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Abstract. Earthquake ground motion excitation can induce pounding in adjacent buildings 
with inadequate separation distance. This hazard is particularly relevant in densely inhabited 
metropolitan areas, due to the very limited space among buildings.  

Existing procedures for minimum separation distance are based on approximations of the 
peak relative horizontal displacement between adjacent buildings, and are characterized by 
unknown safety levels. The present study proposes a reliability-based procedure for assessing 
the level of safety corresponding to a given value of the separation distance between adjacent 
buildings exhibiting linear elastic behavior. The seismic input is modeled as a nonstationary 
random process, and the first-passage reliability problem corresponding to the pounding 
event is solved employing analytical techniques involving the determination of some specific 
statistics of the response processes. Comparison of computed analytical results with numeri-
cal simulation results are also shown, in order to validate the proposed methodology.  

The proposed procedure is employed for evaluating the reliability of simplified design code 
formulae used to determine building separation distances. Furthermore, the capability of the 
proposed method to deal with complex systems is demonstrated by assessing the effectiveness 
of the use of viscous dampers, according to different retrofit schemes, in reducing the pound-
ing probability of adjacent buildings modeled as multi-degree-of-freedom systems.
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1 INTRODUCTION 
Earthquake ground motion excitation can induce pounding in adjacent buildings with in-

adequate separation distance. The corresponding risk is particularly relevant in densely inha-
bited metropolitan areas, due to the need of maximizing the land use and the consequent 
limited separation distance between adjacent buildings.  

The problem of seismic pounding has been investigated by several researchers in the last 
two decades. A significant number of early studies focused on the definition of simplified 
rules, such as the Double Difference Combination (DDC) rule, for determining the peak rela-
tive displacement response of adjacent buildings at the potential pounding locations [1],[2],[3]. 
A critical separation distance (CSD) was defined and set equal to the mean peak relative dis-
placement between adjacent buildings, by neglecting the associated probability of pounding. 
In the same context, considerable research effort was devoted to the assessment of the accura-
cy of code rules (e.g., the absolute sum (ABS) and square-root-of-the-sums-squared (SRSS) 
rule) [4] in determining the mean peak relative displacement response (i.e., the CSD) of adja-
cent buildings [5].  

More recent studies have adopted a probabilistic approach for the assessment of the seis-
mic pounding risk. In Lin [6], a method was proposed to estimate the first two statistical mo-
ments of the random variables describing the peak relative displacement response between 
linear elastic structures subjected to stationary base excitation. In Lin and Weng [7], a numer-
ical simulation approach was suggested to evaluate the pounding probability, over a 50-year 
design lifetime, of adjacent buildings separated by the code-specified CSD. The latter study 
considered both the uncertainty affecting the seismic input intensity (by using a proper hazard 
model) and the record-to-record variability (by using artificially generated spectrum-
compatible ground acceleration time histories as input loading). The buildings were modeled 
as multi-degree of freedom systems with inelastic behavior and deterministic properties. In 
Hong et al. [8], a procedure was developed to assess the fractiles of the CSD between linear 
elastic systems with deterministic and uncertain structural properties subjected to stationary 
base excitation. The previous study was later extended by Wang and Hong [9] to include non-
stationary seismic input. 

Despite the numerous studies available in the literature on seismic pounding, to the best of 
the authors’ knowledge, a reliability-based methodology for the evaluation of the safety levels 
associated with specified CSDs is still needed. In addition, the gradual progress of seismic 
design codes from a prescriptive to a performance-based design philosophy generates a signif-
icant need for new advanced, accurate, and computationally efficient reliability-based metho-
dologies for the assessment and mitigation of seismic pounding risk. 

This paper presents a fully probabilistic methodology for assessing the seismic pounding 
risk between adjacent buildings with linear behavior. This methodology is consistent with and 
can be easily incorporated into a performance-based earthquake engineering (PBEE) approach 
such as the Pacific Earthquake Engineering Research center (PEER) framework [10],[11]. 
The presented methodology considers the uncertainty affecting both the seismic input (i.e., 
site hazard and record-to-record variability) and the parameters used to describe the structural 
systems of interest (i.e., material properties, geometry, and damping properties). The seismic 
input is modeled as a nonstationary random process. The seismic pounding risk is computed 
from the solution of a first-passage reliability problem. While the approach proposed is gener-
al, the methodology presented here is specialized to linear elastic systems subjected to Gaus-
sian loading. Under these assumptions, approximate analytical solutions and efficient 
simulation techniques can be used to solve the relevant first-passage reliability problem. Thus, 
this methodology is appropriate for structural systems that remain in their linear elastic beha-
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vior range before pounding (which is a very common condition for low values of the CSDs 
and, thus, high seismic pounding risk), although it can be extended to account for nonlinear 
behavior of the considered structural systems.  

