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Abstract. The essential part of the solution of a contact problem in the finite element method is
to locate probable contact areas reliably and efficiently. Most contact searching algorithms are
based on the definition of master and slave contact surfaces, when the slave nodes/integration
points are checked on against master segments for penetration. The present paper deals with
the local search problem which comprises the calculation of the exact position of the slave
node/integration point with respect to a given master segment. Since the analytical solution
for finding the distance does not exist for a general quadrilateral contact segment, the itera-
tive numerical procedure is solved. Several methods for the solution of non-linear algebraic
systems are tested: the Newton-Raphson procedure, the least square projection, the steepest
descent method, Broydens method, BFGS method, DFP method and the simplex method. The
effectiveness of methods is tested by means of a contact-impact problem of two colliding thick
plates, for which analytical solution is available.
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1 INTRODUCTION

The key issue in the numerical treatment of contact problem in the finite element method is
to locate contact areas reliably and efficiently. Most contact algorithms are based on the master-
slave concept, when the position of slave node is checked on against the master segment for
penetration. The contact detection can be usually divided into two phases: the global search for
finite elements/segments which actually intersect and the local search for projections of slave
points (nodes/quadrature points) onto master surfaces.

An overview of global search algorithms might be found in Refs. [1, 2]. When the global
search is successfully done, the local search is performed.There are several possibilities to deal
with this problem.

The most frequently used approach for local contact searching is described in Ref. [3]. The
contact point is defined on the master segment as the point closest to the slave point. Its para-
metric coordinates are calculated by solving the minimization problem. There is an analytical
solution for linear triangular segments, however, a bilinear quadrilateral as well as higher order
elements have to be solved numerically. The Newton-Raphsonmethod is applied for solving
the simple non-linear equations.

In order to increase efficiency, in Ref. [4] each quadrilateral segment is broken into four
triangles with their common vertex at the centre of the master segment. The contact point is
calculated by determining which triangle is closest to the slave node and projecting the slave
node onto it. Although efficiency of this approach is undeniable, it is not adequate for distorted
elements which can occur within post-buckling calculations [5].

For node-to-segment contact design the algorithm based on the definition of a mesh normal
was proposed in Ref. [6]. The mesh normal vector of a node is defined as the average normal
vector for all surfaces which adjacent to the node. The inside-outside algorithm [7] employs this
vector to determine whether the projection of a node is located inside or outside of a surface.
Since no iterations are involved the algorithm is very fast.However, a lack of continuity on
the boundary of surfaces called the deadzone problem was observed. In order to overcome this
drawback, the free-form-surface (FFS) algorithm was proposed in Ref. [2]. The contact area is
approximated with the FFS patch, which ensures smoothness.The accuracy can be increased
by subdividing of the surface patch.

In this paper, we focused on the solution of a minimization problem between slave integra-
tion (quadrature) point and the master segment of the three-dimensional quadratic serendipity
element. The solution of resulting non-linear equations isnot trivial, especially when higher
order finite elements are taken into account. First, the formulation of a minimization prob-
lem is presented in Section 2. Various numerical methods forthe solution of this problem
are presented in Section 3. First, the convergence difficulties of the Newton-Raphson method
are analyzed. Next, the least square projection constructed as the linearized Newton-Raphson
scheme [5] is mentioned. Then, the line search strategy is presented [8], utilized in the steepest
descent method, Broyden’s method, BFGS and DFP method [9]. The last three methods belong
to an alternative approach to the Newton-Raphson method, known as quasi-Newton methods.
Finally, the Nelder-Mead simplex method [10] is discussed as an interesting alternative to pre-
ceding methods. The effectiveness of methods is compared inSection 3.9, followed by the
numerical example of the longitudinal impact of two thick plates in Section 4.
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2 FORMULATION OF THE MINIMIZATION PROBLEM

Let us consider the slave quadrature pointys ∈ E
3 and the master segmentγc. The aim of

the local contact search is to calculate the parametric coordinatesξ1, ξ2 ∈ [−1, 1] corresponding
to projectionȳ (ξ1, ξ2) ∈ E3 of the quadrature pointys (see Fig. 1).
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Figure 1: Formulation of the minimization problem.

