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Abstract: Effect of higher vibration modes on the seismic shear demand of reinforced con-
crete cantilever walls has been studied since the 1970’s. The shear amplification becomes 

more important with increasing fundamental period (tall buildings) and increasing ductility 

demand (R or q factors). Yet, studying the relevant recommendations of structural engineer-

ing researchers and provisions of various seismic codes reveals that there is no consensus re-

garding the extent of shear amplification and of the inter-wall distribution of shear demand in 

structural systems comprising walls of different lengths. 

     Paper presents the available formulas for predicting shear amplification in ductile walls 

and dual systems (wall-frames), as well as techniques for estimating the shear distribution 

among interconnected unequal walls. The consideration, or absence, of these effects by lead-

ing seismic code provisions is also noted. 

     One effect that impacts the shear amplification is shear cracking mainly in the plastic hinge 

zone of the wall near the base resulting in very low effective shear stiffness. Also, deliberately 

allowing development of plastic hinging along the wall height (contrary to standard code re-

quirements) has been suggested. These appear to lead to appreciably lower shear amplifica-
tion than previously predicted.  

     Finally, an extensive bibliography (circa 100 refs.) is provided. 
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1 INTRODUCTION 

      This paper reviews the literature on the seismic shear demand on RC cantilever walls. It is 

mainly concerned with shear amplification due to higher vibration modes, and it also reports 
on the post-yield redistribution of shear demand among the walls in systems comprising sev-

eral walls of different lengths. Amplification of wall shear due to higher vibration modes in 
the elastic range was not widely recognized by structural engineers until the early 1970’s, alt-

hough it was, or at least should have been, a known phenomenon to users of modal analysis 
for the seismic design of RC walls in tall buildings. However, the larger shear magnification 

in yielding flexural walls due to higher modes was first observed by New Zealand consulting 

engineers, which led to the 1975 pioneering paper by Blakeley et al [9]. The problem was also 

studied by researchers at the Portland Cement Association, and these resulted in a series of 

PCA reports [21, 23] and papers [22, 24] by Derecho and coworkers. The amplification tables 

proposed by Blakeley et al [9], the charts by Derecho et al [23], as well as later amplification 

expressions or charts (e.g. [29, 36, 37, 79, 81, 88, 95, 96]; and for wall-frames: [4, 38, 39, 43, 

56, 81, 89]) were mainly based on results of nonlinear response history parametric studies us-

ing suites of accelerograms. Obviously, the result depended on the choice of these suites. 

Theoretically oriented general formulation for the shear amplification was given by Keintzel 

[27, 50, 51]. Extensions were proposed by Priestley [79, 80, 81], and for wall-frames by Sul-

livan et al [100]. Very recently Fischinger et al [32] presented a correction to Keintzel’s for-

mula, and Pennucci et al [76] modification thereof.  

     Shear amplification becomes more important with increasing fundamental period (tall 
buildings) and increasing ductility demand (R or q factors). Yet, studying the relevant rec-

ommendations of structural engineering researchers and provisions of various seismic codes 
reveals that there is no consensus regarding the extent of shear amplification, its height-wise 

variations,  and the inter-wall  shear demand distribution  when the structural system consists 
of interconnected wall of different lengths.  

     This paper is concerned only with shear demand amplification on structural walls due to 
the effects of higher modes, but not with moment magnification along the height, which de-

rives from the same source.   Issues related to the shear capacity and post-yield shear flexure 

interaction are beyond the scope of the present study. 

     The phenomenon is described first, then available procedures to predict the amplification 

are presented, and relevant code provisions are briefly discussed. Shear amplification in dual 

or wall-frame structures is also included in the review, and post-elastic shear demand redistri-

bution among the walls in systems with walls of unequal length is considered. The paper clos-

es with a discussion including some unresolved issues. 

     The structural engineering communities in North America and in many other countries 
have been slow in recognizing the need to amplify shear demand, if at all. The objection of 

many researchers and engineers to the rather large amplification in the nonlinear range ob-

tained from numerical simulations may perhaps explain the plethora of publications as essays 

in persuasion, manifested by the quite long bibliography on this rather limited problem at the 

end of this paper.  

 

2    THE SHEAR AMPLIFICATION PHENOMENON 
 

     In the linear range the amplification of shear demand in flexural walls due to higher vibra-

tion modes has been routinely accounted for by means of response spectrum analysis. This 

matter is well covered in standard textbooks. Figure 1, taken from Chopra [18], shows the 
base shear Vb normalized by the total weight W in buildings analyzed by the modal response 

spectrum technique for a typical design spectrum. It can be seen that for a flexural cantilever 
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wall (ρ = 0 , ρ = beam to column stiffness ratio) the base shear increases appreciably with in-
creasing natural period due the effect of higher modes compared with the design spectrum. 