2 PBEE FRAMEWORK FOR SEISMIC POUNDING RISK ASSESSMENT 
The PEER PBEE framework is a general probabilistic methodology, based on the total 

probability theorem, for risk assessment and design of structures subjected to seismic hazard 
[10],[11]. The PEER PBEE methodology involves four probabilistic analysis components: (1) 
probabilistic seismic hazard analysis (PSHA), (2) probabilistic seismic demand analysis 
(PSDA), (3) probabilistic seismic capacity analysis (PSCA), and (4) probabilistic seismic loss 
analysis (PSLA). PSHA provides the probabilistic description of an appropriate ground mo-
tion intensity measure (IM), usually expressed as mean annual frequency (MAF) νIM (im) of 
exceedance of a specific value im. PSDA provides the statistical description of structural re-
sponse parameters of interest, usually referred to as engineering demand parameters (EDPs), 
conditional to the value of the seismic intensity IM. PSCA consists in computing the probabil-
ity of exceeding a specified physical limit-state, defined by structure-specific damage meas-
ures (DMs), and conditional to the values of the EDPs. Finally, PSLA provides the 
probabilistic description of a decision variable (DV), which is a measurable attribute of a spe-
cific structural performance and can be defined in terms of cost/benefit for the users and/or 
the society.  

The reliability-based procedure developed in this paper consists in computing the mean 
annual frequency (MAF) of pounding, vp, between two adjacent buildings. This procedure is a 
specialization for the seismic pounding problem of the first three steps of the general PEER 
PBEE framework (i.e., PSLA is out of the scope of this paper). It is noteworthy that the pro-
posed approach is conceptually very different from the computation of the CSD, which does 
not explicitly provide the probability of pounding associated with a given separation distance. 
The computation of the MAF of pounding can be expressed as 

 ( ) ( ) ( )d dp IMDM EDP EDP IM
edp im

v G dm edp G edp im v im= ⋅ ⋅∫ ∫  (1) 

in which, ( )DM EDPG dm edp  = cumulative probability function of variable DM conditional to 

EDP = edp, and ( )EDP IMG edp im  = cumulative probability function of variable EDP condi-
tional to IM = im, where upper case symbols indicate random variables and lower case sym-
bols denote specific values assumed by the corresponding random variable. The IM must be 
selected so that it can be readily related to the stochastic description of an appropriate random 
process model for the input ground motion. This selection must also account for sufficiency 
and efficiency of the IM in describing the effects of the ground motion excitation on the struc-
tural response [12]. However, an exhaustive selection of appropriate IMs for different types of 
structures and structural performances is outside the scope of this paper.  

The maximum value Urel,max of the relative distance Urel (t) between the adjacent buildings 
observed during the seismic event (i.e., for [ ]max0,∈t t , with t = time and tmax = duration of the 
seismic event) is assumed here as EDP. The probabilistic distribution of Urel,max reflects the 
record-to-record variability of the ground motions expected to occur at the site for a given in-
tensity, as well as the effects of the uncertainty in the parameters used to describe the structur-
al model. Finally, the pounding event is assumed as the controlling limit-state in PSCA, by 
using the following limit-state function, g:  
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 ,maxrelg U= Ξ −  (2) 

in which Ξ  = random variable describing the building separation distance, and the pounding 
event corresponds to 0≤g . Thus, ( ) ,max

⎡ ⎤= ≥ =⎣ ⎦relEDP IMG epd im P U u IM im and 

( ) ,max0⎡ ⎤= < =⎣ ⎦relDM EDPG dm edp P g U u . An important intermediate result of the procedure is 
the convolution of PSCA and PSDA, also called fragility analysis, which yields a fragility 
curve. Fragility curves describe the probability p IMP  of pounding conditional on the seismic 
intensity, i.e., 

 ( ) ( )dp IM DM EDP EDP IM
edp

P G dm edp G edp im= ⋅∫  (3) 

The MAF of pounding, pν , can be used to compute the MAF of exceeding a specified val-
ue of DV, e.g., the MAF of repair cost due to pounding damage. The computation of the latter 
quantity requires the definition of a realistic loss model, based on appropriate structural re-
sponse models (e.g., dynamic impact between adjacent systems) and damage models (e.g., 
damage produced by floor-to-floor and floor-to-column pounding). Structural response and 
damage models involve the definition of other EDPs and DMs, respectively, in addition to 
those already employed in this paper for assessing the pounding risk. Several structural re-
sponse and damage models available in the literature could be employed to define an appro-
priate loss model [13],[14],[15],[16].  

