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Abstract. One approach to the numerical analysis of complex waveguides is the Wave Finite
Element (WFE) method. In this method conventional Finite Elements (FEs) are used to dis-
cretise a small segment of a waveguide. The FE model of just this small part of the structure
is post-processed using periodicity conditions, and an eigenproblem is then solved to predict
dispersion characteristics and wavemodes. Once the wave characteristics are predicted, free
vibration and response of the structure as a whole can be modelled in terms of these waves.
This paper presents an extension of the method to moving one-dimensional waveguides. In par-
ticular an axially moving beam is considered. The FE formulation of a moving beam element is
developed and the WFE method is applied to find the wave properties of such a beam. Natural
frequency are obtained using the Phase Closure Principle and the Dynamic Stiffness Matrix,
both formulated in terms of wavemodes and dispersion relation obtained from the WFE eigen-
problem. The analytical equation of transverse motion of the travelling beam is also solved
in terms of propagating and decaying waves, and the frequency equation is obtained using the
phase closure principle. Numerical results are shown.
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1 INTRODUCTION

The research on the dynamics of moving media has had a rerateeést in the last few
decade giving rise to large scientific production. Therearaumber of applications which
involve moving structures and fluids, and the necessity ave their performance has mo-
tivated the development of numerical and analytical methodinvestigate the dynamics of
mechanical models involving transport of mass. Studieshendnamics of axially moving
structures have been made by several authors, and mangabrégid interesting studies have
been produced. To cite just a few, the workd 1,12} 3, 4] candbed.

In this paper the dynamics of a travelling one-dimensioraleguides is investigated using
a Wave Finite Element method! [B, 6]. The method is an FE pastgssing technique for
obtaining numerical prediction of wave characteristiche Thethod involves conventional FE
analysis of a small segment of the structure. Typicallye¢bissists of just a single finite element,
or a stack of elements meshed through the cross-sectionFEmeatrices of this segment are
then post-processed using periodicity conditions, regyih an eigenproblem, whose solutions
yield the dispersion curves, frequency evolution of theevaxmber, and wavemodes. Once the
dispersion characteristics are known, existing wave grafan methods can be applied to take
into account boundary conditions, calculate natural fezgies, forced response or determine
the systems stability [7].

An axially moving beam, modelled using the classical lirthaory, is studied in the present
paper. The FE element formulation of a linear moving bearmet# is derived following([8],
and application of the WFE method is briefly described. Fibetions of the moving beam are
predicted using the Phase Closure Principle [9] and the Byn&tiffness Matrix[[10] formu-
lated in terms of wavemodes. These are applied once the \wavaateristics are known from
the WFE model. An analytical wave approach is also presaotstiow some characteristics
of the elastic waves propagating in such a beam. Numerisaltseare shown and the accuracy
of the proposed approach is discussed. The theory usedsipdber is linear, therefore results
are consistent with ‘low’ axial velocity and small deforneat. However, this linear model well
approximates the behaviour of many real cases, and it caelp&hfor predicting instability
region, where nonlinear terms become significant [11]. Istine pointed out that wave prop-
agation in a travelling beam were also investigated by Citadity and Mallik in[[12], and a
Dynamic Stiffness Formulation of a moving beam was given lap@jee and Gunawardana
[13]. Both these works involve an analytical formulationtibé equation of motion, while the
present work concerns the application of a numerical teglenbased on FE analysis.

Although for the case of a moving beam there are no practibahr@ages in calculating
dispersion curves and natural frequencies using the peabosethod, this work shows that
the WFE method can provide results for moving waveguidesis Ehof particular interest
in more complicated cases where analytical formulationhef problem can be difficult and
computational cost using standard numerical approachebesgery large.

2 EQUATION OF MOTION AND FE FORMULATION OF A MOVING BEAM ELE-
MENT

A prismatic axially moving beam is considered. The beam isl@fled using an Eulero—
Bernoulli beam with constant mass per unit lengtand constant flexural rigidity?/. The
beam moves with axial speedt), and its transverse displacement, measured by a stationary
observer, is denoted hy(z, ¢), figure[l. External excitation are not taken into account.
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Figure 1: Schematic model of an axially moving beam.

Time differentiation of the displacement yields
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Accordingly, the analytical equation of transverse motsn
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In order to apply the WFE approach, a small segment of lehgsitaken and discretised us-
ing FE elements. Therefore a moving beam FE element is de»eld he kinetic and potential

energy of the element are

1. L[y Oy Oy
_épfo (8t2 +2Uaxat‘|‘v28 dx

V=3Bl < xg) dz.