Such a point has to satisfy
ȳ = min

y∈γc
{(ys − y) · (ys − y)} (1)

where the minimization of the inner product onE3 instead of more natural Euclidean norm has
been used. Hence, the minimized function is defined as

f = (ys − y) · (ys − y) (2)

The necessary condition for local extremum is

(ys − y) ·
∂y

∂ξ1
= 0

(ys − y) ·
∂y

∂ξ2
= 0

(3)

The master segmentγc is parametrized by

y (ξ1, ξ2) =

n
∑

i=1

Ni (ξ1, ξ2)Yi (4)

whereNi (ξ1, ξ2) : R× R → R are the shape functions,n is the number of nodes andYi ∈ E
3

are the global coordinates of nodes. Note that the partial derivations are constant and Eqn. (3)
is system of linear equations for linear triangular segments. If higher order elements are taken
into account, Eqn. (3) results in the system of non-linear algebraic equations. The inequality
constraints|ξ1| , |ξ2| ≤ 1 for isoparametric segmentγc are not explicitly imposed. The solution
of the unconstrained problem lying outside the permissiblerange indicates that the integration
point does not penetrate onto the master segment. Therefore, methods for unconstrained opti-
mization can be employed [8, 9].
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3 METHODS FOR UNCONSTRAINED OPTIMIZATION

For the purpose of this section, some notation will be introduced. First, the vector of the
isoparametric coordinates is defined as

xk =

{

ξk1
ξk2

}

(5)

where the superscriptk is the iteration counter. Then, the gradient of the minimized function is
denoted by

∇fk =



















(ys − y) ·
∂y

∂ξ1

(ys − y) ·
∂y

∂ξ2



















(6)

and the Hessian matrix of second partial derivations is

Hk =













∂2fk

∂ξ21

∂2fk

∂ξ1∂ξ2

∂2fk

∂ξ1∂ξ2

∂2fk

∂ξ22













(7)

3.1 Newton-Raphson method

The numerical scheme of the Newton-Raphsons method is basedon the first-order Taylor’s
series expansion of (3) aboutxk. The numerical scheme can be written in the form

xk+1 = xk −
(

Hk
)−1

· ∇fk (8)

Generally, there are two constructions of the Newton-Raphson method. First, the method can
be thought as the root-finding algorithm of the residuals (3). The matrixHk is considered as
the tangent matrix and the pointxk + 1 is understood as the intersection of hyperplanes with
constraintf

(

xk
)

= 0. Second, the Newton-Raphson is taken as an quadratic interpolation in
pointxk

Q =
1

2

(

Hk ·∆xk
)

·∆xk +∇fk ·∆xk + fk, ∆xk = xk+1 − xk (9)

Then, new iterationxk+1 is minimizer of this quadratic function

Hk ·∆xk +∇fk = 0 (10)

Indeed, for convex functions the Newton-Raphson produces only positive definite matricesHk,
for which the quadratic function (9) is paraboloid. Minimization of such interpolation embodies
quadratic convergence [8]. On the other hand, for general non-linear functions the positive
definiteness ofHk cannot be guaranteed. In case of indefinite Hessian matrix, next iterationxk

could bounce, because hyperbolic paraboloid, which represents indefinite matrix, could have
the minimimum (saddle point) far fromxk+1. Consequently, the solution could converge to
another local minimum or even diverge. The necessary condition for the convergence of the
Newton-Raphson method is positive definiteness of the Hessian matrixHk. The rigorous proof
can be found in [8]. It should be pointed out that the convergence property of the Newton-
Raphson iteration is difficult to achieve since the Hessian matrix of the distance function (2) to
be minimized is not positive definite in general. Therefore,several methods will be discussed
in the following sections.
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3.2 Least squares projection

Whereas the Newton-Raphson linearizes the minimized function (2), the least squares pro-
jection linearizes the master contact segment (4)

y = yk +
∂y

∂x

∣

∣

∣

∣

xk

·∆xk (11)

For given pointxk the necessary condition for local extremum (3) becomes linear
(

ys − yk +
∂y

∂x

∣

∣

∣

∣

xk

·∆xk

)

·
∂y

∂x

∣

∣

∣

∣

xk

= 0 (12)