This fact explains the requirement in many seismic codes (e.g. [16]) to permit use of the 

equivalent lateral force procedure only for buildings with T1 < max (4Τc, 2.0 sec), Tc = corner 

period to the velocity related spectral acceleration region. As can be seen, in frame structures 

(ρ >> 0) the shear amplification due to higher modes is appreciably much smaller. The main 
reasons for this difference are: (1) the combined effective mass of the higher modes in flexur-

al walls is circa 35% of the total mass vs. circa 25% in frames ; (2) the period ratios of the 1st 

mode to  the higher ones is much larger for flexural walls (e.g. 1st/2nd ≈ 6  vs. ≈ 3  for ideal 

frames). Hence, when T1 of a flexural wall is in the velocity spectral region, the higher modes 

- the spectral accelerations of which are usually located at the high acceleration plateau – have 

a larger effect on the shear than in frames. This effect is even more pronounced when T1 is 

longer so that Sa (T2) and even Sa (T3) are in the velocity spectral region. Indeed, the main ef-

fect of the higher modes is due to the 2nd mode (e.g. [50, 66, 68]) and, to a much lesser extent, 

to the 3rd. mode. Evidently, the shape of the spectrum also strongly affects the extent of am-

plification. The reader is referred to Chopra [18] and Humar & Mahgoub [41] for detailed 

consideration of the phenomenon. The way seismic codes consider this effect is described 

subsequently. 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

Fig. 1: Normalized base shear Vb/W for 3 values of  ρ; for walls ρ = 0 (Chopra 2001). 

     As already noted, the shear amplification due to higher modes in the nonlinear range has 

attracted considerable interest since the Blakeley et al 1975 paper [9]. They showed, by means 
of nonlinear response history analysis (NLRHA), that shear demand increases with natural 

period and falling damping ratio. Similar results were obtained by Derecho et al [21], Keintzel 

[49] and Kabeyasawa [43, 44, 45], who also demonstrated that shear demand increases with 
ductility demand. The following explanation for the latter effect was given by Paulay & 

Priestley [75]. At some instants during the response the higher modes combine with the 1st 
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mode in a height-wise force distribution similar to the 2nd mode. The higher mode shapes of 
hinged and fixed base cantilever are quite similar, as shown in Fig. 2, suggesting that the for-

mation of a plastic hinge at the wall base does not significantly affect the higher modes. 
Hence, while the plastic hinge reduces the 1st mode shear response to the level commensurate 

with its flexural capacity, the response of higher modes remains circa their elastic level. In 
other words, the shear response can be approximated as a superposition of the 1st mode shear 

reduced by the force reduction factor R (q in Europe), while the higher modes’ response re-

mains elastic, thereby  amplifying their shear demand relative to that due to the first mode. 

Note that due to the plastic hinge formation and unloading/reloading softening the periods of 

higher modes are also elongated, hence amplification is likely to be somewhat lowered.  Simi-

lar conclusions were drawn from the response of a flexural wall with substantially reduced 

stiffness at its base – the plastic hinge [66]. This approach forms the basis for several analysis 

procedures developed to predict shear amplification, as described subsequently.  As in the lin-

ear range, the base shear amplification increases with increasing natural period since higher 

modes become more important, and as a result the shear resultant moves downwards. Also, as 

in the linear range, the spectral shape plays an important role. 

           

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

Fig. 2: Fixed base and hinged cantilever mode shapes (Wiebe & Christopoulos 2009). 

      
      It is interesting to note that base shear amplification in dual wall frame systems (WFs) is 

lower than in structural walls. As already observed the period ratios in frames are much lower, 
and their 1st mode mass participation is higher. Also, the shear demand in frames depends 

mainly on moment demand. Indeed, shear amplification in WFs strongly depends on the wall-
to-frame shear ratio. More details on WFs are given in Section 5.  

 

3    PROCEDURES TO PREDICT HIGHER MODES SHEAR AMPLIFICATION 
 

     The work of Blakeley et al [9] brought about changes in the provisions of the New Zealand 

seismic code [63] and in European model codes [13, 14]. However, the latter provisions ex-

plicitly restricted the magnifications to the equivalent lateral force (or static) procedure. This 
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turned out to be unfortunate since the corollary was that amplification was understood not to 

be required when using modal analysis (as, e.g. the Israeli seismic code [97] without Amend-

ment 3, is interpreted). It also led engineers to overlook the fact that a major part of the shear 

amplification due to higher modes takes place in the post-elastic range. This attitude still per-

sists also in the National Building Code of Canada NBCC-2005 [61], which only accounts for 

linear multi-mode shear amplification. However, the present Canadian Concrete code CSA-

A23.3-04 [19] requires considering nonlinear shear amplification, yet gives no guidance to that effect 

(see also [10]), although the commentary to the 1994 version of that code suggested adopting the New 

Zealand shear amplification formulas. Note that in the provisions and the proposals described subse-

quently it was tacitly assumed that the plastic hinge could form only at the wall base, and that the pre-

scribed moment envelope took care of that. 

     The amplified shear Va is given in in terms of the base shear Vd    from analysis, as follows: 

Va = ωv Vd                                                                                                                                (1)                                                                           

In the New Zealand code:                                                                                                                            

                

 

. And in CEB: 

  

As can be seen the NZ code is somewhat more conservative than CEB for 5< n< 15.  

      In spite of their widespread use there are several problems with these formulas. First, the 

only governing parameter is the number of storeys, which is a crude proxy for the natural pe-
riod. Also, the upper bound amplification is arbitrarily set at 1.8 for a 15 storey building. 

