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Abstract. The scope of this paper is to identify the parameters affecting the dynamic response 
of an existing R/C bridge, based on low ambient amplitude vibration measurements and 
numerical predictions using complex finite element models. For this purpose, the 
instrumented, 2nd Kavala Bypass Ravine Bridge constructed along the Egnatia Motorway 
Greece is studied and a refined three- dimensional (3D) FEM is developed that takes into 
consideration the coupling and dynamic interaction of the overall superstructure-foundation-
soil and deck-abutment-embankment system. The instrumentation schemes and the necessary 
algorithms applied for computing the modal characteristics of the bridge are discussed, while 
the modelling assumptions made for the soil-structure system are comparatively assessed and 
justified for various models of different levels of complexity. Given the large number of the 
system’s degrees of freedom, a manual, modal-based FEM updating method is also presented. 
The results show good agreement between the measured and computationally predicted 
dynamic characteristics of the structure. They also show that the accurate estimation of the 
pier, deck and bearings stiffness is a key parameter for reliable system identification.  
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1 INTRODUCTION 

Structural health monitoring and identification of structural modes of existing civil 
engineering projects is nowadays a major component of system maintenance and management 
especially for highway transportation networks. The modal characteristics of structures can be 
evaluated either by identification systems that are based on ambient (i.e., due to traffic and 
wind) and earthquake-induced vibrations or by modal analysis of finite element models 
(FEMs). Important information can be derived by the comparative assessment between the 
results of the two methodologies as scientists can investigate the structural integrity of 
structures and also validate the reliability of the FEMs that are developed for the analysis, 
design and assessment of structures.  

An identification system based on ambient vibrations involves the presence of factors 
imposing ambient vibrations to a structure, monitoring of the structural response (measured 
acceleration time histories) and the development of an appropriate mathematical algorithm. 
Such an algorithm uses the measured output data as an input for the prediction of the modal 
frequencies, modal damping ratios and mode shapes through classically damped or non-
classically damped modal models. A significant number of methods [1] and the respective 
software have been developed for the identification of modal properties, based on ambient 
vibrations, both in the time and frequency domain. The methods, based on output 
measurements only, make the assumption that the input can be well represented by a vector 
white noise process. Recent developments are also reported in Peeters and De Roeck [2] and 
Basseville et al. [3] using time domain stochastic subspace identification methods, in Beck et 
al. [4] using time domain least-squares methods based on correlation functions of the output 
time histories, in Verboven [5], Gauberghe [6] and Brincker et al. [7] using frequency domain 
least-squares methods based on full cross-power spectral densities (CPSD), and in Peeters and 
Van der Auweraer [8] based on half spectra. Bayesian and maximum likelihood statistical 
methods have also been proposed, for example, in Katafygiotis and Yuen [9], Guillaume et al. 
[10] and Verboven [5].  

On the other hand, the estimation of dynamic characteristics using modal-based analysis of 
finite element models requires appropriate software to carry out dynamic analysis. However, 
in the case of extended structures such as bridges, the compliance and damping of the 
supporting soil has to be taken into consideration as it may affect significantly both the 
dynamic characteristics of the soil-foundation-superstructure and the embankment-abutment-
superstructure system. An efficient way to account for this phenomenon is to  de-couple the 
problem into a kinematic and an inertial sub-structure (Mylonakis and Gazetas [11]). 
Alternatively, a holistic numerically modelling of the entire soil, structure and foundation 
system is also feasible (i.e. Wolf [12]). 

Despite above advances, it is still quite common to observe differences between the 
measured dynamic characteristics of the structure and the dynamic characteristics predicted 
numerically by FEMs. For that reason, mathematical algorithms have been developed based 
on the identified modal characteristics (e.g. Mottershead and Friswell [13], Bohle and Fritzen 
[14], Teughels et al. [15], Lam et al. [16], Christodoulou and Papadimitriou [17]) that permit 
the re-estimation of the structural parameters of the finite element models and the 
minimization of the induced error. These algorithms use the identified modal data and 
formulate them as weighted least-squares problems in which the optimal values of the 
structural parameters of a FEM are obtained by minimizing a measure of the residuals 
between the measured and numerically predicted modal characteristics. Alternatively, the 
structural parameters of the finite element model can be automatically updated, based on the 
identified modal data, without the development of a mathematical algorithm. This automatic 
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model updating procedure solely consists of a sequential parametric analysis for different 
values of the structural parameters, until the percentage of error between the measured and 
predicted modes is minimized. Both the aforementioned calibration procedures for model 
updating provide an insight into the epistemic uncertainties related to the simplified 
assumptions and idealizations inevitably made during the development of FEMs. These 
uncertainties include the uncertainty in the model topology, the uncertainty in the boundary 
conditions of the model and the uncertainty in the material properties.  

