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Abstract. The corotational method is an attractive approach to derive non-linear finite beam
elements. In a number of papers, this method was employed to investigate the non-linear dy-
namic analysis of 2D beams. However, most of the approaches found in the literature adopted
either a lumped mass matrix or linear local interpolations to derive the inertia terms (which
gives the classical linear and constant Timoshenko mass matrix), although local cubic inter-
polations were used to derive the elastic force vector and the tangent stiffness matrix. In this
paper, a new corotational formulation for dynamic nonlinear analysis is presented. Cubic in-
terpolations are used to derive both the inertia and elastic terms. Numerical examples show
that the proposed approach is more efficient than using lumped or Timoshenko mass matrices.
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1 Introduction

The corotational approach is an attractive method to derive efficient nonlinear finite beam
elements [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The main idea of the method can be summarized as
follow: the motion of the beam element is decomposed into rigid body and pure deformational
parts. A local coordinates system, which moves and rotates with the element’s overall rigid
body motion, is defined. The deformational part is measured in this local system.
Many different assumptions to represent the local deformations, giving different possibilities for
the local element formulation, can be found in the literature. If linear interpolations are used for
the local formulation, inertia corotational terms are easily derived and the classical linear and
constant Timoshenko mass matrix is obtained. However, this assumption has the drawback that
the local vertical displacements are zero along the element, which is not accurate, especially for
flexible beams. If cubic interpolations are used for the local formulation, then the derivation of
the inertia terms becomes very complicated. To avoid this complexity, Crisfield and al.[2] used
the constant Timoshenko mass matrix, although they used local cubic interpolations to derive
the elastic force vector and tangent stiffness matrix. The same approach was adopted in [6].
In [7, 8, 9], the authors used a constant lumped mass matrix without any attempt to check its
accuracy. In [10], Behdinan and al. proposed a corotational dynamic formulation. However, the
cubic shape functions were used to describe the global displacements, which is not consistent
with the idea of the corotational method.
In this paper, a new corotational formulation is presented where cubic shape functions are
adopted. In order to consider the bending shear deformations, the cubic shape functions of
the Interpolation Interdependent Element (IIE) [12] are used to derive the local elastic force
vector and local tangent stiffness matrix. It is shown that with some simplifications, the inertia
terms can be derived. The new formulation provide accurate results with a minimum number
of elements.
The paper is organized as follows: in Section 2 and 3 the corotational kinematic of a 2D beam
element and the derivation of the elastic force vector and tangent stiffness matrix are presented.
More details about that can be found in [13]. Section 4 and 5 are devoted to the derivation of
the inertia terms. In Section 6, two examples are presented in order to assess the accuracy of
the present dynamic formulation. Finally conclusions are given in Section 7.

2 Beam kinematics

The notations used are defined in Fig. 1. The coordinates for the nodes 1 and 2 in the global
coordinate system (x,z) are (x1, z1) and (x2, z2). The vector of global displacements is defined
by

q =
[

u1 w1 θ1 u2 w2 θ2

]T

(1)

The vector of local displacements is defined by

q =
[

u θ1 θ2

]T

(2)
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Figure 1: Beam kinematics 1.

The components of q can be computed according to

u = ln − lo (3)

θ1 = θ1 − α = θ1 − β − βo (4)

θ2 = θ2 − α = θ2 − β − βo (5)

In (3), lo and ln denote the initial and current lengths of the element, respectively. The current
angle of the local system with respect to the global system is denoted as β and is given by

c = cos β =
1

ln
(x2 + u2 − x1 − u1) (6)

s = sin β =
1

ln
(z2 + w2 − z1 − w1) (7)

The differentiation of equation (7) gives

δβ =
1

ln

[
s −c 0 −s c 0

]
δq (8)

The differentiation of equations (3) to (5) gives

δq = B δq (9)

with

B =



b1

b2

b3


 =



−c −s 0 c s 0
−s/ln c/ln 1 s/ln −c/ln 0
−s/ln c/ln 0 s/ln −c/ln 1


 (10)
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3 Elastic force vector and tangent stiffness matrix

By equating the virtual work in the local and global systems, the relation between the local
elastic force vector fl and the global one fg is obtained as

V = δqT fg = δqT fl = δqT BT fl (11)

The equation (11) must apply for any arbitrary δq. Hence the global elastic force vector fg is
given by

fg = BT fl fl =
[

N M1 M2

]T

(12)

The global tangent stiffness matrix is defined by

δfg = Kg δq (13)

By taking the differentiation of (12), it is obtained

Kg = BT Kl B +
z zT

ln
N +

1

l2n
(r zT + z rT)(M1 + M2) (14)

where

r =
[
−c −s 0 c s 0

]T

(15)

z =
[

s −c 0 −s c 0
]T

(16)

