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Abstract. This paper extends the recently developed enhanced Monte Carlo approach to the
problem of reliability-based design. The objective is to optimize a design parameter(s) so that
the system, represented by a set of failure modes or limit states, achieves a target reliability.
In a large majority of design and/or calibration contexts, the design parameter α itself can be
used to parameterize the system safety margin M(α). The lower tail of this random variable
behaves in a regular way and is therefore amenable to straightforward parametric analysis.
In contrast to the original Naess et al. method [1], the intention is to estimate the value αT
that corresponds to a (very) small target system failure probability pfT . Monte Carlo sampling
occurs at a range of values for α that result in larger failure probabilities, and so the design
problem essentially amounts to a statistical estimation of a high quantile. Bounds for αT can
easily be constructed. Several examples of the approach are given in the paper.
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1 INTRODUCTION

A new Monte Carlo (MC) based method for estimating system reliability was recently de-
veloped in [1]. The aim of this method is to reduce computational cost while maintaining the
advantages of crude MC simulation, specifically, its ease in dealing with complex systems. The
key idea is to exploit the regularity of tail probabilities to enable an approximate prediction of
far tail failure probabilities based on small Monte-Carlo sample results obtained for much more
moderate levels of reliability. The motivation behind this approach is that systems with multiple
and complex failure modes or limit states are often exceedingly difficult to analyze using tradi-
tional methods of structural reliability. While direct MC does not suffer from this problem, it is
computationally burdensome for small probabilities. Hence originates the idea of sampling in
a different less reliable range and performing a statistical extrapolation unto the tail. A similar
but somewhat different idea is presented in [2].

The fundamentals of the method proposed in [1] are as follows. A safety margin M =
G(X1, . . . , Xn) expressed in terms of n basic variables, is extended to a parameterized class of
safety margins using a scaling parameter λ (0 ≤ λ ≤ 1 ):

M(λ) = M − (1− λ)µM . (1)

The failure probability is then assumed to behave as follows:

pf (λ) = Prob
(
M(λ) ≤ 0

)
≈
λ→1

q(λ) exp
{
− a(λ− b)c

}
, (2)

where the function q(λ) is slowly varying compared with the exponential function exp{−a(λ−
b)c}. It may be pointed out that the assumed behaviour of the failure probability applies to any
safety margin for which FORM or SORM approximations can be used, but actually its range of
applicability is much wider than that.

Clearly, the target failure probability pf = pf (1) can be obtained from values of pf (λ) for
λ < 1. It is now far easier to estimate the (larger) failure probabilities pf (λ) for λ < 1 accurately
than the target value itself, since they are larger and hence require less simulations. Fitting the
parametric function given by Eq. (2) for pf (λ) to the estimated values would then allow us
to provide an estimate of the target value by extrapolation. The viability of this approach is
demonstrated by both analytical and numerical examples in [1] and [3].

In the next sections, the Naess et al. [1] approach is extended to reliability-based design and
calibration.

2 USING ENHANCED MONTE CARLO TO OPTIMIZE A DESIGN PARAMETER

First consider a typical component design, the reliability of which is governed by the safety
margin:

M(α) = G(X1, . . . , Xn;α) (3)

with
pf (α) = Prob(M(α) ≤ 0) , (4)

where α acts as a design factor which ”controls” the reliability of the component. The objective
is now to determine the (assumed to be unique) value of α = αT that corresponds to a specified
(target) component failure probability pfT , i.e.:

αT : Prob(M(αT ) ≤ 0) = pfT , (5)
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This assumes that the function pf (α) is a monotonic function, that is, that the safety of
the system either strictly increases or strictly decreases as the design factor α increases and
approaches αT . In practical design situations, α may represent a safety factor, a partial load
or resistance factor, or some exceedance level and, the condition of monotonicity is generally
speaking satisfied, unless the problem relates to a poor or an unfeasible design.