Along these lines, the scope of this paper is to qualitatively and quantitatively validate the 
uncertainties associated with the modeling assumptions made and to estimate which of them 
influences most the reliability of the results, at least for the particular bridge studied. For that 
purpose, a modal identification approach based on ambient vibrations, three FEMs of 
different modeling complexity and two model updating methods (automatic and manual) were 
implemented. The description of the bridge, the methodology adopted and the comparative 
assessment of the results obtained are presented in the following.  

2 DESCRITION OF THE BRIDGE STUDIED 

2.1 Structural system  

The 2nd Kavala Bypass Ravine Bridge, shown in Figure 1, is a newly built bridge located in 
Section 13.7 of Egnatia, a major 670km highway constructed on the traces of the ancient 
Roman path, crossing northern Greece from its western to its eastern border. Its overall length 
is 170m and comprises two statically independent branches, with four identical simply 
supported spans of 42.5m. Each span is built with four precast post-tensioned I-beams of 
2.80m height that support a continuous deck of 26cm thickness and 13m width. The I-beams 
are supported by 2 abutments (A1 and A2) and by 3 piers (M1, M2 and M3) through 
laminated elastomeric bearings. Each abutment has 4 cyclic bearings and each pier has 8 
rectangular bearings. The piers have a 4×4m hollow cross-section, 40cm wall thickness and 
heights equal to 30m (M1, M3) and 50m (M2), all supported with large caissons on relatively 
stiff soil (corresponding to soil class “A” according to both the Greek Seismic Code and the 
Eurocode 8 soil classification). The four spans of the deck are interconnected through a 2-m 
long 20-cm thick continuity slab over the piers.  

2.2 Instrumentation  

Between the two identical branches of the 2nd Kavala Bypass Ravine Bridge only the 
southern branch is instrumented. The instrumentation consists of a 24-accelerometer array [1], 
one at each deck side and located at the middle of each bridge span. More specifically, the 
accelerometers are installed both on the external sidewalk of the deck and on the internal New 
Jersey barrier of the deck. As shown in Figure 2, 18 of the 24 sensors are installed on the deck 
and two at the top of each of the three piers (six in all) next to the laminated elastomeric 
bearings so that adequate information is provided to distinguish between the pier and bearing 
stiffness. The sensors on the deck have a 3-letter label that follow the above explained 
convention: The last letter denotes the orientation of the uniaxial sensor (L: longitudinal, T: 
transverse, V: vertical). The previous one denotes the side of the bridge deck on which the 
sensor lies (R: right, L: left). Finally, the first letter denotes the bridge section that the sensor 
lays on (A1, B1, C1 or D1). The numbers next to each sensor label denotes the length of the 
cable used to connect the sensor to each recording unit. The sensors on the piers follow the 
same convention used for the sensors on the deck with the exception that the letters U1, U2 
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and U3 refer to the top of the piers. The particular layout of the instrumentation permits the 
recording of the dynamic response of the bridge under ambient loads.  

This recording system has start/common trigger capabilities to enable synchronous data 
acquisition. The trigger threshold can be set independently for each sensor, and the user can 
define the sensors that will cause a system trigger. The systems are equipped with GPS boards 
as well as with external GSM/GPRS cellular modems that allowed telematic control and data 
transfer to the user offices. 

 
 

 

Figure 1: General overviews of the 2nd Kavala Ravine Bypas Bridge.  