The local elastic force vector fl and local tangent stiffness matrix Kl, which is defined by
δfl = Kl δq, depend on the definition of the local formulation. In this work, the shape functions
of the IIE (Interdependent Interpolation Element) are used together with a shallow arch beam
theory. The shallow arch longitudinal and shear strains are given by

ε =
1

lo

∫

lo

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]

dx− ∂2w

∂x2
z (17)

γ =
∂w

∂x
− ϑ (18)

Using IIE’s shape functions taken from [12], the axial displacement u, the vertical displacement
w and the local rotation ϑ are given by

u =
x

lo
u (19)

w = ϕ1θ1 + ϕ2θ2 (20)

ϑ = ϕ3θ1 + ϕ4θ2 (21)
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where

ϕ1 = µ x

[
6 Ω

(
1− x

lo

)
+

(
1− x

lo

)2
]

(22)

ϕ2 = µ x

[
6 Ω

(
x

lo
− 1

)
− x

lo
+

x2

l2o

]
(23)

ϕ3 = µ

(
1 + 12 Ω− 12 Ω x

lo
− 4 x

lo
+

3 x2

l2o

)
(24)

ϕ4 = µ

(
12 Ω x

lo
− 2 x

lo
+

3 x2

l2o

)
(25)

Ω =
E I

G A Ks lo
(26)

µ =
1

1 + 12Ω
(27)

A, I : Section’s area and inertia moment
Ks : Shear correction coefficient.

For a rectangular cross-section, Ks =
5

6

With Ω = 0, the hermitian shape functions of the classical Bernoulli elements are obtained. The
interest of IIE formulation is to keep the accuracy inherent to the cubic interpolation and with
Ω to add the bending shear deformation.

4 Inertia force vector and mass matrix

The inertia force vector is calculated from the kinetic energy by using the Lagrange’s equa-
tion of motion:

fK =
d

dt

[
∂K

∂q̇

]
−

[
∂K

∂q

]
(28)

The kinetic energy K of an element is given as

K =
1

2
ρ
{ ∫

lo

A(u̇2
G + ẇ2

G)dl +

∫

lo

I θ̇2dl
}

(29)

where

ρ : Mass density

uG , wG: Global displacements of the centroid of the cross-section

θ : Global rotation of the cross-section

The global position of the centroid of the cross-section is given by (see Fig. 2)

OG = (x1 + u1) i + (z1 + w1) j +
ln
lo

x a + w b (30)
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Figure 2: Beam kinematics 2.

with

a = cos β i + sin β j (31)
b = − sin β i + cos β j (32)

After some algebraic manipulations, the velocities components can be derived

u̇G = u̇1 +
x

lo
(u̇2 − u̇1)− ẇ sin β − wβ̇ cos β (33)

ẇG = ẇ1 +
x

lo
(u̇2 − u̇1) + ẇ cos β − wβ̇ sin β (34)

The global rotation of the cross section is given by

θ̇ = ϑ̇ + α̇ = ϑ̇ + β̇ (35)

For the dynamic formulation, Ω is taken to 0. It is worth mentioning that assumption simplify
the computations. Furthermore, extensive numerical studies performed by the authors have
shown that this simplification does not modify the numerical results. The exact expression of
the kinetic energy K can be obtained by substituting (33),(34) and (35) into (29), and by using
(8) to calculate β̇. K can be written as

K =
1

2
q̇T M q̇ (36)

The local mass matrix Ml is defined by

M = TT Ml T (37)

where T is rotation matrix.
Consequently, one obtains

K =
1

2
q̇T TT Ml T q̇ (38)
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At this point, two simplifications are introduced in the expression of the local mass matrix: the
local displacement w is assumed small and therefore the terms containing w2 are neglected;
due to the assumption of the small deformation, the approximation ln = lo is taken. With these
simplifications, the local mass matrix is only function of θ1 and θ2 and is given by

Ml = Ml 1 + Ml 2 (39)

where Ml 1 is the mass matrix for local axial and vertical displacements, defined as

Ml 1 =
ρ A lo
420




140 m1 0 70 −m1 0
m1 156 22lo m2 54 −13lo
0 22lo 4l2o 0 13lo −3l2o
70 m2 0 140 −m2 0
−m1 54 13lo m2 156 −22lo

0 −13lo −3l2o 0 22lo 4l2o




with

m1 = (21θ1 − 14θ2)

m2 = (14θ1 − 21θ2)

Ml 2 is the mass matrix for rotation, defined as

Ml 2 =
ρ I

30 lo




0 0 0 0 0 0
0 36 3lo 0 −36 3lo
0 3lo 4l2o 0 −3lo −l2o
0 0 0 0 0 0
0 −36 −3lo 0 36 −3lo
0 3lo −l2o 0 −3lo 4l2o