However, perhaps a more serious limitation is their independence of the excitation level, 
which affects the shear demand appreciably, and of the shape of the applicable response spec-

trum. Note also that, by today’s standards, the Blakeley et al study [9] was based on a very 
limited data set:  only 5 accelerograms, two of which were artificial. Also, bilinear moment-

curvature hysteresis was assumed, while many modern studies use the modified Takeda mod-
el, considered to be more realistic. On the other hand, the bilinear model is somewhat more 

conservative [62].  

     Shear amplification design charts were presented by Derecho et al, e.g., [22, 24]. These are 

based on a parametric study on structural walls, 10 to 40 storey high, using the modified 

Takeda model for the NLRHA carried out for 6 earthquake records. They presented shear am-

plification relative to the base shear as evaluated by the then governing UBC provisions vs. 

fundamental natural period for several values of rotational ductility demand µr, as shown in 

Fig.3. Since the set of records was normalized for a given Housner spectral intensity (SI= 1.5) 

a correction factor (practically proportional) was provided for different SIs.  One difficulty in 

applying this approach is its dependence on µr rather than on the strength reduction factor R, 
requiring making assumptions regarding the relation between these two parameters.  
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Fig. 3: Base  shear  demand amplification for several values of rotational ductility 

(Derecho et al 1981) 

  

      Based on parametric NLRHA several investigators proposed simple expressions to esti-

mate the maximum base shear Va by decomposing it into the 1st mode and the higher modes 

responses. Kabeyasawa (e.g. [43], see also [4]) gave the following expression for wall frames: 

Va  =  Vd  +  DmW Ae                                              (2)                                           

in which Vd = base shear of an inverted triangular loading, W = total weight, Ae = peak 

ground acceleration and Dm  is a given factor increasing with the number of storeys (i.e., peri-
od). Based on shake-table tests Eberhard & Sozen [25] proposed Dm = 0.3 for 9 and 10 storey 

wall frames, in agreement with Kabeyasawa’s results. The actual amplification in wall frames 
depends to a large extent on the base shear share carried by the wall. Hence the predictive 

ability of formulas such as Eqn. 2 is rather limited.  
      A similar formula for isolated walls was presented by Ghosh et al [36, 37] based on a par-

ametric study similar to that of Derecho et al [23]: 

Va  =  My/0.67H  +  DmW Ae                                                                                                     (3) 

in which My = the yield moment at base and H =  wall height. The advantage of this form is 
the explicit statement that the base shear is that at moment capacity level rather than at the 

design shear obtained from analysis, which is usually lower. For isolated walls the study by 
Seneviratna [95, 96], described subsequently, confirmed the equation format of Kabeyasawa 

and of Ghosh except for the short period range and for low values of R. 

      In 1988 Keintzel [27] proposed a simple expression for shear amplification by explicitly 

assuming that the 1st mode shear is limited by the flexural capacity of the wall at the base, 

and that the higher modes respond linearly. This formula was eventually incorporated into 

Eurocode 8 [15, 16]:  
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                    (4)                                                        

ωv           =   1st  mode shear amplification factor – but see next paragraph 

q          = R = strength reduction (behaviour) factor  

MEd      = design bending moment at wall base 

MRd      = design flexural resistance at wall base 

γRd      = overstrength factor due to steel strain-hardening 

T1          = fundamental period 

Tc          = higher period corner of the constant acceleration plateau (Fig. 2) 
Se (T) = Spectral ordinate (Fig. 2). 

     This is a very useful formula since it considers most of the parameters governing shear 

amplification in structural walls. It does not require exact evaluation of the 2nd mode natural 

period, and is practically spectrum-shape independent, in contradistinction to parametrically 

evaluated amplification formulas or plots, which are not (e.g. [79, 88, 95, 96]). It also ac-
counts for the two sources of overstrength. However, it is too conservative for very tall build-

ings, i.e., those with T2 in the velocity spectral region, and it is sensitive to the calculated 
value of the 1st mode spectral acceleration Sa, which for RC walls depends on design assump-

tions. It is believed that Sa at the natural period based on yield displacement should be the ap-
propriate one (e.g. [68]).  In view of the extensive use of this formula (EC8 is now applied in 

circa 20 countries) some background information may be in order. Based on parametric stud-
ies Keintzel assumed that the SRSS modal combination can also be applied in the post-elastic 

range, and also that the contributions of the first two modes are important, hence: 

 ( ) ( )2 2

a Ed,1 Ed,2V V qV= +                                                            (5)   

in which VEd,i  are the 1st and 2nd mode shear forces from analysis. He also assumed that the 

contribution of the 2nd mode is 0.1 Se (T1)/ Se (T2), in which 0.1 ≈ 0.322 ≈ the 2nd to 1st 

mode mass contribution ratio squared. Considering that design flexural overstrength 
(MRd/MEd) affects only the 1st mode, and dividing by VEd,1, Eqn.4 is obtained. This develop-

ment shows, as made clear by Fischinger et al [31, 32], that the amplification ωv should factor 

only the 1st mode shear VEd,1. However, in EC8 ωv amplifies VEd as evaluated either by the 

equivalent lateral force procedure (usually inversely triangular loading based on the total 

building weight) or by modal analysis, and, without making the distinction, evidently leads to 

different results. Keintzel concluded that ωv should be bounded by q (R), but this is too low 

considering that the elastic bound should be based on the SRSS shear - not the 1st mode one. 