In addition, νP can be directly used to determine the pounding risk, Pp (tL), for a given 
structure over its design life (tL = design lifetime, e.g., 50 years). Assuming that the occur-
rence of a pounding event can be described by a Poisson process and that the buildings are 
immediately restored to their original condition after pounding occurs, Pp (tL) can be easily 
computed as  

 ( ) 1 tp L
p LP t e ν− ⋅= −  (4) 

3 SEISMIC POUNDING RISK ASSESSMENT METHODOLOGY 
Fragility analysis is the most computationally challenging component of the probabilistic 

PBEE framework. A simple and general approach for fragility analysis in seismic pounding 
assessment is provided by Monte Carlo simulation (MCS) [5],[7]. For any given value of IM, 
MCS-based fragility analysis requires (1) the definition of a set of ground motions that are 
selected from an appropriate database of real records or generated from an appropriate ran-
dom process, (2) the sampling of the structural parameters that define the structural systems 
and of their separation distances, (3) the numerical simulation of the structural response for 
each ground motion time history and each set of structural parameters and separation dis-
tances, and (4) the evaluation of p IMP  as the ratio between the number of failures and the 
number of samples. However, the computational cost associated with MCS can be very high 
and even prohibitive when small failure probabilities need to be estimated by numerically si-
mulating the time history response of complex multi-degree-of-freedom (MDOF) systems.  

In this paper, an efficient combination of analytical and simulation techniques is proposed 
for the calculation of p IMP  under the assumptions of linear elastic behavior for the buildings 
and of Gaussian input ground motion. The methodology is described first for linear elastic 
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systems with deterministic structural properties and separation distance, and then generalized 
to stochastic linear systems.  

It is noteworthy that, for low values of the building separation distance ξ, the buildings are 
expected to behave elastically before pounding occurs, while the assumption of linear beha-
vior of the buildings before pounding becomes less realistic for larger values of ξ. If the build-
ings are expected to enter their nonlinear behavior before pounding, the methodology 
described in the remainder of this paper needs to be extended to nonlinear systems, e.g., by 
using statistical linearization techniques [17] or subset simulation [18]. This extension is out 
of the scope of this paper. 

3.1 Linear systems with deterministic structural properties   

The computation of the conditional failure probability p IMP  can be expressed in the form 
of  a single-barrier first-passage reliability problem as [5],[9]  

 ( ){ }0 max
max relp IM t t

P P U t IM imξ
≤ ≤

= ≥ =⎡ ⎤⎣ ⎦  (5) 

in which  ( ) ( ) ( )A B= −relU t U t U t , UA(t) and UB(t) = displacement response of the adjacent 
buildings A and B at the (most likely) pounding location, and ξ  = deterministic value of the 
building separation distance (Fig. 1). 

 

Building B 

Building A 
ξ 

Au Bu

 
Fig. 1. Geometric description of the pounding problem between adjacent buildings. 

Under the hypotheses of deterministic linear elastic systems subjected to Gaussian loading 
processes and deterministic threshold, several analytical approximations of p IMP  exist in the 
literature [19],[20],[21],[22]. These analytical approximations require computing the follow-
ing statistics of the relative displacement process ( )relU t for a given IM = im: ( )2

relU tσ  = va-

riance of ( )relU t , ( )2
relU tσ  = variance of the relative velocity process ( )relU t , ( )U Urel rel

tρ  = 

correlation coefficient between ( )relU t  and ( )relU t , ( ),c Urel
tω  = time-variant central frequen-

cy of ( )relU t , and ( )Urel
q t  = bandwidth parameter of ( )relU t .These statistics can be obtained 

from the spectral characteristics of order zero to two of process ( )relU t  [23],[24],[25]. 
Following the methodology described in Barbato and Conte [24], a state-space formulation 

of the equations of motion for the two buildings is employed to compute exactly and in 
closed-form the required spectral characteristics. The seismic input is modeled as a time-
modulated Gaussian colored noise process. For this specific input ground motion process, the 
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spectral characteristics of the displacement processes (and of any response process obtained 
as a linear combination of the displacement processes) are available in exact closed-form for 
SDOF systems and both classically and non-classically damped MDOF systems [25].  

