting equation (25) in equation (24) yields

F = Df D†
qQ = DQ, (26)

whereD is the dynamic stiffness matrix. Once the dynamic stiffnessmatrix is obtained, free
vibration are calculated in the usual way as it is done in the FE method. In particular resonances
occur when|det(D

′
)| = 0, whereD

′
is obtained fromD after applying boundary conditions.

A numerical procedure is used in the present work. Thereforethe determinant is evaluated
numerically for each frequency, and resonances occur when|det(D

′
)| shows stationary values.

It is of worth to point out that the present formulation can also be used to evaluated the forced
response of the structure.

5.2 Phase Closure Principle

Following section 3, consider a beam with some boundary conditions at the endA(x = 0)
andB(x = Ltot). Again wave amplitudes at each end are denoted byA+, A−, B+ andB− and
the boundary conditions have reflection matricesRA andRB. According to [7], the boundary
conditions can be written asEq + Gf = 0. Complicated boundary conditions can be easily
introduced using this formulation. Since displacements and forces can be expanded asq =
Φ+

q A+ + Φ−
q A− andf = Φ+

f A+ + Φ−
f A−, reflection matrices are

RB = −(EBΦ−
f + GBΦ−

q )†(EBΦ+
f + GBΦ+

q );
RA = −(EAΦ+

f + GAΦ+
q )†(EAΦ−

f + GAΦ−
q ).

(27)

Equation (12) can be rewritten asB+ = [∧+]
N A+, A− = [∧−]

N B−, B− = RBB+ and
A+ = RAA−, which solved give

[RA

[

∧−
]N

RB

[

∧+
]N − I]A+ = 0, (28)

where[∧+] = diag(λ+
1 , . . . , λ+

m) and [∧−] = diag(λ−
1 , . . . , λ−

m) correspond to positive-going
and negative-going waves. Therefore natural frequencies occur when

|det(RA

[

∧−
]N

RB

[

∧+
]N − I)| (29)

shows stationary values.

6 NUMERICAL EXAMPLE

In this section a numerical example is presented and WFE results are compared with those
obtained using the wave approach described in section 3. Thebeam considered is an aluminum
beam with cross sectionh = 0.002m. The element length for the WFE formulation isL =
0.001m. Figure 3 shows the complex dispersion curves obtained from equations (9) and (19),
whereΩ = L2ω/a is the non-dimensional frequency. It can be noticed that results agree very
well. Table 1–3 show natural frequencies of the beam predicted for different values of the
axial velocity. The beam is simply supported, and its total length isLtot = 0.4m. Results
obtained from equations (14), (26), and (28) are compared. It can be noticed that equation (28)
gives more accurate results with respect to equation (26). Hence the Phase Closure Principle
seems to be preferable for WFE application. Accuracy of the numerical WFE results increases
with frequency. This is perhaps due to the short length of theFE element. It can also be noticed
that natural frequencies decrease when the axial velocity increases. Divergence instability in
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Figure 3: Complex valued dispersion curves,v = 20m/s. Analytical results from (9): ——- ; WFE results from
(19): * * * *.

Natural frequency [Hz]
Analytical solutions, Eq. (14) 28.9 116.8 263.3 468.4 732.11054.4
WFE Dynamic Stiffness Matrix Eq. (26) 28.5 116.6 263.2 468.3732.0 1054.3
WFE Phase Closure Principle Eq. (28) 28.9 116.8 263.3 468.4 732.1 1054.4

Table 1: Simply supported beam,v = 5m/s.

Natural frequency [Hz]
Analytical solutions, Eq. (14) 23.96 111.9 258.4 463.4 727.1 1049.4
WFE Dynamic Stiffness Matrix Eq. (26) - 108.2 256.0 461.7 725.7 1048.3
WFE Phase Closure Principle Eq. (28) - 112 258.4 463.4 727.1 1049.4

Table 2: Simply supported beam,v = 20m/s.
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Natural frequency [Hz]
Analytical solutions, Eq. (14) 17.3 105.2 251.7 456.7 720.51042.7
WFE Dynamic Stiffness Matrix Eq. (26) - 96.0 246.2 452.8 717.3 1040.1
WFE Phase Closure Principle Eq. (28) - 106.0 252.0 456.9 720.5 1042.8

Table 3: Simply supported beam,v = 30m/s.

fact occurs at a critical moving speed [11], where the lineartheory breaks down. However, far
from the critical speed, which for the present case is quite high, the method proposed offers a
powerful alternative to analytical approaches, in particular for more complicated cases, such as
pipe conveying fluid, which will be the subject of further analysis. Moreover, the linear theory
can be the first step in the analsysis to provides useful information for a more refined nonlinear
investigation.

It is of worth noting that, for a simply supported beam, a closed form approximate frequency
neglecting evanescent waves in (14) is

ω =
n2π2

L2 a − v2

4a
. (30)

Accuracy of equation (30) is related to the rate of decay of evanescent waveskde andkue, thus
it is expected that equation (30) is more accurate for higherfrequency and low axial speed.

7 CONCLUSIONS

In the present paper the dynamics of a travelling one-dimensional waveguide was studied
using a Wave Finite Element method. In particular an axiallymoving beam, modelled using
the classical linear theory, was considered. The FE formulation of a moving beam element was
developed, and a brief description of the WFE method was given. Natural frequencies were then
calculated using the Dynamic Stiffness Matrix and the PhaseClosure Principle, both formulated
in terms of wave characteristics obtained from the WFE eigenproblem. An analytical wave
approach was also presented to show some characteristics ofthe elastic waves propagating in
such a beam. Numerical examples were shown. Results were compared with those obtained
using the analytical approach, showing the accuracy of the proposed technique, in particular at
higher frequency.
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