Note also that the present EC8 restricts the application of Eqn. 4 to walls designed for high 

ductility (DC-H), while for medium ductility walls (DC-M) ωv = 1.5. This has been found to 

be too low [31, 32, 88], suggesting that Eqn.4 should be applied also to DC-M walls, as in-

deed was the case in past versions of EC8.   

      Keintzel [50] already observed that Eqn. 4 is a simplification of an expression he consid-
ered to be more accurate.  A different correction, which is based on an extensive parametric 

study using the Modified Takeda model and assuming hinge formation only at wall base, was 
proposed by Fischinger et al [32]. This correction affects the 2nd term in Eqn.4 when 

MRd/MEd  is large, hence is of limited practical use. 
      A natural extension of Keintzel’s formula proposed by Priestley [79], which can also pre-

dict the shear demand along the height of the wall and not only at base, is the following:  
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V� = ��V��,	∗ �� + �� ��V��,�∗ �� + �V��,�∗ �� +⋯�                                                                 (6) 

in whichV��,	∗  is the overstrength factored 1st mode design shear and µ is the displacement 

ductility demand. Priestley [79] reported satisfactory agreement with NLRHA results for a 

wide range of wall heights.                                                                                                  

      Another modification of Keintzel’s formula was recently proposed by Pennucci et al [76]. 

The basic assumption therein is that the total response can be obtained as the absolute sum of 

the 1st mode shear reduced by q (denoted Rm), and of the higher modes SRSS response, 

which is reduced by another factor (Rp). It has similar format as Eqns. 2 and 3, and is given by:  

V� =	VEd,1Rm +	�(Vpin,2)2	+	(Vpin,3)2	…..Rp                                                                                (7) 

in which VEd,1 and Vpin,i  are the modal shear forces at their elastic level, and the subscript pin 

denotes pin-based modal shear response. Based on parametric studies Pennucci [76] found 
that, as expected, the higher modes reduction factor Rp is related to Rm: large when Rm is low, 

and becoming smaller with increasing Rm, asymptotically reaching 1.0,  i.e. linear behaviour. 
A considerable improvement over Eqn. 6, particularly for long periods and large strength re-

duction factors, and very satisfactory agreement with NLRHA results along the building 

height were reported. Hence, it appears that the approach can make better allowance for the 

period elongation due to base hinging and for the lowered stiffness of the unloading/reloading 

hysteresis loop (Modified Takeda). Yet, since Rp is evaluated parametrically, it is to some ex-

tnt spectrum shape dependent.  

     A simple formula also in the format of Eqns. 2 and 3 was proposed by Panagiotou & Re-

strepo [66]. It is based on the observation that the amplification can practically be accounted 

for by adding a factored 2nd mode shear envelope to that of the 1st mode shear at base yield. 

The shear demand at storey i can then be approximated as:  

( )n j*
a Ed,1 12 2 22j i

V V q mSa
=

= + ρ Γ ΦΣ                     (8) 

in which ρ12 is a factor to be determined, and Γ�Φ�	$ = min[4.28hi/H, 0.6; -2.5hi/H + 1.85], 

Γ� = 2nd mode participation factor, Φ�	$ = mode shape ordinate at floor i ,		hi = floor height 

from base, H = total wall height, Sa2 = 2nd mode spectral acceleration. Good agreement with 

NLRHA results for near-fault records was reported. Note, however, that the application of the 

formula to other cases depends on ρ12, which was provided only for a small number of pulse-
type near-fault ground motions. 

     The amplification formulas or charts given subsequently are parametrically based; hence 

they are only applicable to spectra having shapes that are similar to the mean spectra of the 

suite of records forming the data base for the NLRHA. Also, they are sensitive to the chosen 

damping ratios. 

      Base shear demand amplification charts based on 15 records for wall structures having 

elastic–plastic moment-rotation hysteresis designed using SRSS load pattern were provided 

by Seneviratna [96]. Figure 4 presents the mean amplification, defined as the ratio of the max-

imum base shear of the multi-degree of freedom Vb(MDOF) to the single degree of freedom 

(SDOF) base shear Fy(µ), vs. T1. These are displayed for several values of µ(SDOF) - the duc-

tility ratio of the SDOF system. It can be seen the amplification increases with T1 and with 

µ(SDOF). As already observed, the amplification w.r.t the SRSS loading would be smaller 

since higher modes also amplify the shear in the linear range.   
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Fig.4: Base shear demand amplification for several values of displacement ductility 

(Seneviratna 1995) 

 

     The amplification formula provided by Priestley, [79] was based on NLRHA results for 

walls assuming Modified Takeda hysteresis. It has a very simple form, and is given in terms 

of the displacement ductility demand µ, and T1:    

ωv =  1 + µ B(T)/Φ;        B(T) = 0.067 + 0.4(T1 – 0.5) ≤ 1.15.                  (9) 

in which Φ  is the flexural overstrength. Evidently, in routine analysis, µ needs to be evaluat-

ed, unless the equal displacement approximation or another conversion formula is invoked.  