 

 
Figure 2: Instrumentation of the 2nd Kavala Ravine Bypas Bridge [1]. 
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3 IDENTIFICATION OF STRUCTURAL MODES VIA AMBIENT VIBRATIONS 

The methodology of identifying structural modes via ambient vibrations is based [1] on a 
least squares minimization of the measure of fit between the cross power spectral density 
(CPSD) matrix Ŝ(kΔω)CN0×N0 and the CPSD matrix S(kΔω;ψ)CN0×N0. The Ŝ(kΔω ) matrix 
is estimated from the measured output acceleration time histories and the S(kΔω;ψ) matrix is 
predicted by a modal model. Ιn Equation 1 N0 is the number of measured degrees of freedom 
(DOF), Δω is the discretization step in the frequency domain, k = {1, . . . , Nω} is the index 
set corresponding to frequency values ω = kΔω, Nω is the number of data in the indexed set, 
and ψ is the parameter set to be estimated.  
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Gauberghe [6], as described in Equation 2, gives the CPSD matrix S(kΔω;ψ) with the 
assumption of general non-classically damped modes. In Equation 2 m is the number of 
contributing modes in the frequency range of interest, λr is equal to (−ζrωr ± jωr_1 − ζ 2

r) and 
is the complex eigenvalue of the r-th contributing mode. In Equation 2 ωr is the r–th modal 
frequency, ζr is the r–th modal damping ratio, φrCN0×N0 is the complex mode shape of the r-
th mode, ACN0×N0, BCN0×N0 are real symmetric matrices accounting for the contribution of 
the out-of-bound modes to the selected frequency range of interest, and gr C

N0×N0 are vector 
quantities that depend on the characteristics of the modal model and the CPSD of the white 
noise input vector, while the symbol u* denotes the complex conjugate of a complex number u. 
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The CPSD matrix in Equation 2 is defined by the parameters ωr, ζr, φr, gr, r = 1, . . . ,m, A 

and B. The modal parameter set ψ contains the above mentioned parameters and has to be 
identified. For non-classically damped modal models, the total number of parameters is 2m(1 
+ 2N0) + N2

0 + N0. 
The objective is the minimization of Equation 1 and that can be carried out efficiently [18], 

significantly reducing computational cost, by recognizing that the error in Equation 1 is 
quadratic with respect to the complex modeshapes φr and the elements in the matrices A and 
B. This observation is used to develop explicit expressions that relate the parameters φr , A 
and B to the vectors gr, the modal frequencies ωr and the damping ratios ζr, so that the number 
of parameters involved in the optimization is reduced from 2m(1 + 2N0) + N2

0 + N0 to 2m (N0 
+ 1). This reduction is considerable for a relatively large number of measurement points. 
Applying the optimality conditions in Equation 1 with respect to the components of φr, A and 
B, a linear system of equations results for obtaining φr, A and B with respect to the gr, ωr and 
ζr, r = 1, . . . ,m. The resulting nonlinear optimization problem with respect to the remaining 
variables gr, ωr and ζr, where r = 1, . . . ,m, is solved in Matlab using available gradient-based 
optimisation algorithms. 
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The starting values required in the optimization are obtained from a two-step approach as 
follows. In the first step, conventional least squares complex frequency algorithms [5] are 
employed, along with stabilization diagrams, to obtain estimates of the modal frequencies ωr 
and modal damping ratios ζr and distinguish between the physical and the mathematical 
modes. These values in most cases are very close to the optimal values. In the second step, 
given the values of ωr and ζr, the values of the residue matrices Rr = φrgTrCN0×N0 in Equation 
2 are obtained by first recognizing that the objective in Equation 1 is quadratic with respect to 
Rr, A and B, then formulating and solving the resulting linear system of equations for Rr, A 
and B, and finally applying singular value decomposition to obtain estimates of φr and gr from 
Rr. Usually, this two-step approach gives results that are very close to the optimal estimates. 
However, for closely spaced and overlapping modes it is often recommended to solve the 
original nonlinear optimization problem with respect to gr, ωr and ζr, r = 1, . . . ,m, using the 
estimates of the two-step approach as starting values. 

4 ALTERNATIVE FINITE ELEMENT MODELS DEVELOPED 

Three FEMs of increasing modeling complexity were created based on the exact 
geometrical and material properties that were used for design. The first model is an one-
dimensional (i.e., frame type), fixed-base model (hereafter called “1D-Fixed”), the second is a 
three-dimensional, fixed-base (“3D-Fixed”) and the third is a model for which the whole soil-
foundation-structure system has been simulated in 3D space (“3D-3D Soil”). The numerical 
simulation of the 1D-Fixed model was carried out with the computer program COMSOL 
2005 multi-physics, while  the numerical simulation of the other two 3D models was carried 
out with ABAQUS 6.8. 