By rearranging
∂y

∂x

∣

∣

∣

∣

xk

·
∂y

∂x

∣

∣

∣

∣

xk

·∆xk = −
∂y

∂x

∣

∣

∣

∣

xk

·
(

ys − yk
)

(13)

and introducing the matrix notation, we obtain






















∂yk

∂ξ1

∂yk

∂ξ2























·

{

∂yk

∂ξ1

∂yk

∂ξ2

}

·







∆ξk1

∆ξk2







= −























∂yk

∂ξ1

∂yk

∂ξ2























·
{

ys − yk
}

(14)

Benson et al. [5] recommends three iterations of this methodto generate an initial guess for the
Newton-Raphson. We try to use the least squares projection as fully-fledged method. The global
convergence was attained for arbitrary initial guess [11].Nevertheless, the global minimum lies
outside the permissible range in most cases and therefore this method is not feasible for local
search.

3.3 Line search strategy

In each iteration of a line search method a search direction is computedpk ∈ R
n and then

decided how far to move along that direction. The iteration is given by

xk+1 = xk + tkpk (15)

where the positive scalartk ∈ R is called the step length. The success of a line search method
depends on the effective choices of both the directionpk and the step length parametertk. Most
line-search algorithms requirepk to be a descent direction for whichpk · ∇fk < 0. The search
direction often has the form

pk = −Dk · ∇fk (16)

whereDk ∈ R
n,n is a suitable matrix. Let us consider thatDk is positive definite. Multiply

Eqn. (16) by∇fk yields

pk · ∇fk = −
(

Dk · ∇fk
)

· ∇fk < 0 (17)

Thus, the positive definiteness ofDk guarantee a descent direction ofpk. The methods of
computation of the matrixDk will be discussed in following sections. Note that forDk =
(

Hk
)

−1
and tk = 1 one can obtain the Newton-Raphson method. We now turn attention to
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the choice of the step length parametertk. Its computation is based on the restriction of the
minimized functionf (x) to the ray from a pointxk in the search directionpk

ϕ (t) = f
(

xk + tpk
)

, t > 0 (18)

Apparently, the exact minimization of this function is computationally expensive. In order to
find even a local minimizer ofϕ (t) it generally requires too many evaluations of the minimized
functionf (x). In Ref. [8], more sophisticated strategies are mentioned to perform an inexact
line search to identify a step length that achieves reductions off (x). In proposed algorithm the
step length is computed analytically by the one-dimensional minimizer of the quadratic function
along the directionxk + tpk

tk = −
∇fk · pk

(pk ·Hk) · pk
(19)

3.4 Steepest descent method

The steepest descent method is the simplest line search method, for whichDk is the identity
matrix and so the search directionpk is the negative gradient. Thus, the iteration scheme is

xk+1 = xk − tk∇fk (20)

Since the Hessian matrix is not employed the steepest descent method does not converge to the
saddle points.

3.5 Broyden’s method

The Broyden’s method is a generalization of the 1D secant method to multiple dimensions as
well as the Newton-Raphson is a generalization of the Newton’s tangent method. The Broyden’s
sequence

{

xk
}

is defined by the recurrent formula [9]

xk+1 = xk − tk
(

Dk
)−1

∇fk (21)

where the update ofDk is computed by

Dk+1 = Dk +

(

∇fk+1 −∇fk
)

−Dk
(

xk+1 − xk
)

(xk+1 − xk) · (xk+1 − xk)
⊗
(

xk+1 − xk
)

(22)

3.6 BFGS method

A very effective minimization method is the Broyden-Fletcher-Goldfarb-Shenno (BFGS)
method. This method requires no evaluation of the Hessian matrix. Moreover, the BFGS
method was developed so that the search directionpk has always a descent direction. Thus,
the positive definiteness of the matrixDk is guaranteed. The BFGS iteration scheme is defined
by the recurrence [9]

xk+1 = xk − tk
(

Dk
)−1

∇fk (23)

The update ofDk is computed by

Dk+1 = Dk +
yk ⊗ yk

dk · yk
−

Dkdk ⊗Dkdk

dk ·Dkdk
(24)

wheredk = xk+1 − xk andyk = ∇fk+1 −∇fk.
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3.7 DFP method