      

 

 

 

 

 

 

 

 

 

 

Fig. 5:  Eqn. 10 - Base shear demand amplification for several values of strength reduction factor q (=R) 

 (Rutenberg & Nsieri 2006) 

      

A somewhat longer expression given in terms of q (or R), not incorporating flexural over-

strength, was presented by Rutenberg & Nsieri [88]. It is given by: 
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Va = [0.75 + 0.22(T1 + q +T1q] Vd                   (10) 

in which Vd is the base shear due to a triangularly distributed base shear. Eqn. 10 is shown in 

Fig. 5 by the straight lines. Elastic-plastic response and 5% tangent stiffness damping in the 

1st and 5th modes were assumed. Note that 5% damping is now believed to be too high for 

very tall buildings (e.g. [92]), for which the major sources of damping have a lower effect.    

 

4    STOREY SHEAR DEMAND 

      Whereas, as noted, Eqns. 6, 7 and 8 are able to predict the shear demand for the full wall 

height, this is not the case with the other design equations listed above, that apply only to the 

base shear. This is because in many cases the ωv normalized SRSS storey shears overestimate 

the expected shear values for large wall portions of long period structures, as shown in Fig. 6.  

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.6: 40-storey wall shear envelopes: code loading design pattern, T = 2.05s:  mean for S1,a  records, bilinear,     

α = 0% , damping 5% (Seneviratna & Krawinkler 1997) 

     Apparently, this problem was first addressed by Iqbal & Derecho [42] who provided a wall 
height shear demand envelope that has not changed appreciably since. A design envelope as 

function of the fundamental period T1 is shown in Fig. 7, in which ξ is given by:        

ξ = 1 – 0.3T1 ≥ 0.5                      (11) 

Note that Eqn.11 resembles Fig. 5.4 in EC8 [16], but therein it is confined to walls in dual WF 

systems. A similar but straight-line envelope with the wall-top shear of: 

(0.9 – 0.3T1) Va ≥ 0.3 Va ,                  (12) 

 was given by Priestley et al [81] and Model Code [56]. 
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Fig.7: Shear force design envelope (Rutenberg & Nsieri 2006) 

5    MORE ON DUAL WALL FRAME (WF) SYSTEMS 

      Some studies on dynamic shear demand amplification in WFs followed naturally from 

those on flexural walls, but not all. As already noted wall shear amplification in WFs was 
studied by Kabeyasawa (e.g. [44]) and Aoyama [4], see Eqn. 2. Paulay and his co-workers [38, 

39] observed that, as in flexural walls, higher vibration modes amplified the shear force de-

mand on the walls of WFs, but to a lesser extent, and proposed a simple prediction formula 

accounting for this response reduction. This extension of the shear amplification formula for 

flexural walls based on Blakeley et al [9] to walls of dual systems is also given by Paulay & 

Priestley [75]. This WF shear amplification factor ωv
*
 
 
is given by:  

ωv
*
 = 1 + (ωv -1) η                     (13) 

in which ωv is the free standing wall shear amplification factor and η is the fraction of the base 

shear carried by the walls. Although the format of this formula is appealing its predictive ca-

pability appears to be limited [89]. 

     Alwely [3] made ωv
* dependent on the non-dimensional frame-to-wall stiffness ratio αH, 

as evaluated from the linear continuum approximation (e.g. [99]). Kappos & Antoniadis [46] 
proposed a procedure to estimate more realistically the shear demand in the upper storeys and 

also a modified version of the Goodsir et al [38, 39] formula (Eqn. 13) to account for shear 
amplification in WFs with unequal walls. Very recently Kappos & Antoniadis [47, 48] pro-

vided formulas to improve the shear distribution match with NLRHA results all along the wall 

height.  

     The codified guidance regarding the amplification factor ωv
*
 is rather limited. The New 

Zealand seismic code NZS 3101- 2006 [63] refers only to Paulay & Priestley [75] where Eqn. 

13 is presented. Note that therein ωv is that given by Eqn. 1. It is clearly seen that when η 

≤ 1.0 then 1 ≤ ωv
*≤ ωv. Eqn. 13 assumes that ωv

*, as ωv, is independent of the expected ductil-

ity demand or q (R). Note also that Eqn. 1 depends indirectly on T1 through its dependence on 

the number of storeys n. 

     EC8 [16] considers WFs in which η > 50% as “wall–equivalent”, hence in such cases wall 

shear in high ductility class (DC-H) systems should be amplified per Eqn. 4. 

     Applicable US codes do not include dynamic shear amplification requirements even for 

flexural walls (except the Commentary to the 1999 SEAOC code [93]). In practice, however, 
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amplification is considered in tall buildings design, as described subsequently. Quite recently 

Priestley et al [81], in the draft displacement-based seismic design code at the end of their 

book (also [56]), proposed a dynamic base shear amplification expression for WF walls, 

which requires predicting the displacement ductility demand µsys of the dual WF system. 

When 0.4 ≤ η ≤ 0.8 the wall base shear amplification is given by: 

 
*v 1 C

µ
Φ

ω = +
                                                                                                                        (14) 

C = 0.4 + 0.2(T1-0.5) ≤ 1.15 

in which Φ is an overstrength factor (usually taken as 1.25). Note that ω%∗		 is assumed inde-

pendent of η, hence cannot be in agreement with Eq. 13.  

     Based on the deflected shapes observed in several time windows during NLRHA, Sullivan 

et al [100] recently proposed a variant of Keintzel’s formula using so called “transitory inelas-

tic modes”. They concluded that the higher modes’ periods elongated, and suggested that 
good agreement with NLRHA of the base shear per Keintzel could be obtained when the 

higher modes’ periods were evaluated based on low post-yield secondary stiffness at wall 

base. This basically amounts to replacing the µ2
 factored higher modes fixed base shears (at 

design level) in Eqn. 6 by their thus computed counterparts. 