The 1D-Fixed model of the Kavala bridge [1] was simulated using three-dimensional, two 
node, beam-type finite elements for the modeling of the structural elements (deck, I-beams, 
piers and bearings). This model is shown in Figure 3 and has 900 degrees of freedom. The 
cross-sectional parameters of each one of the longitudinal beam elements are those of an 
equivalent cross-section that accounts for the section of the post-tensioned beam, as well as 
the corresponding effective width of the deck plate. The transverse beams at the two ends of 
the span correspond to the existing cross-beams above the bearings, whereas the other four 
transverse beams represent the coupling of the longitudinal beams in the transverse direction 
due to the presence of the deck. Adjacent spans are interconnected with a 20-cm thick 2-m 
long plate. The piers and the abutments bearing are assumed fixed at their base. 

 
 
 
 
 
 
 
 
 
 

Figure 3: Overview of the fixed base, 1D superstructure finite element model (1D-Fixed). 
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Figure 4: Overview and fundamental mode in the transverse direction (top) of the fixed base, 3D superstructure 
finite element model (3D-Fixed), as well as modelling details of the deck, stoppers and bearings (bottom). 

The 3D-Fixed model of the Kavala bridge was simulated using three-dimensional eight 
node brick-type finite elements to model the entire superstructure. This model is shown in 
Figure 4 and has approximately 241,000 degrees of freedom. The mesh size of the elements 
used for bearing modeling was 0.25x0.25m while an average mesh size for the concrete 
sections was 0.75x0.75m.  In this refined 3D FEM the deck, the I-beams, the piers, the 
bearings and the stoppers were modeled in maximum detail in 3D space. The abutments are 
considered as non-deformable, whereas the piers are assumed to be rigidly connected to the 
foundation, ignoring, in this version of the model, soil-structure interaction effects. Similarly, 
the piers and the abutment bearings are assumed fixed at their base.   

The 3D-3D Soil model of the Kavala bridge is shown in Figure 5 and has approximately 
960,000 degrees of freedom. In a similar fashion to the previous model, the superstructure is 
modeled in maximum possible detail. In addition, the entire soil-foundation-superstructure 
system is simulated, considering the exact geometry of the abutment-backfill-embankment 
system and the middle piers-caisson-soil substructure system. Mesh size for the superstructure 
was taken identical to the previous 3D-Fixed model and was also set equal to 2x2m for the 
surrounding and supporting soil. In order to reduce the computational time required, an 
additional, equivalent model of the 3D-3D Soil was also developed, after establishing a level 
of agreement between the two models by ensuring identical dynamic characteristics. This 
model is shown in Figure 6, 407,000 degrees of freedom and considered a smaller, though, 
adequate part of the soil volume. Given the compatibility of the two latter models in terms of 
system stiffness and damping, most analyses cases were carried out with this model instead of 
the initial 3D-3D Soil model. 
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Figure 5: Overview and fundamental mode in the transverse direction of the 3D soil-foundation-superstructure 
finite element model (3D-3D Soil).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6: Overview and fundamental mode in the transverse direction of the equivalent 3D-3D Soil model as 
well as modelling details of the abutment-embankment system and the pier foundation subsoil. 

5 FINITE ELEMENT MODEL UPDATING METHODOLOGY 

The objective in a FEM updating methodology is to estimate the values of the structural 
parameter set θ∈RN

θ of a class of linear FEMs so that the modal frequencies and modeshapes 
{ωr(θ), φr(θ)∈RN

0, r = 1, . . . ,m} predicted by the linear class of models best matches, in 
some sense, the experimentally obtained modal data { r̂ , rφ̂ ∈RN

0,r = 1, . . . ,m} contained 

in the set ψ, where m is the number of observed modes, and N0 is the number of recorded 
DOFs. The optimal values of the parameter set θ are obtained by minimizing the weighted 
modal residuals [17]. 
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The first norm in Equation 3 represents the difference between the measured and the model 

predicted frequency for the r-th mode, while the second norm represents the difference 
between the measured and the model predicted modeshape components for the r-th mode, 

where βr = T
rφ̂ φr(θ)/ T

rφ (θ)φr(θ) is a normalizing scalar guaranteeing that the measured rφ̂  is 

closest to φr(θ) for given θ. The weighting factors wωr ≥ 0 and wφr ≥ 0, r = 1, . . . ,m, satisfy the 
condition Σm

r=1[wωr+ wφr] = 1. The objective function J (θ;w) represents an overall measure 
of fit between the measured and the model predicted modal characteristics. Herein, 
conventional weighted least squares methods are used which assume equal weight values. 
Finally, the optimization of J (θ;w) in Equation 3with respect to θ can readily be carried out 
numerically using any available gradient-based algorithms for optimizing a nonlinear function 
of several variables. This procedure is described more detailed in Ntotsios et al. [19].  