Another famous method is the Davidon-Fletcher-Powell (DFP) method. Instead of updating
the matricesDk

xk+1 = xk − tk
(

Dk
)−1

∇fk (25)

as in the BFGS method, the DFP method updates their inverses and retains the features of a
secant method. The DFP method sequence

{

xk
}

is defined by the recurrent formula

xk+1 = xk − tkDk∇fk (26)

The update ofDk is computed by

Dk+1 = Dk +
dk ⊗ dk

yk · dk
−

Dkyk ⊗Dkyk

yk ·Dkyk
(27)

wheredk = xk+1 − xk, yk = ∇fk+1 −∇fk.

3.8 Nelder-Mead simplex method

In geometry context, the simplex is a generalization of the motion of a triangle or tetrahedron
to arbitrary dimension. Specifically, ann-simplex is ann-dimensional polytope withn + 1
vertices whereas the distance between each of them is equal.The examples of such a simplex is
shown in Fig. 2. The minimized function is evaluated in all vertices of simplex. The algorithm

n = 1 n = 2 n = 3 

Figure 2: The examples of simplex.

of the simplex method is based on the three rules [10]. The first rule says that the vertex with
the maximum value is released. Alternatively, it is replaced by new one according to Fig. 3. In
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Figure 3: First rule of the simplex method.

case that the value in new vertex is maximum again, the secondrule (see Fig. 4) holds. It is not
allowed to return the vertex back in the subsequent iteration due to runaway loop. Instead, the
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k

Figure 4: Second rule of the simplex method.

vertex with second highest value is released. Finally, the third rule treats the case when one of
the vertices has still the same position. This situation indicates that the simplex rotates above a
local extremum. Therefore, the simplex edge lengtha is halved afterm iterations. The number
of iterationm can be estimated by the empiric formula

m = 1.65n+ 0.05n2 (28)

wheren is the number of dimensions. Fig. 5 shows two-dimensional case (n = 2).

1
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Figure 5: Third rule of the simplex method.

3.9 Comparison of methods for local contact search

A numerical test was performed for three different positions of slave point with respect to
the deformed master segment topology. The first estimation was gained by one iteration of the
least squares projection. Then, the origin of isoparametric coordinates was taken. Finally, the
corners of the master segment were tested as the initial guesses. The results are summarized
in Tab. 1, where the number of iterationsn and normalized timet are shown. The normalized
time is defined as the CPU time related to CPU time for the Newton-Raphson for the initial
guess (0.83,-0.62). The criterion of convergence was set

∥

∥xk − xk−1
∥

∥ ≤ 10−10. Note that the
superscriptspdenotes the solutions which converged to a saddle point.

Initial guess
(0.83,-0.62) (0,0) (-1,-1) (1,-1) (1,1) (-1,1)
n t n t n t n t n t n t

N-R 28 1.00 5 0.20 12 0.4517sp 0.61 5sp 0.20 12sp 0.44
LSP 133 0.44 134 0.45 137 0.46 124 0.42 116 0.39 134 0.46
SD 51 4.50 71 6.10 28 2.52 14 1.22 29 2.60 1543 142.97

Broyden 9 0.48 11 0.58 10 0.51 9 0.4611sp 0.55 14900 819.15
BFGS 8 0.37 8 0.42 8 0.41 7 0.369sp 0.48 23 1.22
DFP 7 0.35 8 0.39 8 0.40 7 0.369sp 0.45 26 1.28

Simplex 190 6.75 200 7.13 192 6.75 184 6.84 210 7.61 196 6.91

Table 1:n - number of iteration,t - normalized CPU time.
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It clear that the best results were obtained for BFGS and DFP methods. The Broyden’s
as well as the steepest descent methods gave only average results. Due to facts mentioned in
Section 3.2 the least squares projection was not efficient for the solution of this problem. In
comparison to other methods the advantage of the Nelder-Mead simplex method is insensitivity
to the convergence to saddle points. Finally, it should be pointed out that the convergence
property of the Newton-Raphson iteration was difficult to achieve in general. It is illustrated by
the difference between NR iterations for the first and the second initial point.