     A NLRHA based formula was very recently proposed by Rutenberg & Nsieri [89]:  

 Va    = 0.4 + 0.2(T1 + q +η) + 0.13T1qη                                    (15) 

in which η is the elastic wall base shear to total base shear ratio. As all formulas based on 
NLRHA parametric studies it is applicable to design spectra similar to the mean spectrum of 

the suite of records used for their derivation. It was also found that the results are quite sensi-

tive to the design yield levels of the girders over the frame height                                                                      

   

 6      EFFECTS ON SHEAR AMPLIFICATION: SEISMIC ISOLATION, MULTIPLE 

HINGES, ROCKING, AND SHEAR DEFORMATION  
 

6.1    Seismic isolation, multiple hinges along height and rocking 
      It is often necessary to increase the strength over significant portions of the wall height if 

yield is to be confined - per capacity deign - to the plastic hinge zone at the base; whereas al-

lowing yield to propagate upwards (with base level flexural strength) leads to some reduction 

in the shear demand, e.g., as shown in Fig. 8. Adding another plastic hinge at wall mid-height, 

as proposed by Panagiotou & Restrepo [67], leads to more pronounced lowering of shear de-

mand envelope. Furthermore, when the wall is designed such that plastic hinges can develop 

at several locations along the height as done by Rad [82, 84], the shear demand falls apprecia-

bly, as illustrated in Figs. 9 & 10. Evidently, the last approach requires special reinforcement 

detailing along all the wall height.  

     Wiebe & Christopoulos [103] proposed a design to allow rocking of several wall segments 

with respect to each other in order to reduce the contribution of higher modes, using unbond-

ed post-tensioning. Appreciable reductions in shear and bending moment were reported.      

     Twenty storey seismically isolated cantilever wall buildings designed with lead-plug rub-

ber bearings were studied by Calugaru & Panagiotou [12]. Three variants were considered: 
single isolator at base, isolators at base and at mid height, and isolators at base and at 0.7 of 

height. As expected, these buildings demonstrated significant reduction in the important re-
sponse parameters compared with standard fixed base, i.e. with a single plastic hinge, build-

ings. The buildings with dual isolation led to a further reduction in shear demand on the upper 

60% of the height. 
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Fig.8: Plastic hinge at base only vs. plastification at higher levels –base shear flexural strength assumed over 
building height (Rutenberg & Nsieri 2006) 

 

6.2    Shear deformation  

     Already in 1988 Eibl & Keintzel [27] observed that smaller shear rigidity lowers the higher 

modes dynamic amplification. In their study on the shear distribution among wall of different 
lengths Rutenberg & Nsieri [88] noted a substantial lowering in shear demand in cracked sec-

tions when the effective shear rigidity GAve was evaluated based on the analogous truss model 
[72], which is appreciably smaller than the recommended values based on the gross section 

(GAvg) for both cracked and uncracked walls by ASCE 41-06 [6], or 50% thereof for cracked 
walls by EC8 [16]. Gerin & Adebar [33] provided expressions to predict the shear defor-

mation, including shear cracking and yielding, observing that a typical effective shear rigidity 

of diagonally cracked concrete could approximately be taken as 10% GAvg, somewhat lower 

than the GAve assumed by [88]. Rad & Adebar [82, 84] used effective shear stiffness as a 

simple way to demonstrate the significant influence of cracking on shear amplification, as 

shown in Fig 11. Wallace [102] suggested modelling the post-cracking shear stiffness in the 

plastic hinge zone as circa 2.5% GAvg. 

 

7     NOTES ON PRACTICE IN THE USA 

     Seismic design practice in the US, particularly in California, is highly regarded worldwide 
and often adopted; hence it may be useful to comment on the situation there with respect to 

dynamic shear amplification. 

     It is interesting that although researchers, code-writers and practicing engineers were ex-

posed to the many publications on the post-yield shear demand magnification of higher modes, 

this has not been manifested in US seismic codes, e.g., ASCE 7-05 [5], as would be expected, 

particularly, since other major codes such as NZ3101 [63] and EC8 [16]  included such provi-

sions for many years. As noted, only the Commentary to the 1999 SEAOC [93] considered 

this issue, referring the reader to the New Zealand code.  Also, shear amplification is recog-

nized, albeit to a limited extent, by ASCE 41-06 [6] code for upgrading of existing buildings:  
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Fig. 9: Shear force envelopes with hinging permitted only at wall base, R =5 (Rad & Adebar 2008) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Shear force envelopes, flexural hinging at many locations over height, R =5 (Rad & Adebar 2008)                   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Influence of effective shear stiffness on average shear force envelopes, flexural hinging at many  

locations along wall height, R =5 (Rad & Adebar 2008) 
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the shear force at the wall base is calculated assuming uniform lateral force distribution over 

the wall height, i.e., the shear resultant is located at wall mid-height (clause 6.7.2.4 therein) 

rather than at approximately its 2/3rd, thereby increasing the base shear by circa 35%. It is 

only when NLRHA - one of the recommended procedures by US codes - is carried out that 

dynamic shear amplification is accounted for. However, code based analysis per this proce-

dure appears to be the exception rather than the rule. 