The transverse displacement of the beam element is modslisndard cubic shape function
N(x) [14] and nodal displacemends that is

(@)

3)

y = N(z)q. (4)
Substituting this equation ifl(3), the Lagrangian of the mg\element is given by [8]
1. .1 1 1 .1,
L=34"Ma+2q"Kiqg - 54" Kzq + 2a"Cig + 54" Caq, (5)

with
M =p ['NT™Ndx; K;=pv? [N N dx; K, =EI [} N""N"dx;
(6)
Ci=pv [y NTNdx; Cy=pv [}’ NTN'dx,
where’ denotes differentiation with respect to The FE equation of motion can be obtained
using Euler-Lagrangian equations. Therefore the FE egumtf motion of a moving beam

element are '
MQ+(C2_C’2I‘)('1+<C2—K2+K1>q:f, (7)

3



E. Manconi, R. Garziera

wheref are nodal forces.
Although in this section a general formulation considetinge dependent velocity is given,

in the following sections a constant axial velocity is asedithat is% = 0 in equation[(R)
andC, = 0 in equation[(y).

3 WAVE MOTION AND FREE VIBRATION

In this section the dynamics of the travelling beam is désctiusing a wave approach.
Solution of equation[{2) are written in terms of harmonic e&y(z,t) = Ae'“*=%2) which,
substituted into[{2), gives the dispersion relation betw&avenumbers and frequencies:

a’kt — v k? + 2vwk — w? =0, (8)

wherea = ,/%. The roots of this equation are

1 1y, 1
ka=—5q+35\/ 2 +4G: k=g + 91/ 2 +4G

DO —

9)

2
kde:% 4%_%+2%%7 kue:% 4%_1)_2_2%%7

and the solution of the homogeneous equatidn (2) can beewréts a linear combination of
these four flexural waves

y(ﬂf, t) — Adefikd:ceiwt + Aueikuxeiwt 4 Adeefkdexeiwt 4 Aueekuemeiwt. (10)

For0 < v < 2y/wa solutionsk,. andk,. represent attenuating waves, therefore equatldns (9)
represent one positive-going and one negative-going gaipay wavesk, andk, respectively,
and one positive-going and one negative-going decayingsvay. andk,. respectively. On
the other side, for > 2,/wa solutionsk,. andk,. are real numbers representing two positive-
going propagating waves. Hence, when> 2./wa there are four propagating waves, three
positive-going waves;,, kq. andk,., and one negative-going wave,. However,py, = 2\/wa
is the group velocity of a disturbance propagating in therhemnd it is expected that instability
occurs when the axial velocity is faster than the energyaorgion the medium considered.
Moreover, the axial speed is often much smaller than thedspeany travelling disturbance in
the beam. Therefore the inequality v < 21/wa is assumed in the present paper.

Using the same formalism proposed|in [9], the wave amplitfdée positive and negative

going waves is given bA+ = [Ay, A4]T andA~ = [A,, A.]T, while the transfer matricds™

andF~ describe the propagation from one point to another thropginagriate wavenumber
e*ikd{r 0 _ eikum 0

F+(:E) = |: 0 e—kdex } ) F (l‘) = |: 0 ekuex :| . (11)

To evaluate the free vibration, the interaction of both pigating and decaying waves with
discontinuities is considered, and wave amplitudes andgshafter reflection and transmission
are arranged in reflection and transmission matrices. Téraesits of these matrices are ob-
tained imposing equilibrium conditionsl|[9]. In this papee wonsider boundary conditions at
the ends of the beatd(z = 0) and B(xz = L), whereL,,, is the total length of the beam, and
the reflection matrices at the boundaries are denotdgl bgndR 5.

4
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The wave amplitudes at each ends of the beam are denotad b, B* andB™. If the
incident waves impinging upon the right endHtr = 0) are the negative-going wavas , then
reflected waves have amplitude™ = R4 A~. Similarly if the incident waves impinging upon
the left end are the positive-going waves of amplitiig reflected waves alB~ = Rz B™.
Considering the wave reflection matrices and using thefeansatrices, the following relations
can be written

A*=RyA"; B =RzB"; Bt =F"(L;,)) AY; A-=F (—L,)B~. (12)
Combing equations i {12), the characteristic equatiotaioed
[R4F (-L) R4 F*(L) —I] At =0. (13)
For non trivial solution, the determinant of the coefficeeAt™ must be zero, that is
|det (Ra F~(—Liot) Ra F¥(Ltor) — I)| = 0. (14)
Solutions of equation§(114) arld{13) give the natural fregies and natural modes.