In conclusion, the most fitting turned out the conjunction ofthe simplex method for coarse
searching and the quasi-Newton solvers BFGS or DFP for fine tuning of numerical solution.
The performance of new local contact search procedure was tested by means of a contact-impact
problem of two colliding thick plates. The results are presented in following Section 4.

4 LONGITUDINAL IMPACT OF THICK PLATES

The longitudinal impact of two thick plates was studied, forwhich the analytical solution
was available [12]. Despite the problem is two-dimensionalone it could be used for testing
three-dimensional local contact search procedure. The plates dimensions were: thickness2d =
5 mm, length 2.5 mm. Young’s modulus, Poisson’s ratio and density, respectively, wereE =
2.1 × 105 MPa, ν = 0.3, ρ = 7800 kg/m3. The plates made contact with initial velocity
v0 = 1 m/s prescribed at timet = 0 s (Fig. 6).

Figure 6: Longitudinal impact of two plates.

The analytical solution [12] utilizing the Laplace transform is rather complex. The distribu-
tions of displacements and stresses are cast in the form of infinite series of improper integrals
which are evaluated numerically. For illustration, theoretical positions of wave fronts for a short
time after impact are plotted in Fig. 7. At the instant the faces of the plates come into contact
there are aroused elementary dilatation waves at all pointsof the contact area. The envelope of
these waves is represented by a wave with a plane wave front, propagating in both directions
at speed of dilatation wavesc1. From the boundary points A, D of the contact area emanates a
reflected wave which continues propagating in perpendicular direction tox, y plane at speedc1.
Behind the dilatation wave the transversal waves proceeds at speedc2. In the region bounded by
plane wave fronts of the dilatation wave and by circular wavefronts of the wave starting from
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the points A and D, the state of stress is the same as that encountered by a longitudinal impact
of half-spaces.

Figure 7: Theoretical position of wave fronts forc1t/d = 0.56 after [12].

In view of symmetry, only one half of the plates was discretized using100× 100 eight-node
linear brick elements per each plate. For the integration ofequilibrium equations, the central
difference with the lumped mass matrix was employed. The time step was chosen very small
corresponding to the dimensionless Courant number Co = 0.125.
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Figure 8: Longitudinal stress distributionσ∗

x
alongx-axis forz/d = 0.

The normalized longitudinal stress distributionσ∗

x = σxc1/Λv0 (Λ is Lamé’s constant) along
x-axis is drawn in Fig. 8. The results are plotted for normalized timec1t/d = 0.56 and coor-
dinatez/d = 0, for which no reflections from boundaries occur. Except the contact analysis
a symmetric reference calculation was performed, where thelongitudinal displacements of the
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front-end nodes of the plate were fixed. In Fig. 8 the contact solution is plotted by red line
while the solution based on the reference calculation is denoted by blue line. In addition, the
theoretical solution corresponding to uniaxial strain condition is plotted by the black line in
Fig. 8. It is clear that the numerical solution is influenced by dispersion errors caused by both
FE spatial and time discretization. In comparions with the continuum solution the speed of the
longitudinal wave is slower. This fact follows from the theoretical dispersion diagrams for the
bilinear four-node and serendipity elements (e.g. Ref. [13]). Quite a good agreement between
the contact and reference calculation was observed. Furthermore, it should be emphasized that
the symmetry of longitudinal stress distributions was perfectly preserved in contact analysis.

The normalized transversal stress distributionσ∗

z = σzc1/Λv0 alongz-axis is drawn in Fig. 9.
In contrast to graphs in previous Fig. 8 these distributionsare strongly influenced by the longi-
tudinal and transversal waves reflected from the boundary ofplate. Before the arrival of these
waves the solution is identical to the constant valuesσ∗

z = −1 corresponding to a half-space
impact problem. Quite a good agreement between the contact and reference calculation versus
the analytical solution was observed. It should be pointed out that the accuracy of analytical so-
lution is strongly influenced by the number of terms includedin the series of improper integrals
[12]. The analytical solution plotted in this paper was derived from the summation of the first
300 terms of this series.
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Figure 9: Transversal stress distributionσ∗

z
alongz-axis forx/d = 0.4.
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