     The resurgence in high-rise construction in the west coast of the United States during the 

early and mid-2000’s has led to the application of performance-based non-prescriptive design 

procedures ([20, 54, 94]. Such design requires using a suite of at least seven pairs of appropri-

ate ground motion histories; hence, dynamic amplification is thereby considered. Indeed, re-

searchers and practitioners in California were soon reporting on large higher modes 
magnifications [53, 57, 58, 59, 105]. For very tall buildings, circa 40 storeys, these studies 

predicted shear amplifications on the order of 4 relative to code. It is interesting to note that 
one designer [52] observed, after designing over two dozen tall buildings, that “design which 

follows the prescriptive provisions of the building code will likely result in a shear capacity 

that falls well short of the likely demands the structure will experience during a significant 

seismic event. As shear failure of a structural wall is typically viewed as non-ductile, undesir-

able response, this outcome raises serious concerns….”  

 

8    POST-ELASTIC REDISTRIBUTION OF SHEAR DEMAND AMONG WALLS IN 

SYSTEMS WITH INTERCONNECTED WALLS OF UNEQUAL LENGTH. 

     The shear force distribution among the walls in regular multistorey structures laterally 

supported by a number of reinforced concrete cantilever walls with markedly different lengths 
is strongly affected by the different yield displacement levels of the walls. In the post-elastic 

range the share of the shear force carried by the shorter walls is larger than their share in the 
bending moment.  

     In a single storey structure the shear distribution among the walls within the elastic range 
is proportional to their stiffness. Following yielding of the longer wall additional loads will be 

carried by the shorter ones. It is evident that design for shear on the basis of relative stiffness 

underestimates the forces on the shorter walls since shear capacity should be made propor-

tional to flexural strength. However, the situation in a multistory building is different as 

shown in Fig.12, showing a simplistic model of a two storey system supported by two walls. 

To fix ideas, assume Wall 2 is very much stiffer than Wall 1; hence, the horizontal force on 

Wall 1 is negligible so long as Wall 2 has not yielded. With Wall 2 yielding at base the force 

∆H is distributed as shown in Fig.12b, where for simplicity it was assumed that the floor dia-

phragms are pin-connected to the walls and are infinitely rigid in plane. It can be seen that 
displacement compatibility requires a shear force redistribution resulting in a very large shear 

force acting on Wall 1.  

     Rutenberg and coworkers (e.g. [85, 86, 88]) demonstrated that the shear demand on the 

flexible walls could be very much larger than commensurate with their relative stiffness or 

even flexural strength. These studies were mainly carried out by means of cyclic pushover 

analysis on bilinear force-displacement hysteretic models. However, since redistribution is 

mainly due to compatibility enforcement rather than equilibrium it is sensitive to modelling 

assumptions. Hence further studies replaced the routine modelling (G= 0.4E, in-plane floor 

rigidity, bilinear hysteresis) with more realistic models. Indeed, the earlier results were shown 

[7, 88] to overestimate the base shear demand on the shorter wall. Beyer [7] also observed 

that the greatest effect was due to “locking in” of compatibility forces transmitted by the floor 

diaphragms. Yet, it appears that the effect of this relaxation depends on the extent of plasticity 
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 Fig. 12: Two-storey wall system: (a) properties and loading, (b) floor forces and deflected shapes  

(Rutenberg 2004) 
 

propagation along the wall’s cross-section, which in turn depends on whether the longitudinal 
reinforcement is mainly concentrated at the wall ends (flanges) or is uniformly distributed, 

which was not considered. Also, Beyer’s conclusions were obtained from a two-wall model 
with modest lengths ratio (1.5: 6.0m & 4.0m respectively); more pronounced stiffness differ-

ences are likely to increase the share of the short wall shear force.   However, Priestley et al 
[81] concluded, based on Beyer’s work [7], that these compatibility induced forces might 

normally be ignored in design. Further study on redistribution, including these effects, is now 
under way [8].  

     Beyer [7] proposed using the pushover analysis [85] to test the propensity of the shorter 
wall for excessive shear demand. In that procedure the resultant lateral force is located at the 

minimum dynamic effective height heq, dyn given by Eqn.16: 

heq, dyn =   heq, static / ωv                                        (16)       

In which heq, static is the height of the statically computed shear resultant, and ωv is the dynamic 

amplification factor. Alternatively, heq, dyn may be taken for the applicable spectrum from 

plots such as Fig. 2 in [91], if available. If the base shear on the short wall sharply increases 

while the base shear of the long wall drops off after formation of the plastic hinge at the base 

of the long wall, coupling effects are expected to be significant. Note that ωv  in Eqn. 16 is 
predicated on the assumption that the total base shear on  a group of walls is equal to that on 

an isolated wall whose strength and stiffness equal the respective sums of these properties of 
the individual walls.  This was found to be justified for the record suites used by Rutenberg & 

Nsieri [88]. 
     Adebar & Rad [1], using pushover analysis, studied a two-wall system with markedly dif-

ferent properties (a long flanged wall and a short rectangular one). They were mainly interest-
ed in the effect of shear deformation on the response, modelling both flexure and shear with 

tri-linear force displacement relations, i.e., a kink at cracking and a yielding plateau (very 
short for shear). As expected, cracking and yielding were found to affect the shear force redis-

tribution along the height, in some cases predicting shear failure. In particular, diagonal shear 
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(a)                                                           (b) 

  ∆∆∆∆H   ∆∆∆∆H  1.5∆∆∆∆H

h
  
  
  

  
  
  

  
  
  
  
h

 

 3∆∆∆∆H

I1              (I1<<) I2

I1              (I1<<) I2

 2.5∆∆∆∆H  1.5∆∆∆∆H



Avigdor Rutenberg 

 17

cracking led to significant shear force increase in the short wall at the 2nd floor level. Note, 

however, that concentrated plasticity was not accounted for. 