The equations of motion for the linear system constituted by two non-connected adjacent 
buildings can be expressed as follows: 

 ( ) ( ) ( ) ( )⋅ ⋅ ⋅ ⋅m U + c U + k U = pt t t F t  (6) 

in which A

B

⎛ ⎞
= ⎜ ⎟⎝ ⎠

m 0
m

0 m
, A

B

⎛ ⎞
= ⎜ ⎟⎝ ⎠

c 0
c

0 c
, A

B

⎛ ⎞
= ⎜ ⎟⎝ ⎠

k 0
k

0 k
, A

B

⎛ ⎞
= ⎜ ⎟⎝ ⎠

U
U

U
, mi , k i , ci  and Ui  = 

mass matrix, damping matrix, stiffness matrix, and vector of nodal displacements of building i, 
respectively (i  = A, B), p  = load distribution vector, ( )F t  = scalar function describing the 
time-history of the external loading (input random process), and a superposed dot denotes dif-
ferentiation with respect to time. It is noteworthy that connections between the two buildings 
(e.g., damping devices interposed between the building to mitigate seismic pounding risk) can 
be easily modeled by introducing the appropriate terms in matrix c . The response process of 
interest Urel (t) can be related to the displacement response vector U(t) by means of a linear 
operator b as ( ) ( )= ⋅b UrelU t t . 

The probability of pounding conditional on IM = im is given by 

 ( ) ( )
max

0

1 0 exp ,
⎧ ⎫⎪ ⎪⎡ ⎤= − = < = ⋅ −⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭
∫

t

relp IM U imrel
P P U t IM im h dξ ξ τ τ  (7) 

in which ( )0⎡ ⎤= < =⎣ ⎦relP U t IM imξ  = probability that the random process ( )relU t  is below 

the threshold ξ  at time 0t = , and ( ),u imrel
h ξ τ  = time-variant hazard function (i.e., up-

crossing rate of threshold ξ  conditioned on zero up-crossing before time t) conditional on IM 
= im. For systems with at rest initial conditions, ( )0 1⎡ ⎤= < = =⎣ ⎦relP U t IM imξ .  

To date, no exact closed-form expressions exist for the time-variant hazard function 
( ),U imrel

h tξ . However, several approximate solutions are available in the literature, e.g., Pois-

son’s (P), ( ) ( )(P)
| |, ,=U im U imrel rel

h t tξ ν ξ , classical Vanmarcke’s (cVM), ( )(cVM)
| ,U imrel

h tξ , and modified 

Vanmarcke’s (mVM), ( )(mVM)
| ,U imrel

h tξ , approximations [22],[26]. These analytical approxima-
tions can be readily computed based on the closed-form expressions of the spectral characte-
ristics of process Urel (t), as shown in Barbato and Vasta [25]. In addition, for linear elastic 
systems subjected to Gaussian loading, p IMP  can be efficiently and accurately estimated by 
using the Importance Sampling using Elementary Events (ISEE) method [27]. 

3.2 Linear systems with uncertain structural properties and separation distance 

In addition to the uncertainty in the seismic input, significant uncertainty can be found in 
geometrical, mechanical, and material properties characterizing the structural systems and 
their models. Hereinafter, the uncertainty in geometrical, mechanical, and material properties 
of the structural models, as well as in their separation distance, Ξ , is referred to as model pa-
rameter uncertainty (MPU). MPU can significantly modify the structural performance and, 
thus, must be considered in the assessment of seismic pounding risk.   
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In order to include the effects of MPU, the total probability theorem is employed to com-
pute the conditional probability of pounding as follows: 

 ( ) ( ), ,dp IM p IM p IMP P f E P⎡ ⎤= ⋅ ⋅ = ⎣ ⎦∫ XX X
X

x x x  (8) 

in which X  = vector of uncertain model parameters (including the uncertain separation dis-
tance Ξ ) with joint probability density function ( )fX x , and ( ),p IMP X x  = probability of 
pounding conditional on X  and IM. 

MCS, or any variance reduction technique such as stratified sampling, can be employed to 
evaluate p IMP  in Eq. (8). For example, Latin hypercube sampling (LHS) can be employed for 
its computational efficiency [28]. The samples of X  generated by using LHS can be used to 
define a set of deterministic linear elastic models with deterministic separation distance, for 
which the conditional probability of pounding can be computed as in Eq.(7). 