4 WAVE FINITE ELEMENT MODEL

In this section the WFE approach is briefly described. Thediagon of motion[{l7) of the
moving beam element is considered wifh = 0. Assuming time harmonic behaviour, the
equation of motion is

(—w*M +iwCey + Key) g =1, (15)

whereCeq = C2 — CT andK., = K2 — Kj.

o————0
ar ar

fL fr

Figure 2: WFE model and node numbering.

The nodal degrees of freedom (DOfegand the nodal forcef are partitioned into left and
right, figurel2, that is
q=[az dal’; (16)
T denoting the transpose, with a similar expression for tieahforces. Under the passage of
a wave the nodal DOFs are related by periodicity conditida$ [

Or = Adz, (17)
where) = e~**L andk is the wavenumber, while equilibrium at left side of the seghimplies
I A h)f=o0. (18)

By substituting equatioi.(17) in equatidnl15), and preiplyling both sides of equatiol{IL5)
by the matrix in equatiori.{18), the equation of free wave orotakes the form

[Keg(kL) — w*M (kL) + iwC,y(kL)]q, = O. (19)
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Solutions of equatiori.(19) yield the dispersion curves &edtavemode shapes. This involves
solving a quadratic polynomial eigenvalue problem, whgctecast as the standard linear eigen-
value problem[[5/6]. Associated with eigenvalues, viz. @avmbers, are eigenvectops;,
which represent wavemodes, and vectors

Dy = [Kegl(kL) — w?M(KL) + iwCpy(KL)] @, (20)

These can be partitioned into positive-going and negajoieg waves, which are denoted by
(A, @, 7)) and()\;, @, @) respectively. Positive going waves are typically chanistel
by [7]

IAf] <=1; Realliwfrqy] <0 if [Af]=1. (21)

Note that if there are degrees of freedom for nodeand R, then there aren eigenvalues and
the eigenvectors matrik, and®; aren x 2n.

5 FREE VIBRATION USING WFE DISPERSION RELATION AND WAVEMODES

Free vibration and dynamic response can be obtained using-based methods, in partic-
ular when the analysis focus on disturbance propagéitionrfzhis section natural frequencies
are predicted using wavemodes and dispersion curves ebt&éiom the WFE eigenproblem
@@3). In the following it is assumed that nodal forces angbldisements are described in terms
of wave amplitudesA using wavemodes as a basis, that is

q, = ®,A; f = DA (22)

In practise displacements are often expanded onto a rediasesl and onlyn < 2n pairs of
waves - positive and negative going waves - are retainediag@®f and®; aren x m matrices
and ) is an array of sizen [[7]. Although there is not a rigorous criterium, this reddd®sis

is supposed to include all the wavemodes which mostly douties to the structure response.
Typically all the propagating waves are retained togethién the attenuating and evanescent
waves which either decay not very rapidly with distance @rla@coming propagating in the
frequency band of interest.

5.1 Dynamic Stiffness Formulation

The dynamic stiffness matrix [10] of the beam is developddgisvavemodes and disper-
sion curves, and subsequently used to investigate freatiobrcharacteristics. IV = L,/ L,
wherelL,,; is the total length of the beam aidis typically an entire number, the total displace-
ment atA(x = 0) and B(z = N L) can be expanded as

q(NL) D AN
In equation[(2B) the diagonal matrix= diag()\4, . . ., \,,) contains the WFE eigenvalues, and
the matrixD,, is a rectangula2n x m matrix. A similar expression is given for nodal forces

F_ { ;E%L) } . { g;/\N ] A =D;A. (24)

} A =D,A. (23)

Since wavemodes are assumed to be linearly independemhétnix D, is a full column rank
matrix, i.e.rank(D,) = m, and the left pseudoinver@fl can be calculated. Hence the wave
amplitude can be obtained from

A =D/Q. (25)

6
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Substituting equatio (25) in equatidni24) yields
F= DfD:;Q = DQ, (26)

whereD is the dynamic stiffness matrix. Once the dynamic stiffnasdrix is obtained, free
vibration are calculated in the usual way as it is done in thefethod. In particular resonances
occur when|det(D')| = 0, whereD' is obtained fronD after applying boundary conditions.
A numerical procedure is used in the present work. Therdlogedeterminant is evaluated
numerically for each frequency, and resonances occur \Mmfﬁ'ﬂ shows stationary values.
It is of worth to point out that the present formulation cascalbe used to evaluated the forced
response of the structure.