The above mentioned mathematical algorithm was applied for the updating of the 1D-
Fixed model of the Kavala bridge. For that purpose, a Matlab code was developed in 
interaction with the computer program COMSOL, wherein the structure was simulated. In 
contrast, given the large number of degrees of freedom of the 3D-Fixed model and the 3D-3D 
Soil model of the Kavala bridge, their model updating was performed manually through a  
sequential parametric analysis scheme. The concept behind this simplified, manual updating 
approach for the 3D finite element models is described in detail in Section 6. 

6 COMPARATIVE ASSESMENT OF THE PREDICTED AND MEASURED 
RESPONSE 

6.1 Measured and predicted structural modes of Kavala Bridge 

The accelerometers installed along the deck and at the top of the three piers recorded the 
bridge’s response and the acceleration time histories were then used as input to the model 
updating mathematical algorithm described in Section 3. Through this procedure, two 
transverse, one longitudinal and four bending modes were identified, whose modal 
frequencies are summarized in Table 1. Since the scope of the present research work was to 
validate, both qualitatively and quantitatively, the modeling assumptions made and to identify 
their relative impact on the numerically predicted structural response, the three finite element 
models developed were assessed comparatively.  

The first comparison was made between the 1D-Fixed and 3D-Fixed models and aimed to 
identify the differences that arise by the inherent simplifications of the one dimensional 
modeling in contrast to the refined three dimensional modeling of the piers, I-beams, bearings 
and stoppers. For this reason, the soil compliance was deliberately not accounted for. The 
results of the predicted modal frequencies from the above models (i.e., 1D-Fixed and 3D-
Fixed) are shown in Table 1. It can be seen that the agreement between the two models was 
very good (it is only the first two bending modes where the difference exceeds 10%), a fact 
that reveals that the assumptions made for the simplified 1D-Fixed model were reasonable. 
Despite their agreement though, it was evident that both models fail to predict well the actual, 
measured response as they exhibit large deviations from the identified modal frequencies that 
exceed 55% in the longitudinal direction and 34% and 58% respectively for the first two 
modes, in the transverse direction. In general, it is observed that the modes measured via 
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ambient vibrations are on average 32% higher than those predicted by the two finite element 
modes, thus, the  real structure is identified as significantly stiffer than predicted using the 1D 
and 3D fixed-base models.  

A second comparison was made between the 3D-Fixed and the 3D-3D Soil models in order 
to quantify the importance of soil compliance on the predicted dynamic characteristics of the 
structure. The results of this analysis are shown in Table 2. It has to be noted herein that in 
case that the soil volume is modeled along with the superstructure, the identification of the 
modal frequencies of the entire soil-structure system is not as straightforward as it is in the 
case of a fixed structure, due to the enormous amount of the vibrating soil volume and the 
strong coupling among the structural and the soil modes. As a result, the characterization of 
modes as “transversal” or “bending” has to be made very carefully on the basis of both modal 
participation factors and modal shape visualization.  

In terms of the predicted modal frequencies (Table 2), as anticipated, the refined 
consideration of abutment-backfill-embankment and pier-foundation-soil flexibility leads to 
lower values of modal frequencies. In particular, the 1st longitudinal mode is found 10% more 
flexible while the reduction of bending modal frequencies varies between 20-30%. However, 
compared to the identified modal frequencies, the particular 3D-3D soil model leads to an 
even more flexible (36% on average) prediction of structural response. This result clearly 
indicates that model refinement and soil-structure interaction simulation alone, cannot 
guarantee reliable representation of system stiffness unless appropriate model updating is 
performed in advance.  