  

4 APPLICATION EXAMPLES 

In this section, the proposed methodology is applied to: (1) compute the pounding risk for 
SDOF systems with deterministic model parameters, (2) evaluate the reliability of simplified 
design code formulae used to determine building separation distance, and (3) to evaluate the 
effectiveness of different retrofit solutions using viscous dampers in reducing the pounding 
risk for deterministic MDOF models of multistory buildings. In all the application examples 
considered here, the input ground acceleration is modeled by a time-modulated Gaussian 
process. The time-modulating function, I(t), is represented by the Shinozuka-Sato’s function 
[29], i.e., 

 ( ) ( ) ( )1 2b t b tI t c e e H t− ⋅ − ⋅= ⋅ − ⋅  (9) 

in which b1 = 0.045π s-1, b2 = 0.050π s-1, c = 25.812, and H(t) = unit step function. A duration 
tmax = 30s is considered for the seismic excitation.  

The power spectral density (PSD) of the embedded stationary process is described by the 
widely-used Kanai-Tajimi model, as modified by Clough and Penzien [30], i.e.,  

 ( )
4 2 2 2 4

0 2 22 2 2 2 2 2 2 2 2 2

4

4 4
g g g

CP

g g g f f f

S S
+

= ⋅
⎡ ⎤ ⎡ ⎤− + − +⎣ ⎦ ⎣ ⎦

ω ξ ω ω ωω
ω ω ξ ω ω ω ω ξ ω ω

 (10) 

in which 0S  = amplitude of the bedrock excitation spectrum, considered to be a white process, 
ωg and ξg = fundamental circular frequency and damping factor of the soil, respectively, and 
ωf  and ξf  = parameters describing the Clough-Penzien filter. The values of the parameters 
employed for all the applications are ωg = 12.5rad/s, ξg  = 0.6, ωf = 2rad/s, and ξf  = 0.7.  The 
PSD function in Eq. (10) is shown in Fig. 2(a) for 0 1S = . 

The peak ground acceleration, PGA, is assumed as IM. In order to derive the fragility 
curves in terms of the selected IM, the relationship between the parameter 0S  of the Kanai-
Tajimi spectrum and the PGA at the site is assessed empirically. A set of 500 synthetic statio-
nary ground motion records are generated using the spectral representation method [31] based 
on the PSD function given in Eq. (10) with 0 1S = . Each ground motion realization is then 
modulated in time using the function defined in Eq. (9). The peak ground acceleration corres-
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ponding to 0 1S = , 10SPGA = , is estimated as the mean of the PGAs of the sampled ground mo-

tion time histories. The values of 0S corresponding to different values of PGA are obtained as 
follows:  

 
2

0
10S

PGAS
PGA =

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (11) 

In this study, the site hazard curve is expressed in the approximate form used in Cornell et 
al. [32], i.e., 

 ( ) 1
01 k

IMv im P IM im yr k im−= ⎡ ≥ ⎤ = ⋅⎣ ⎦  (12) 

in which k0 and k1 = parameters obtained by fitting a straight line through two known points 
of the site hazard curve in logarithmic scale. The site hazard curve is taken from Eurocode 8-
Part 2 [33], assuming that, for the site of interest, PGA = 0.3g corresponds to a return period 
of 475 years. Using 1 2.857k =  [34], the site hazard curve becomes (see Fig. 2(b))  

 ( ) 5 2.8576.734 10PGA pga pga− −= ⋅ ⋅ν  (13) 
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Fig. 2. Input ground motion: (a) PSD function of the embedded stationary process, and (b) site hazard curve. 

4.1 Pounding risk for linear SDOF systems with deterministic model parameters  

The first application example consists in the assessment of the pounding risk between two 
adjacent buildings modeled as deterministic linear elastic SDOF systems with periods tA and 
tB, and damping ratios ζA = ζB = 5%. The conditional probability of pounding p IMP  is calcu-

lated using the approximate analytical hazard functions ( )(P)
| ,U imrel

h tξ , ( )(cVM)
| ,U imrel

h tξ , and 

( )(mVM)
| ,U imrel

h tξ , for a deterministic distance between the buildings ξ = 0.1m and for two different 
combinations of natural periods of the two systems, i.e., (1) tA = 0.5s and tB = 1.0s, referred to 
as well separated natural periods (Fig. 3(a)), and (2) tA = 0.9s and tB = 1.0s, referred to as 
close natural periods (Fig. 3(b)). The obtained conditional probabilities are presented in Fig. 3 
as fragility curves and compared with the corresponding results obtained using ISEE method 
[27], which are assumed as reference solution. 