The differentiations of the kinetic energy can be computed as

∂K

∂q̇
= M q̇ (40)

d

dt

[ ∂K

∂q̇

]
= M q̈ + Ṁ q̇ (41)

M is function of β, θ1, θ2 which are dependent on the time:

Ṁ =
∂M

∂β
β̇ +

∂M

∂θ1

θ̇1 +
∂M

∂θ2

θ̇2 (42)

Using the notation
∂M

∂β
= Mβ;

∂M

∂θ1

= Mθ1
;
∂M

∂θ2

= Mθ2
, the above equation can be rewritten

in a more compact form

Ṁ = Mβ

(zT

ln
q̇
)

+ Mθ1
(bT

2 q̇) + Mθ2
(bT

3 q̇) (43)
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The differentiation of K with respect to q is given by
[ ∂K

∂q

]
=

∂K

∂β

∂β

∂q
+

∂K

∂θ̄1

∂θ1

∂q
+

∂K

∂θ̄2

∂θ2

∂q

=
(1

2
q̇TMβq̇

) z

ln
+

(1

2
q̇TMθ1

q̇
)
b2 +

(1

2
q̇TMθ2

q̇
)
b3 (44)

Substituting (43), (44) into (28), one obtains the expression of fK as

fK = M q̈ +
{
Mβ

(zT

ln
q̇
)

+ Mθ1
(bT

2 q̇) + Mθ2
(bT

3 q̇)
}
q̇

−
(1

2
q̇TMβq̇

) z

ln
−

(1

2
q̇TMθ1

q̇
)
b2 −

(1

2
q̇TMθ2

q̇
)
b3 (45)

The expression of Mβ is given by

Mβ =
dT

dβ

T

Ml T + TT Ml
dT

dβ
(46)

where

dT

dβ
=




0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0




T = I1 T (47)

Hence,
Mβ = TT(IT

1 Ml + Ml I1)T = TTMβ
l T (48)

Mθ1
,Mθ2

are calculated by

Mθ1
= TT ∂Ml

∂θ1

T = TTMl,θ1
T (49)

Mθ2
= TT ∂Ml

∂θ2

T = TTMl,θ2
T (50)

where

Ml,θ1
=

ρAlo
60




0 3 0 0 −3 0
3 0 0 2 0 0
0 0 0 0 0 0
0 2 0 0 −2 0
−3 0 0 −2 0 0
0 0 0 0 0 0




Ml,θ2
=

ρAlo
60




0 −2 0 0 2 0
−2 0 0 −3 0 0
0 0 0 0 0 0
0 −3 0 0 3 0
2 0 0 3 0 0
0 0 0 0 0 0



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5 Non-linear equation of the motion

The non-linear equation of motion is

fK(q, q̇, q̈) + fg(q) = p (51)

where

fK : Inertia force vector

fg : Elastic force vector

p : Applied external loads

To solve (51), the differentiation of each terms must be calculated. The following notations are
used

Kg =
∂fg
∂q

(52)

M =
∂fK
∂q̈

(53)

CK =
∂fK
∂q̇

(54)

KK =
∂fK
∂q

(55)

The stiffness matrix Kg and the mass matrix M are defined in previous sections. Using (45),
CK can be computed as

CK = Ṁ + C1 −CT
1 (56)

with

C1 = Mβ

(
q̇

zT

ln

)
+ Mθ1

(
q̇ bT

2

)
+ Mθ2

(
q̇ bT

3

)
(57)

The matrix KK can be written as follow

KK = K1 + K2 −K3 (58)

where

K1 = Mβq̈
zT

ln
+ Mθ1

q̈bT
2 + Mθ2

q̈bT
3 (59)

K2 =
(zT

ln
q̇
)( ∂Mβ

∂β
q̇
zT

ln
+

∂Mβ

∂θ1

q̇bT
2 +

∂Mβ

∂θ2

q̇bT
3

)
+ (bT

2 q̇)
∂Mθ1

∂β
q̇
zT

ln

+ (bT
3 q̇)

∂Mθ2

∂β
q̇
zT

ln
−

(
Mβ −Mθ1

−Mθ2

)
q̇ q̇T

(r zT + r zT

l2n

)
(60)

K3 =
1

2

[(
q̇T ∂Mβ

∂β
q̇
)z zT

l2n
+

(
q̇T ∂Mβ

∂θ1

q̇
) z

ln
bT

2 +
(
q̇T ∂Mβ

∂θ2

q̇
) z

ln
bT

3

+
(
q̇T ∂Mβ

∂θ1

q̇
)
b2

zT

ln
+

(
q̇T ∂Mβ

∂θ2

q̇
)
b3

zT

ln

− q̇T
(
Mβ −Mθ1

−Mθ2

)
q̇
(r zT + r zT

l2n

)]
(61)