 
 AV 1D-Fixed 3D-Fixed 
Modes ω(Hz) ω(Hz) Δω(%) ω(Hz) Δω(%) 
1st Transverse 0.81 0.53 34.57 0.52 35.80 
1st Longitudinal 1.29 0.57 55.81 0.56 56.59 
2nd Transverse 1.61 0.67 58.39 0.67 58.39 
1st Bending 3.40 2.78 18.24 2.69 20.88 
2nd Bending 3.46 2.82 18.50 2.75 20.52 
3rd Bending 3.47 2.82 18.73 2.84 18.16 
4th Bending 3.51 2.83 19.37 2.87 18.23 
Average Δω(%)    31.94  32.65 

Table 1: Modal frequencies identified via Ambient Vibrations (AV) and numerical modeling (1D-Fixed vs. 3D-
Fixed) and respective error (Δω%). 

 AV 3D-Fixed 3D-3D Soil 
Modes ω(Hz) ω(Hz) Δω(%) ω(Hz) Δω(%) 
1st Transverse 0.81 0.52 35.80 0.49 39.51 
1st Longitudinal 1.29 0.56 56.59 0.54 58.14 
2nd Transverse 1.61 0.67 58.39 0.65 59.63 
1st Bending 3.40 2.69 20.88 2.48 27.06 
2nd Bending 3.46 2.75 20.52 2.55 26.30 
3rd Bending 3.47 2.84 18.16 2.71 21.90 
4th Bending 3.51 2.87 18.23 2.73 22.22 
Average Δω(%)    32.65  36.39 

Table 2: Modal frequencies identified via Ambient Vibrations (AV) and numerical modeling (3D-Fixed vs. 3D-
3D soil) and respective error (Δω%). 
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Structural parameter 
Model Updating Method 
Algorithmic  
Model Updating Case 1 

E bearings 9.07 
E deck 1.57 
E piers 1.63 

Table 3: Modal updating results for the 1D-Fixed FEM through a proposed mathematical algorithm. 

 

 
AV 

 
1D-Fixed 

M.U. Case 1 
3D-Fixed 

M.U. Case 1 
Modes ω(Hz) ω(Hz) Δω(%) ω(Hz) Δω(%) 
1st Transverse 0.81 0.86 -6.17 0.84 -3.70 
1st Longitudinal 1.29 1.24 +3.88 1.19 +7.75 
2nd Transverse 1.61 1.44 +10.56 1.55 +3.73 
1st Bending 3.40 3.52 -3.53 3.62 -6.47 
2nd Bending 3.46 3.56 -2.89 3.65 -5.49 
3rd Bending 3.47 3.60 -3.75 3.73 -7.49 
4th Bending 3.51 3.61 -2.85 3.80 -8.26 
Average Δω(%)    +4.80  +6.13 

Table 4: Modal frequencies identified via Ambient Vibrations (AV) and predicted by updated 1D-Fixed and 3D-
Fixed FEMs for Case 1, as well as their in between percentage of error Δ(ω). 

6.2 Finite element model updating  

As mentioned earlier, for low amplitude vibrations, the structure was found to be much 
stiffer as one could numerically predict, regardless of model refinement. Given the fact that 
the finite element model used was indeed as complex and refined as possible, the model-
induced (i.e., epistemic) uncertainty can be deemed as relatively low. As a result, the 
deviations between the identified and numerically predicted modal frequencies can be 
attributed primarily to the uncertainty in the material properties, which seem to be a key 
parameter for the reliable estimation of the dynamic characteristics of the structure. 

Initially, the updating of model 1D-Fixed was carried out according to the procedure 
outlined in Section 5. For the case of the 3D models though, this procedure was not feasible 
for two main prohibitive reasons; due to the large number of the degrees of freedom of the 
soil-structure system but also because there was no communication protocol between the 
software ABAQUS used for the 3D simulations and the Matlab program running the model 
updating algorithm. For that reason, a different strategy was developed the manual updating 
of the 3D models towards the identification of the nearly-optimal fit between the identified 
and numerically predicted response. The workflow of this strategy is illustrated in Figure 7 
and can be summarized into the following steps: 

(a) Automatic model updating was performed for the case of the 1D-Fixed model. The 
results of the updated structural properties [1] of the 1D-Fixed model are presented in 
Table 3 (hereafter called “model updating Case 1”.  

(b) The above identified properties were used as the first, best guess for the case of the  
3D-Fixed model. Table 4 shows that the average percentage of error between the 
measured and the predicted modal frequencies has decreased from 31.94% to 4.8% for 
the 1D-Fixed model and from 32.65% to 6.13% for the 3D-Fixed verifying the trend of 
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manual model updating was correct. It was also observed that both models predict 
higher values of frequencies to all modes compared with the ones identified via 
ambient vibrations, with the exception of the 1st longitudinal and the 2nd transverse 
mode. 