Enrico Tubaldi and Michele Barbato 

 9

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 

0.1 

0.2 
0.3 

0.4 
0.5 

0.6 

0.7 
0.8 

0.9 
1 

 P 
cVM 

ISEE 

IM [g] 

P p
|IM

 

mVM 

(a)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
0.3

0.4
0.5

0.6

0.7
0.8

0.9
1

IM [g] 

P p
|IM

 

 P 
cVM 

ISEE 
mVM 

(b)

 

Fig. 3. Fragility curves for ξ = 0.1m: (a) tA = 0.5s and tB = 1.0s, and (b) tA = 0.9s and tB = 1.0s. 

In the case of well separated natural periods for the structures (Fig. 3(a)), the fragility 
curves estimated using the P, cVM, and mVM approximations are very similar and close to 
the fragility curves obtained using the ISEE method. In the case of close natural periods (Fig. 
3(b)), the fragility curves estimated with the approximate analytical methods show significant 
differences, and only the cVM approximation provides results that are close to the fragility 
curves estimated using the ISEE method. The observed result can be explained by recognizing 
that the relative displacement process ( )relU t  can be interpreted as a response process of a 
two-degree-of-freedom system. This multi-modal characteristic of ( )relU t can significantly 
affect the accuracy of the different approximations of the time-variant hazard function 

( ),U imrel
h tξ  [35]. In the case of well separated natural periods, the contribution of the higher 

period vibration mode to ( )relU t  is significantly larger than the contribution of the lower pe-
riod vibration mode. By contrast, in the case of close natural periods, both vibration modes 
provide a significant contribution to the response process. 

Fig. 4 shows the MAF of pounding, vp, as a function of the building separation distance ξ 
(in semi-logarithmic scale) for the cases of well separated natural periods (Fig. 4 (a)) and of 
close natural periods (Fig. 4(b)), respectively. The estimates of the MAF of pounding ob-
tained using the analytical approximations (P, cVM, and mVM) of the hazard function are 
compared to the corresponding estimate obtained using the ISEE method. Fig. 5 plots (in 
semi-logarithmic scale) the pounding risk for a design lifetime of 50 years, evaluated accord-
ing to Eq. (4), for the same two cases of well separated and close natural periods. Considera-
tions similar to the ones made for the fragility curves can be made also for the MAF of 
pounding and the 50-year pounding risk, i.e., the analytical approximations provide very ac-
curate results for the case of well separated natural periods and less accurate results for the 
case of close natural periods, with the exception of the cVM approximation, which is accurate 
in both cases. 
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Fig. 4. MAF of pounding for varying separation distance: (a) tA = 0.5s and tB = 1.0s,  
and (b) tA = 0.9s and tB = 1.0s. 
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Fig. 5. 50-year pounding risk for varying separation distance: (a) tA = 0.5s and tB = 1.0s, and  
(b) tA = 0.9s and tB = 1.0s. 

It is observed that the Poisson’s approximation of the time-variant hazard function always 
yields conservative results, while the mVM approximation underestimates the risk computed 
using the ISEE method for the case of close natural periods. Similar results have been docu-
mented for the first-passage reliability problem of SDOF and MDOF systems subjected to 
time-modulated white and colored noise excitations [26]. 

4.2 Reliability of code formulae  

The proposed methodology is applied here to evaluate the pounding risk corresponding to 
the separation distance prescribed by anti-seismic design codes. In order to avoid pounding 
between new adjacent buildings, current seismic design codes (e.g., [4],[33]) prescribe a min-
imum clearance to be provided between the structures. This minimum clearance between two 
adjacent buildings is assumed equal to the expected valued of the peak relative displacement 
(or CSD), for a given site-specific earthquake action and a given value of the seismic intensity 
(hazard level). Given the seismic input, the peak relative displacement is obtained by combin-
ing (using simplified combination rules) the values of the peak displacements of the two adja-
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cent structural systems, which are computed using (deterministic) structural analysis. The 
most commonly employed rules are the ABS method or the slightly more accurate SRSS me-
thod. The major limit of these approximate rules is that they neglect the response phase dif-
ferences between the adjacent structures. In order to overcome this drawback, the use of the 
Double Difference Combination rule for determining the CSD has been proposed and investi-
gated by several researchers [1], [2],[3].  