A more general situation, typical in the context of calibration of design specifications, con-
sists of having the safety margin controlled by a design check function c(α) = c(x1c, . . . ,
xnc;α) involving characteristic values xic of each basic variable Xi. Admissible design are
such that c(α) ≤ 0. Minimal acceptable designs are marked by c(α) = 0, an assumption which
is made throughout this paper. Often the design check function c(α) is selected to be the same
mathematical function as G but this is not required - all that matters is that the resulting safety
margin M(α) = G

(
X1, . . . , Xn|c(x1c, . . . , xnc;α) = 0

)
is monotonic with respect to α in its

approach to the target αT . Hence the objective is to determine αT as follows:

αT : Prob
(
G
(
X1, . . . , Xn|c(x1c, . . . , xnc;αT ) = 0

)
≤ 0
)

= pfT . (6)

Typically, pfT is a very small target probability and hence the behavior of pf as a function of
of α is similar to a deep tail estimation problem so that it is reasonable to assume that:

pf (α) ≈
α→1

q(α) exp
{
− a(α− b)c

}
, (7)

where q(α) is slowly varying compared to the exponential expression.
To illustrate this premise, consider a basic load and resistance safety marginM(α) = R(α)−

S controlled by a design check function c(α) = (rc(α)/α) − sc, where rc and sc are charac-
teristic values of a resistance R and a load S, and α acts as a partial resistance factor (α > 1).
Assume the load S is Weibull distributed with exponent d and scale parameter s0, then the char-
acteristic load sc at its (1− θ) quantile, is equal to sc = (− ln θ)1/ds0 = ks0 where k is a known
positive constant > 1. First consider the limiting case where the variance of R is zero, σ2

R = 0,
hence rc(α) = αsc such that pf (α) = Prob(M(α) ≤ 0) = exp

(
− (αk)d

)
which is fully

consistent with Eq. (7) above. If the variance of R(α) now increases, then the mean resistance
will shift even further down the tail since rc(α) is a small quantile of R. But, the function pf (α)
will only be slightly ”contaminated” by a much slower varying function of α; however, and this
is certainly valid in the tail area as α → αT , the general form in Eq. (7) will persist and it is
amenable to be fitted to data pairs (pf (α), α) obtained for (much) higher failure probabilities.

Once a satisfactory fit is achieved, the target value αT corresponding to pfT needs to be
estimated, a problem which is similar to a high quantile estimation.

3 EXTENSION TO SYSTEM RELIABILITY

Using Monte Carlo methods for system reliability analysis has several attractive features, the
most important being that the failure criterion is relatively easy to check almost irrespective of
the complexity of the system. In order to limit the amount of computational effort that may be
involved, it is useful to extend the above approach to systems.

LetMj(α) = Gj(X1, . . . , Xn, α), j = 1, . . . ,m be a set ofm given safety margins expressed
in terms of n basic variables and a single design parameter α. The series system reliability
expressed in terms of the failure probability can then be written as,

pf (α) = Prob
( m⋃
j=1

{Mj(α) ≤ 0}
)
, (8)
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while for the parallel system,

pf (α) = Prob
( m⋂
j=1

{Mj(α) ≤ 0}
)
. (9)

In general, any system can be written as a series system of parallel subsystems. The failure
probability would then be given as,

pf (α) = Prob
( l⋃
j=1

⋂
i∈Cj

{Mi(α) ≤ 0}
)
, (10)

Here each Cj is a subset of 1, . . . ,m, for j = 1, . . . , l. The Cjs denote the index sets defining
the parallel subsystems.

We then make the assumption that pf (α) can also be represented as in Eq. (7) for the system
reliability problems. Again, the objective is to determine the value αT that achieves a stated
overall system reliability.

4 IMPLEMENTATION

The method to be described in this section is based on the assumption expressed by Eq. (7).
For practical applications it is implemented in the following form:

pf (α) ≈ q(α) exp
{
− a(α− b)c

}
, for α0 ≤ α ≤ αT , (11)

for a suitable value of α0. An important part of the method is therefore to identify a suitable
range for α so that the right hand side of Eq. (7) represents a good approximation of pf (α) for
α ∈ [α0, αT ].