(c) Given the refinement of the 3D-3D soil model and its capabilities to consider 
superstructure-foundation-soil and deck-abutment-embankment interaction, it was 
evident that the model updating factors predicted in step (b) would not necessarily be 
valid. For this reason, the 3D-3D Soil model was only initially updated based on the 
“Case 1” combination of structural parameters (Table 5). It can be seen that the average 
percentage of error between the measured and the predicted modal frequencies was 
decreased from 36.39% to 5.55%. In order to improve the convergence, sequential 
parametric analysis was conducted. The idea was to gradually modify specific 
structural parameters through a step-by-step parametric analysis scheme, until a nearly-
optimal fit was achieved (Figure 7). 

 

 
AV 

 
1D-Fixed 

M.U. Case 1 
3D-Soil 

M.U. Case 1 
Modes ω(Hz) ω(Hz) Δω(%) ω(Hz) Δω(%) 
1st Transverse 0.81 0.86 -6.17 0.78 -3.85 
1st Longitudinal 1.29 1.24 +3.88 1.13 -14.16 
2nd Transverse 1.61 1.44 +10.56 1.50 -7.33 
1st Bending 3.40 3.52 -3.53 3.47 +2.02 
2nd Bending 3.46 3.56 -2.89 3.52 +1.70 
3rd Bending 3.47 3.60 -3.75 3.65 +4.93 
4th Bending 3.51 3.61 -2.85 3.69 +4.88 
Average Δω(%)    +4.80  +5.55 

Table 5: Modal frequencies identified via Ambient Vibrations (AV) and numerical modeling of the updated 1D-
Fixed and 3D-3D Soil FEMs for structural parameter combination Case 1, and respective error (Δω%). 

 

structural parameter 
Model Updating Method 
Manual 
Case 2 

E bearings 12.0 
E deck 1.45 
E piers 1.63 

Table 6: Modal updating results for the 3D-3D Soil FEM through a proposed manual procedure. 

The results of this parametric analysis resulted in the “Case 2” combination of updated 
structural parameters, summarized in Table 6. Table 7 shows the improvement of the modal 
frequencies predicted by the 3D-3D Soil for structural parameters combination “Case 2”, 
compared to the modal frequencies predicted by the 1D-Fixed for “Case 1”. By comparing 
Cases 1 and 2 (Tables 3 and 6), as well as the final modal frequencies predicted by the initial 
1D-Fixed and the refined 3D-3D soil models, it is clear that the accurate soil-structure 
interaction modeling  is a key parameter for reliable modal updating of the system.   

It is also observed that both updated procedures (algorithmic and manual) showed that the 
Young Modulus of Elasticity for the bearings, the deck and the piers had to be significantly 
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increased compared to the values assumed in the initial design. In particular, the bearing 
stiffness has to be increased by a factor of 12, while the concrete modulus of elasticity by a 
factor of 1.43 for the deck and 1.63 for the piers. With respect to the bearings, this can be 
clearly attributed to the low deformation (strain) levels that are developed under ambient 
vibrations at which the bearing stiffness is significantly lower than that assumed during 
design.  

 
Run modal analysis with the 
initial structural parameters

1D-Fixed

Nbearings = 9.07
Ndeck = 1.57
Npiers = 1.63

31.94% average 
percentage of error 

compared to AV

3D-3D 
Soil

Run automatic 
algorithmic

model updating 

Apply manual
model updating 

36.39% average 
percentage of error 

compared to AV

Improve 1st longitudinal mode
(14.16% error)

Improve bending modes  
(4.93% 3rd bending)