In the application presented here, the values of the CSD according to the ABS, SRSS, and 
DDC rules are calculated following the procedure described in [5]. This procedure involves (1) 
generating a set of 500 samples of input ground motion time histories for the reference value 
of the peak ground acceleration, (2) computing the corresponding 500 peak displacement res-
ponses of systems A and B ( A,maxU  and B,maxU ), (3) computing the sample means A,maxU  and 

B,maxU  of A,maxU  and B,maxU , respectively, and (4) combining A,maxU  and B,maxU  using the ABS, 

the SRSS, and the DDC rule to derive estimate of the peak relative displacement ,maxrelU .  
Table 1 shows the values of the separation distance computed according to different com-

bination rules and the corresponding 50-year probability of failure, computed based on the 
cVM approximation of the time-variant hazard function. 

 
tA = 0.5s and tB = 1s tA = 0.9s and tB = 1s 

 ABS SRSS DDC   ABS SRSS DDC 
ξ [m] 0.1379 0.1049 0.1042 ξ [m] 0.1832 0.1298 0.0946 

Pp 0.0620 0.1351 0.1376 Pp 0.0106 0.0334 0.0857 

Table 1: Critical separation distance and corresponding 50-year pounding risk using different combination rules. 

It is observed that the CSDs obtained using simplified combination rules yield inconsistent 
values of the failure probability, which are also strongly dependent on the natural periods of 
the two adjacent buildings. It is concluded that a methodology is still needed to determine the 
CSD between adjacent buildings corresponding to consistent safety levels for different com-
binations of the buildings’ natural periods and location’s seismic hazard. 

 

4.3 MDOF models of multistory buildings retrofitted by means of viscous dampers  

As a third application, the proposed methodology is employed to assess the risk of pound-
ing between two adjacent multistory buildings modeled as linear MDOF systems, before and 
after retrofit with viscous dampers (Fig. 6). Different retrofit solutions are considered and 
their effectiveness in reducing the seismic pounding risk is compared (Fig. 6(b)). The consi-
dered buildings are steel moment-resisting frames with shear-type behavior. The properties of 
the buildings are taken from Lin [36]. Building A is a six-story building with story stiffness kA 
= 548,183kN/m (equal for every story) and floor mass mA = 454.545tons (equal for each 
floor), building B is a four-story building with story stiffness kB = 470,840kN/m and floor 
mass mB = 454.545tons. A Rayleigh-type damping matrix cR is used to model the inherent 
buildings’ damping and is built by considering a damping ratio ζR = 2% for the first two vibra-
tion modes of each system. MPU is not considered in this application. The fundamental vibra-
tion periods of building A and B are tA = 0.751s and tB = 0.562s, respectively. 

The following six different retrofit solutions, based on the use of braces with purely visc-
ous behavior [37], are considered: (1) braces located at each story of both buildings (retrofit 
scheme 1), (2) braces located at all stories of the tall building only (retrofit scheme 2), (3) 
braces located at all stories of the short building only (retrofit scheme 3), (4) braces located at 
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the lower four stories of the tall building only (retrofit scheme 4), (5) braces located at the 
lower four stories of both buildings, and (6) a single brace located at the first story of the tall 
building only. The two buildings before retrofit are shown in Fig. 6(a), while the six retrofit 
schemes are shown in Fig. 6(b). The viscous braces provide an additional source of damping, 
modeled by means of a damping matrix cv. The total damping matrix for the two buildings’ 
systems becomes c = cR + cv. The damping coefficient corresponding to the dampers at each 
floor of buildings A and B is cd = 10,000kN·s/m. The systems corresponding to retrofit 
schemes 4, 5, and 6 are non-classically damped and their analysis requires the use of the com-
plex modal analysis technique [25]. 

 
Before retrofit 

uA uB 

mA 

kA 

mB 

(a) 

Building B 

Building A 

kB 

 (b)Retrofit scheme 1

cd 

cd 

Retrofit scheme 2 Retrofit scheme 3 

Retrofit scheme 4 Retrofit scheme 5 Retrofit scheme 6 

 
Fig. 6. Pounding between adjacent multistory buildings: (a) building A and B before retrofit, and (b) different 

retrofit schemes considered in this study. 

Fig. 7(a) shows three different analytical estimates (P, cVM, and mVM approximations) of 
the 50-year probability of pounding between the two un-retrofitted buildings, for different 
values of the separation distance. Fig. also reports the 50-year probability of pounding ob-
tained using the ISEE method, which is considered as reference solution. The analytical esti-
mates provide a very good estimate of the pounding risk for a wide range of separation 
distances. In this particular case, the results obtained using the cVM hazard function give the 
best approximation of the ISEE results. 
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Fig. 7. Pounding risk between multistory buildings A and B: (a) comparison of different analytical solution and 
ISEE results, and (b) comparison of different retrofit schemes. 
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Fig. 7(b) shows compares the 50-year probability of pounding of the un-retrofitted build-
ings and of the buildings retrofitted following the six different retrofit solutions considered in 
this application example. The results presented in Fig. 7(b) are obtained using the cVM ap-
proximation of the hazard function.  