The expressions of
∂Mβ

∂β
,
∂Mβ

∂θ1

and
∂Mβ

∂θ2

can be easily derived from (48), (49) and (50).
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6 Numerical examples

Two numerical applications are presented in this section in order to assess the performance
of the dynamic corotational formulation proposed in Sections 4 and 5. In particular, the accu-
racy of the new formulation is compared to the one of two formulations usually found in the
literature, i.e. the lumped mass matrix and the Timoshenko mass matrix. These two constant
mass matrices are given by

MLumped =
ρ A lo

2




1 0 0 0 0 0
0 1 0 0 0 0
0 0 l2o/12 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 l2o/12




MTimoshenko = ρ lo




A/3 0 0 A/6 0 0
0 A/3 0 0 A/6 0
0 0 I lo/3 0 0 I lo/3

A/6 0 0 A/3 0 0
0 A/6 0 0 A/3 0
0 0 I lo/3 0 0 I lo/3




For all dynamic formulations, the elastic force vector and tangent stiffness matrix have been
derived using the IIE shape functions in order to account for shear deformability. For each
example, the three dynamic formulations are compared with a reference solution. This solution
is obtained with a large number of elements and is identical for the three considered dynamic
formulations. The reference solution has also been checked with Abaqus (Total Lagrangian
formulation) and the same results have been obtained.
To solve the equation of motion, the Alpha method, which is presented in [14], is employed,
with α = −0.01. This moderate value of α gives a small numerical damping, which limits the
influence of higher frequencies on the response. Damping is not considered.
For the presentation of the results, the following colors are used in all figures:� � � � � � � � � � � � 	 
 � � �� 
 � � � � � � � � � � � � � � � � 
 � � � � � � � � �   � � ! " # $% & ' ( ) * + , - . / 0 ) 1
6.1 Shallow arch

Consider a shallow, circular, elastic arch (see Fig. 3) of span L = 10m with clamped ends.
The radius R of the arch is equal to 10m with φ = 30◦. The shallow arch has a uniform rectan-
gular cross-section and is subjected to a sinusoidal concentrated vertical force P = Po sin(wt)
at mid-span. The amplitude of the load Po is taken equal to -80 MN and its frequency w is 1000
rad/s. The arch has cross-sectional area A = 0.087 m2, modulus of elasticity E = 210GPa,
second moment of area I = 3.562 · 10−3m4 and mass per unit volume ρ = 7850kg/m3. The
time step size is chosen to be ∆t = 5 · 10−5 s. In Fig. 4, the mid-span vertical displace-
ment v(t) history is depicted for the 3 different dynamic formulations as well as the reference
solution, which has been obtained with 48 elements. Only 6 elements have been used for the
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Figure 3: Shallow arch: geometrical data

0 0.01 0.02 0.03 0.04 0.05
−0.6

−0.4

−0.2

0

0.2

0.4

t [s]

v 
[m

]

Figure 4: Shallow arc - Vertical displacement history

computations with the 3 formulations. It can be observed that the results obtained with the new
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approach are nearly identical to the reference solution. However, large discrepancies between
the results obtained with the lumped and Timoshenko approaches and the reference solution
can be observed. This indicates that the present formulation is able to capture the nonlinear
dynamical behaviour of structures with minimal number of elements.

6.2 Lee’s frame

A Lee’s frame with uniform rectangular cross-section subjected to a suddenly applied con-
stant load Po = 4.1 MN is considered, (see Fig. 5). The frame and cross-section data (see
Fig. 5) are : L = 2.4m, a = 0.2m and e = 0.3m. The members of the frame have modulus of
elasticity E = 210GPa and mass per unit volume ρ = 7850kg/m3. The loading is defined as
follows:

P =

{
0 if t ≤ 0
Po if t > 0

The reference solution, obtained with 60 elements, and the results obtained with 10 elements

�

�

�

�� ��

�
�
�

�

�

Figure 5: Lee’s frame: geometrical data

are presented in Fig. 6. The time step size is ∆t = 2.5 · 10−3 s. It can be noted that, with
10 elements, the results obtained with the new approach are in good agreement with the ref-
erence solution. However, the discrepancy between the results obtained with the lumped or
Timoshenko approaches and the reference solution is not negligible.
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Figure 6: Lee’s frame - Vertical displacement history

7 Conclusion

In this paper, a new dynamic formulation for corotational 2D beam has been presented. The
new feature is that cubic interpolations are used to derive both inertia and elastic terms. The
inertia terms are analytically derived by introducing some simplifications. Two numerical ex-
amples were implemented to compare this new formulation with linear Timoshenko and lumped
mass matrices, which are often used in literature. The results show that the new formulation
requires more computational time but allows to reduce significantly the number of elements.
This advantage is due to a better representation of the local displacements in the inertia terms.
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