Step 1: Run modal analysis using 
the 1D-Fixed model updating data 

5.55% average 
percentage of error 

compared to AV

Step 2: Define targets for further 
improvement

Step 3: Increase bearing 
stiffness

Run modal analysis for:
Ndeck = 1.57, 1.55, 1.50, 1,45

Nbearings = 12
Ndeck = 1.57
Npiers = 1.63

Step 4: Decrease 
deck stiffness

Get updated 
structural 

parameters 

4.80% average 
percentage of error 

compared to AV

Run modal analysis for:
Nbearings = 10,11,12

Nbearings = 12
Ndeck = 1.45
Npiers = 1.63

1.88% average 
percentage of error 

compared to AV

Best guess

3.02% average percentage 
of error compared to AV

Get best
combination

Get best combination

1st longitudinal: 4.88% error
3rd bending: 4.93% error

1st longitudinal: 4.88% error
3rd bending: 1.42% error

Nbearings = 12
Ndeck = 1.45
Npiers = 1.63

Finalize structural parameters

 
Figure 7: Manual model updating strategy. 
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The differences in the material properties of concrete can also be attributed to a series of 
contributing factors such as: (a) the definition of the modulus of elasticity according to the 
code used, which is calculated at strains higher than the ones imposed by ambient vibrations, 
(b) strengthening of concrete due to aging, (c) friction mechanisms that were activated at low 
levels of strain and (d) construction practices and quality control issues related to the casting 
of concrete. It is interesting to notice though, that similar deviations have been computed in 
numerous studies (i.e., [1]) and hence it is an issue that has to be investigated further.   

 

 
AV 

 
1D-Fixed 

M.U. Case 1 
3D-Soil 

M.U. Case 2 
Modes ω(Hz) ω(Hz) Δω(%) ω(Hz) Δω(%) 
1st Transverse 0.81 0.86 -6.17 0.79 -2.53 
1st Longitudinal 1.29 1.24 +3.88 1.23 -4.88 
2nd Transverse 1.61 1.44 +10.56 1.59 -1.26 
1st Bending 3.40 3.52 -3.53 3.43 +0.87 
2nd Bending 3.46 3.56 -2.89 3.46 +0.00 
3rd Bending 3.47 3.60 -3.75 3.52 +1.42 
4th Bending 3.51 3.61 -2.85 3.59 +2.23 
Average Δω(%)    +4.80  +1.88 

Table 7: Modal frequencies identified via Ambient Vibrations (AV) and numerical modeling of the updated 1D-
Fixed for structural parameter combination Case 1and 3D-3D Soil FEMs for Case 2, and respective error (Δω%). 

 

7 CONCLUSIONS 

This paper aimed to identify the parameters that affect the dynamic response of the 
instrumented, 2nd Kavala Bypass Ravine Bridge constructed along the Egnatia Motorway 
Greece. Using alternative finite element models of various levels of complexity and modeling 
refinement in terms of  consideration the dynamic interaction of the overall superstructure-
foundation-soil and deck-abutment-embankment system, the modal frequencies of the bridge 
are computer and compared with the ones identified using ambient vibrations. The main 
conclusions drawn from this study can be summarized as follows: 

 

 A good agreement was observed, on the basis of the predicted modal frequencies of the 
bridge, between the 1D-Fixed and the 3D-Fixed models, thus indicating that the 
simplifying assumptions made for the first were reasonably accurate. However, the initial 
prediction of the two models leads to considerably lower (34%-58%) modal frequencies 
than the ones identified, hence yielding model updating inevitable.  

 Introduction of the soil compliance through the more refined 3D-3D soil model which 
simulated the overall soil-structure system led to a further reduction of the modal 
frequencies, by 10% in the 1st longitudinal direction and by 25% on average in the 
transverse direction. 

 The model updating strategy that was followed for the case of the most complex and 
comprehensive 3D-3D soil model, eventually led to good agreement of the predicted 
modal frequencies with the identified ones and the average error was reduced to 1.88% 
(without exceeding 4.9% at any mode). The updated FEMs revealed that the differences 
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initially computed, were due to the higher actual stiffness of the elastomeric bearings, the 
piers and the deck as compared to the values that were assumed during design. 

 The differences between the design assumptions and the actual structural properties 
under ambient vibrations can attributed to the low deformation (strain) levels, the 
definition of the modulus of elasticity according to the code used, which is calculated at 
strains higher than the ones imposed by ambient vibrations, strengthening of concrete 
due to aging, friction mechanisms as well as to construction practices during concrete 
casting.   

 Consideration and numerical modeling of soil-structure interaction, abutment-backfill-
embankment and pier-foundation-soil geometry and properties, may not affected the 
dynamic characteristics drastically in terms of their absolute values, but due to significant 
modal coupling, had a considerable effect on the prediction of the final, modified 
structural parameters. This effect is anticipated to be further pronounced in case of softer 
soil profiles. As a result, the accurate soil-structure interaction modeling is deemed to be 
a key parameter for reliable modal updating of extended bridge-soil systems. 
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