9    DISCUSSION 

     In many countries dynamic shear amplification is now routinely accounted for in wall de-

sign, yet, as shown, there are large differences in the extent of amplification - from relatively 
low ωv in the New Zealand code to quite high ones in EC8.  As already noted, the Canadian 

code requires considering amplification only when the equivalent lateral force procedure is 
carried out, and then only the linear multi-modal effect. Interestingly, the Romanian seismic 

code P100-1/2006 [64], while generally adopting the EC8 provisions for RC structures, ex-

cluded Eqn. 4, based mainly on the peculiarities of the 1977 Vrancea earthquake record. In-

stead, it specifies ωv = 1.5 for statically computed base shear or 1.2Φ (Φ = flexural 

overstrength), whichever is larger [77, 104]. 

     The very large amplifications predicted by NLRHA were met in many instances with some 

skepticism. For a widely expressed attitude it is perhaps best to quote Paulay [74], who wrote 

w. r. t. computed magnifications much larger than given in the New Zealand provisions: “I 

found at that time (early 1980’s, AR) that the duration of predicted extremely high shear de-

mands was typically 0.02 to 0.03 seconds. So we pacified our conscience with the unanswered 

question: ‘is this time interval long enough to enable a wall region to fail in shear?’”. On the 

other hand, ignoring shear peaks with durations less than 0.03 seconds do not appear to lead 

to substantial reduction in shear demand. A preliminary study by Panagiotou & Calugaru [65] 

on records of three earthquakes showed that demand was lowered only by 6%-15%.  
     It has often been observed that the maximum shear may not occur simultaneously with 

maximum moment over the wall height; hence the large amplification factors could be ques-
tioned (e.g. [55]). Yet, simultaneous peaks at wall base level were observed in analyses by 

Rad [82] and Tremblay et al [101] for several historical records; and the large amplifications 
were evaluated for the wall base. No doubt these two issues deserve study. 

     The main reason for the skepticism appears to be the feeling that standard nonlinear mod-
elling of RC walls, particularly in the plastic hinge zone, does not capture faithfully the com-

plex response. As noted above, using the Takeda rather than the bilinear hysteresis lowers 

computed shear demand somewhat, and more importantly, realistic shear behaviour modelling 

results in substantial fall in shear demand (Fig. 11); considering shear-flexure interaction 

might lower it further. On the other hand, it has been demonstrated that the 5% damping rou-

tinely assumed in NLRHA is quite unconservative for tall buildings design, and damping rati-

os lower than 2% were reported (e.g. [92]). 

     Another important issue is the experimental and historical evidence for nonlinear dynamic 

shear amplification The study by Eberhard [25, 26, 98] on wall frames suggests that the for-
mula proposed by Kabeyasawa (e.g. [43]) and Aoyama [4] is in approximate agreement with 

the experimental results. The experimental study by Panagiotou et al [66, 68, 69] did not fo-

cus on shear amplification per se, yet this phenomenon has been observed in their shake table 

tests. Shear amplification was also observed by Tremblay, Leger and their co-workers in an 

on-going shake-table testing program [55]. The large dynamic amplifications predicted by the 

many parametric studies listed in the bibliography and by Keintzel’s formula, or variations 

thereof, were not observed in these studies. 

     On the whole it appears that the seismic performance of well-designed and constructed 

cantilever wall buildings has been satisfactory. Yet, damage to shear walls was reported after 

several earthquakes. Blakeley et al [9] referred to reports on two cases of extensive diagonal 

tension cracking; however, it is not clear whether those or other such failures can be attributed 

to dynamic shear amplification. Shear failures in walls were observed after the February 2010 
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Chile earthquake, but these were attributed mainly to discontinuities and similar effects such 

as stress concentrations near openings.  Targeted studies are now under way [11]. 

     The reader who chooses not to perform NLRHA with refined modelling may well ask 

which of the several formulas reviewed here he/she should adopt. In order to answer this 

question it is necessary to perform extensive parametric studies. On the other hand it does not 

appear that the differences among the several variants of Keintzel’s formula are excessive. 

Strictly speaking, parametrically derived formulas and design charts are applicable only to the 

mean spectrum of their data base. 

     These design procedures do not account for multiple hinges when the vertical wall rein-

forcement follows approximately (in several steps) modal analysis moment envelope. They 

also do not consider wall shear cracking, which has significant effect on shear amplification, 
and on the response of interconnected walls. The actual impact of shear cracking on amplifi-

cation depends on cyclic shear-flexure coupling; but such a model is not yet available [102].  
      In view of the above, it is believed that judiciously conceived NLRHA-based design can 

better account for the many variables affecting dynamic shear amplification. 
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