5.2 Phase ClosurePrinciple

Following sectiori3, consider a beam with some boundary itiong at the endd(z = 0)
andB(z = L,,). Again wave amplitudes at each end are denotedbyA~, B™ andB~ and
the boundary conditions have reflection matriBesandR . According to [7], the boundary
conditions can be written &g + Gf = 0. Complicated boundary conditions can be easily
introduced using this formulation. Since displacements fances can be expanded qs=
OFAT + @ A” andf = ®FAT + & A7, reflection matrices are

J 27
RA:—(EA(I)}F—FGA(I);_)T(EA(I)JC —FGA(I)(]_) ( )
Equation [I2) can be rewritten & = [AT]YAT, A~ = [A]VB~, B~ = RzB* and
AT = R4A~, which solved give
R4 [A ]V Rp [AF]Y —1A* =0, (28)
where[At] = diag(\f, ..., \L) and[A~] = diag()\;, ..., \,) correspond to positive-going
and negative-going waves. Therefore natural frequendesravhen
|det(Ra [A7]Y Re [AT]Y = 1) (29)

shows stationary values.

6 NUMERICAL EXAMPLE

In this section a numerical example is presented and WFHtsem@ compared with those
obtained using the wave approach described in selction 3b&#@ considered is an aluminum
beam with cross sectioh = 0.002m. The element length for the WFE formulationlis=
0.001m. Figure[B shows the complex dispersion curves obtained &quations[{9) and(IL9),
where() = L?w/a is the non-dimensional frequency. It can be noticed thatltesgree very
well.  Table[1£B show natural frequencies of the beam preditdr different values of the
axial velocity. The beam is simply supported, and its toggigth is’,,;, = 0.4m. Results
obtained from equationE{lL4), (26), aihdl(28) are compatexhnl be noticed that equatidn128)
gives more accurate results with respect to equalion (2énckl the Phase Closure Principle
seems to be preferable for WFE application. Accuracy of thaerical WFE results increases
with frequency. This is perhaps due to the short length oFtaelement. It can also be noticed
that natural frequencies decrease when the axial velautteases. Divergence instability in

7
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Figure 3: Complex valued dispersion curvess 20m/s. Analytical results fron[{9): ——- ; WFE results from

m):****_

Natural frequency [Hz]
Analytical solutions, Eq.[{14) 28.9 116.8 263.3 468.4 7321054.4

WFE Dynamic Stiffness Matrix Eq[{26) 28.5 116.6 263.2 468782.0 1054.3
WFE Phase Closure Principle ER.1(28) 28.9 116.8 263.3 46832.17 1054.4

Table 1: Simply supported beam= 5m/s.

Natural frequency [Hz]

Analytical solutions, Eq.[{14) 23.96 1119 258.4 463.4 7T271049.4
WFE Dynamic Stiffness Matrix Eq[{26) - 108.2 256.0 461.7 .7251048.3
WFE Phase Closure Principle EG.128) - 112 258.4 463.4 727494

Table 2: Simply supported beam= 20m/s.
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Natural frequency [Hz]

Analytical solutions, Eq.[{14) 17.3 105.2 251.7 456.7 7201942.7
WFE Dynamic Stiffness Matrix Eq[{26) - 96.0 246.2 452.8 B171040.1
WFE Phase Closure Principle EGLX28) - 106.0 252.0 456.9 5720042.8

Table 3: Simply supported beam= 30m/s.

fact occurs at a critical moving speed[11], where the lirtbaory breaks down. However, far
from the critical speed, which for the present case is qudhb,lthe method proposed offers a
powerful alternative to analytical approaches, in paléictor more complicated cases, such as
pipe conveying fluid, which will be the subject of further &rsas. Moreover, the linear theory
can be the first step in the analsysis to provides usefulnmdition for a more refined nonlinear
investigation.

It is of worth noting that, for a simply supported beam, a etbBorm approximate frequency
neglecting evanescent waves[inl(14) is

n?m? v?

wzﬁa—@

(30)
Accuracy of equatiori{30) is related to the rate of decay ahegcent wavef,;. andk,,., thus
it is expected that equation {30) is more accurate for hiffeguency and low axial speed.

7 CONCLUSIONS

In the present paper the dynamics of a travelling one-dimeaswaveguide was studied
using a Wave Finite Element method. In particular an axiallyving beam, modelled using
the classical linear theory, was considered. The FE foriimul@f a moving beam element was
developed, and a brief description of the WFE method wasgiMatural frequencies were then
calculated using the Dynamic Stiffness Matrix and the Plidssure Principle, both formulated
in terms of wave characteristics obtained from the WFE gigasiem. An analytical wave
approach was also presented to show some characteristies efastic waves propagating in
such a beam. Numerical examples were shown. Results wengacethwith those obtained
using the analytical approach, showing the accuracy of thpgsed technique, in particular at
higher frequency.
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