For a sample of size N of the vector of basic random variables X = (X1, . . . , Xn), let
Nf (α) denote the number of outcomes of the random vector in the failure domain of M(α).
The estimate of the failure probability is then

p̂f (α) =
Nf (α)

N
. (12)

The coefficient of variation Cv of this estimator is

Cv(p̂f (α)) =

√
1− p̂f (α)

p̂f (α)N
. (13)

A fair approximation of the 95% confidence interval for the value p̂f (α) can be obtained as
CI0.95 = (C−(α), C+(α)), where

C±(α) = p̂f (α)(1± 1.96Cv(p̂f (α)) . (14)

Assuming now that we have obtained empirical Monte Carlo estimates of the failure proba-
bility, the problem then becomes one of optimal use of the information available. By plotting
log | log p̂f (α)/q(α)| versus log(α− b), it is expected that an almost perfectly linear tail behav-
ior will be obtained according to Eq. (11). Recalling that the function q(α) was assumed to be
slowly varying compared with the exponential function exp{−a(α− b)c} for values of α close
to αT , it is now tentatively proposed to replace q(α) by a suitable constant value, q say, for tail
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values of α, say α > α1(≥ α0). Hence, we will investigate the viability of the following simpler
version of Eq. (11):

pf (α) ≈ q exp
{
− a(α− b)c

}
, for α1 ≤ α ≤ αT , (15)

for a suitable choice of α1.
The problem of finding the optimal values of the parameters a, b, c, q is carried out by op-

timizing the fit on the log level by minimizing the following mean square error function with
respect to all four arguments [4],

F (a, b, c, q) =
M∑
j=1

wj
(
log p̂f (αj)− log q + a(αj − b)c

)2
, (16)

where α1 < . . . < αM denotes the set of α values where the failure probability is empirically es-
timated. The wj denote weight factors that put more emphasis on the more reliable data points,
alleviating the heteroscedasticity of the estimation problem at hand. The choice of weight factor
is to some extent arbitrary. In this paper, we use wj =

(
logC+(αj) − logC−(αj)

)−θ with the
values θ = 1 and 2, combined with a Levenberg-Marquardt least squares optimization method
[5]. Note that the form of wj puts some restriction on the use of the data. Usually, there is a
level αj beyond which wj is no longer defined. Hence, the summation in Eq. (16) has to stop
before that happens. Also, the data should be preconditioned by establishing the tail marker α1

in a sensible way.
Although the Levenberg-Marquardt method as described above generally works well, it may

be simplified by exploiting the structure of F . It is realized by scrutinizing Eq. (16) that if b and
c are fixed, the optimization problem reduces to a standard weighted linear regression problem.
That is, with both b and c fixed, the optimal values of a and log q are found using closed form
weighted linear regression formulas in terms of wj , yj = log p̂f (αj) and xj = (αj − b)c.

It is obtained that the optimal values of a and q are given by the relations,

a∗(b, c) = −
∑M

j=1wj(xj − x)(yj − y)∑M
j=1wj(xj − x)2

, (17)

and
log q∗(b, c) = y + a∗(b, c)x , (18)

where x =
∑M

j=1wjxj/
∑M

j=1wj , with a similar definition of y.
The Levenberg-Marquardt method may now be used on the function F̃ (b, c) = F (a∗(b, c),

b, c, q∗(b, c)) to find the optimal values b∗ and c∗, and then the corresponding a∗ and q∗ can be
calculated from Eq. (17) and (18).

For estimation of the confidence interval for the predicted target quantile αT provided by
the optimal curve, the empirical confidence band is reanchored to the optimal curve. The range
of fitted curves that stay within the reanchored confidence band will determine an optimized
confidence interval of the predicted value.