It is observed that the use of viscous dampers can be very effective in reducing the risk of 
pounding between the two buildings. It is also found that the introduction of viscous braces 
according to scheme 3, scheme 5, and scheme 6 (corresponding to the dotted lines in Fig. 7(b)) 
is a very efficient retrofit solution, since it obtains a significant reduction of the pounding risk 
at a significantly lower retrofit cost when compared with other retrofit schemes. In particular, 
retrofit scheme 3 appears to achieve a very good compromise between retrofit cost and reduc-
tion of pounding risk. 

 

CONCLUSIONS  

This paper presents a fully probabilistic performance-based methodology for assessment of 
the seismic pounding risk between adjacent buildings. This methodology, which is consistent 
with the PEER PBEE framework, is able to account for all pertinent sources of uncertainty 
that can affect the pounding risk, e.g., uncertainty in the seismic input (i.e., site hazard and 
record-to-record variability) and in the parameters used to describe the structural systems of 
interest (i.e., material properties, geometry, damping properties, separation distance).  

An efficient combination of analytical and simulation techniques is proposed for the calcu-
lation of the pounding risk under the assumptions of linear elastic behavior for the buildings 
and of non-stationary Gaussian input ground motion. The pounding problem is recast as a 
first-passage reliability problem, which is solved analytically by using the spectral characte-
ristics (up to the second order) of the non-stationary stochastic process representing the rela-
tive displacement between the buildings. Three different analytical approximations of the 
time-variant hazard function are used: (1) the Poisson’s approximation, (2) the classical Van-
marcke’s approximation, and (3) the modified Vanmarcke’s approximation. Results obtained 
by employing the importance sampling using elementary events method are assumed as refer-
ence solutions to evaluate the absolute and relative accuracy of the three analytical approxi-
mations considered here. The proposed formulation is very convenient in the case of linear 
elastic MDOF systems with both proportional and non-proportional damping, since the spec-
tral characteristics of the relative displacement processes can be computed in exact closed 
form. The effects of uncertainty in the model parameters are efficiently included by means of 
the total probability theorem and the Latin hypercube sampling technique. 

The proposed methodology is applied to investigate the risk of pounding between SDOF 
systems, both with deterministic and uncertain properties. With reference to this specific ap-
plication example, the following observations are made. (1) The proposed combination of 
analytical and simulation techniques provides sufficiently accurate estimates of the pounding 
risk when the classical Vanmarcke’s approximation is used to estimate the time-variant ha-
zard function. (2) The accuracy of the analytical approximations of the time-variant hazard 
function depends on the ratio between the natural periods of the adjacent buildings. Higher 
accuracy is reached when the natural periods of the two buildings are well separated. (3) The 
Poisson’s approximation of the time-variant hazard function yields always conservative esti-
mates of the risk. (4) The design codes’ simplified combination rules for calculating the criti-
cal separation distance yield inconsistent values of the pounding probability, which are also 
strongly dependent on the natural periods of the adjacent buildings.  

In addition, the capabilities of the proposed method are demonstrated by assessing the ef-
fectiveness of the use of viscous dampers, according to different retrofit schemes, in reducing 
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the pounding probability of adjacent multi-story buildings modeled as linear elastic multi-
degree-of-freedom systems. Based on the results presented, the following considerations are 
made. (1) The analytical approximations provide very accurate estimates of the pounding risk, 
due to the fact that the fundamental periods of the two buildings are well separated. (2) The 
use of viscous dampers can dramatically reduce the risk of pounding between the two systems 
for any given separation distance. (3) The use of viscous braces in the lower levels of the tal-
ler building is a very efficient and cost-effective technique for minimizing the pounding risk. 

Based on the results presented in this paper, it is concluded that the proposed methodology 
can be efficiently employed (1) for the assessment of pounding risk of adjacent buildings ex-
hibiting linear elastic behavior before pounding, (2) for the computation of the mean annual 
frequency of pounding between adjacent buildings in the context of performance-based earth-
quake engineering, and (3) for the rational evaluation of the absolute and relative effective-
ness of different retrofit solutions for adjacent building with high risk of seismic pounding. 
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