5 NUMERICAL EXAMPLES

The examples in the following two sections all have simple explicit limit state functions in
terms of the basic random variables. The computational issue is therefore minor and no effort
has been made to investigate the possibility of implementing more effective sampling strategies.
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If the proposed method were to be used in combination with computationally demanding pro-
cedures involving e.g. a FE method for calculating the sample, it would be necessary in general
to use more effective sampling strategies than the brute force procedure used here.

5.1 Component load factor calibration

In this first example, the 10-bar truss structure shown in Fig. 1 is studied. An enhanced
Monte-Carlo reliability analysis of this truss is given in [1]. Here a load factor for a transversal
load P is calibrated in order to achieve a target reliability of (10−6) with respect to the horizontal
sway of the truss. The ten truss members are cut from three different aluminum rods with cross-
sectional areas A1, A2 and A3, as shown in Fig. 1. The structure is subjected to external loads
P as shown in Fig. 1. The horizontal displacement D at the upper right hand corner of the truss
structure can be written as [6]:

D =
BPL

A1A3E

{4
√

2A3
1(24A2

2 + A2
3) + A3

3(7A
2
1 + 26A2

2)

DT

+ 4A1A2A3
20A2

1 + 76A1A2 + 10A2
3

DT

+ 4
√

2A1A2A
2
3

25A1 + 29A2

DT

}
(19)

where DT = 4A2
2(8A

2
1 + A2

3) + 4
√

2A1A2A3(3A1 + 4A2) + A1A
2
3(A1 + 6A2) and E is

Young’s modulus. The random variable B accounts for model uncertainties. It is assumed that
A1, A2, A3, B, P,E are independent basic random variables. Their properties are summarized
in Table 1. Also shown are the characteristic values used in the design check Eq. (21).

Figure 1: Ten-bar truss structure

The safety margin

M(α) = d0 −D
(
A1, A2, A3, B,E, P (α)

)
, (20)
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Mean value Coef. of var. Prob. distr. Char. value in (20)
A1 10−2 m2 0.05 Normal 1% quantile
A2 1.5 · 10−3 m2 0.05 Normal 1% quantile
A3 6.0 · 10−3 m2 0.05 Normal 1% quantile
B 1.0 0.10 Normal mean
E 6.9 · 104 MPa 0.05 Lognormal 1% quantile
P based on Eq. (21) 0.10 Gumbel 95% quantile
d0 0.1 m - - -
L 9.0 m - - -

Table 1: Basic variables.

and the design check constraint is

c(α) = d0 −D
(
A1c, A2c, A3c, Bc, Ec, αPc(α)

)
, (21)

where α represents the transversal load factor.
Figs. 2 and 3 show the optimized fitted parametric curve to the empirical data in a log plot

for sample size 105 and for weighted regression coefficients θ = 2 and θ = 1, respectively. The
difference between the two tail extrapolations is minimal. Applying the proposed procedure
with a sample of size 105 gives the estimated value for αT with the 95% confidence interval
shown in Table 2 for both θ = 2 and 1. Note that a crude Monte Carlo simulation verification
of (αT = 1.46, pfT = 10−6) using 3 · 109 samples to within 2.5% at 95% confidence requires
a computation time of about 24h on a laptop computer. The CPU time for the results shown in
Table 2 was only about 40 seconds on a standard laptop.

Figure 2: Sample size 105 — weighted regression θ = 2.
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Figure 3: Sample size 105 — weighted regression θ = 1.

θ = 2 θ = 1
higher 95% CI 1.48 1.48

αT 1.47 1.47
lower 95% CI 1.46 1.46

Table 2: Optimal load factor αT corresponding to pfT = 10−6 using sample size 105.

5.2 Design resistance safety factor in a series system

This example concerns the maximum internal forces in the members of a statically deter-
minate 13-member truss structure subjected to external loading. The structure is shown in
Fig. 4, which also displays the numbering of the truss elements from 1 to 13. The exter-
nal loads P1, P2, P3 which are acting on the structure as shown in Fig. 4, are modelled as
independent Gaussian variables. The capacity for axial stress of truss element number j is
expressed as Rj = σyjAj where σyj = the yield stress (MPa) and Aj = the cross-sectional
area of this element (cm2), and α is a resistance safety factor > 1 used as a division factor
in the design check equation below. It is assumed that A1 = A7 = 18.7, A2 = A8 = 13.1,
A3 = A9 = A12 = A13 = 11.7, A4 = A10 = 11.3, A5 = A11 = 3.3, A6 = 8.0. The 13 yield
stresses are assumed to be independent Gaussian variables. The 16 basic random variables in
this problem are listed in Table 3.

Mean Value Coef. of Var. Prob. distr. Char. value in Eq. (22)
Pj , j = 1, 2, 3 89 kN 0.15 Normal 99% quantile

σyj , j = 1, . . . , 13 based on Eq. (23) 0.15 Normal 5% quantile
L 2.54 m - - -

Table 3: The 16 basic variables.
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Figure 4: Truss bridge example.

M1 = R1 − 0.9186P1 − 0.6124P2 − 0.3062P3

M2 = R2 − 0.3029P1 − 0.6058P2 − 0.3029P3

M3 = R3 − 0.5303P1 − 0.3535P2 − 0.1768P3

M4 = R4 − P1

M5 = R5 + 0.4186P1 − 0.3876P2 − 0.1938P3

M6 = R6 − 0.1835P1 − 0.3670P2 − 0.1835P3

M7 = R7 − 0.3062P1 − 0.6124P2 − 0.9186P3 (22)
M8 = R8 − 0.3029P1 − 0.6058P2 − 0.3029P3

M9 = R9 − 0.1768P1 − 0.3535P2 − 0.5303P3

M10 = R10 − P1

M11 = R11 − 0.1938P1 − 0.3876P2 + 0.4186P3

M12 = R12 − 0.5303P1 − 0.3536P2 − 0.1768P3

M13 = R13 − 0.1768P1 − 0.3536P2 − 0.5303P3

The 13 design check equations have the same mathematical set of 13 equations except that
the deterministic characteristic values of Table 3 are used and a resistance safety factor is in-
volved. The most severe constraint is the compressive stress in members 1 and 7 which therefore
governs the design of the system as a whole:

σyc(α)A1

α
− 1.8372Pc = 0 , (23)

The objective is to find the value αT such that the series system failure probability given by
Eq. (8) is equal to a target pfT = 10−5. The log plot of pf (α) versus α is shown in Figures 5 and
6 for θ = 1 and for samples of size 104 and 105, respectively. The estimated αT corresponding
to pf = 10−5 together with their CIs are shown in Table 4. A Winbugs script runs the entire
analysis in under 1min for 105 samples. As a contrast, crude Monte Carlo simulation with 5·109

samples confirms (αT = 1.89, pf = 10−5) for the series system accurate to within about 0.5%
with 95% confidence, but requires a computation time of about 24h on a laptop computer.
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N = 104 N = 105

higher 95% CI 1.95 1.92
αT 1.85 1.88

lower 95% CI 1.69 1.80

Table 4: Optimal resistance safety factor αT corresponding to a system pfT = 10−5 using sample size 104 and
105 with θ = 1.

Figure 5: Sample size 104 — weighted regression with θ = 1.

Figure 6: Sample size 105 — weighted regression with θ = 1.
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6 CONCLUSIONS

In this paper, we have described a Monte Carlo based method for a reliability-based calibra-
tion of design parameters such as load/resistance factors, safety factors or specification levels
of structural systems. It has been shown that the method may provide good estimates of design
factors for structural systems with a moderate computational effort. It has been pointed out
that the use of Monte Carlo methods for system reliability analysis has several very attractive
features, the most important being that the failure criterion is usually relatively easy to check
almost irrespective of the complexity of the system and the number of basic random variables.
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