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Abstract. The layout of new high-speed railway lines often requires long slender viaducts, in-
cluding continuous decks with lengths of 1000 m or more, and high piers or arches with heights
over 70 m. These structures generally exhibit a high lateral compliance. The fundamental mode
of vibration usually corresponds to this lateral motion, with frequencies lower than 1 Hz and
associated to long wavelengths. Current experience on lateral behavior of bridges under traffic
includes research work carried out by ERRI D181 committee [1], which considered problems
in European bridges for conventional rail with steel open decks, and of much shorter length and
deformation wavelengths. According to the conclusions from ERRI minimum lateral vibration
frequencies of spans are required to be higher than 1.2 Hz in the new design codes [2]. How-
ever, this case does not correspond to the high speed rail viaducts described above, for which
there is so far not enough evidence on the behavior nor sufficient knowledge of the relevant
mechanisms. In this work we present newly developed models for considering the coupled dy-
namic behavior of vehicles and structure in railway viaducts. The structure is discretised with
finite elements of beam and shell type, and vehicles are considered with 3D multibody mod-
els, within ABAQUS [3]. A novel technique for considering contact between wheels and rails
has been developed. This model includes both vertical and lateral contact, incorporating an
implementation of Kalker’s FASTSIM solution technique [4], providing adequate simulation of
lateral nosing motion of railway vehicles.

The models developed are applied to a representative case, the “Arroyo de Las Piedras”
viaduct [5] with a total length of 1209 m and piers of 94m height. Several simulation scenar-
ios are compared, considering track alignment irregularities or not as well as full interaction
models or simpler moving load models.
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1 INTRODUCTION

A considerable investment has been done in new high speed railway lines in Spain, having
in operation as of today over 2000 km of new lines with UIC gauge. Due to the orography
in the Iberian peninsula, often these lines have to cross deep valleys, necessitating tunnels and
viaducts. Generally these viaducts must be supported on tall piers or arches, of the order of
100 m or more, and will consist of long continuous decks, of the order of 1000 m or more.
As a consequence they will generally have very low lateral stiffness and associated low natural
frequencies of vibration.

Figure 1: Viaducto “Arroyo las Piedras” in Córdoba–Málaga HS line: first mode of vibration 0.313 Hz

In some cases bridges with low lateral frequencies have been seen to develop considerable
vibrations, causing concern for the safety of circulation of railway vehicles. Addressing this
problem was the objective of the ERRI committee D181 [1], whose work included a number
of European bridges. These bridges were generally steel structures with open decks and low
lateral bending stiffness. Following the conclusions of this work several limitations for lateral
deformability of decks and minimum natural frequencies have been introduced in the Eurocodes
[2] and national codes [6].

In principle the types of bridges considered in the ERRI report are not of the same type here
considered. Although the lateral compliance is high in both cases, the long and tall viaducts
typical of high speed lines have a much longer wavelength of deformation and of vibration
modes, of the order of several hundreds of meters or more, whereas the ERRI bridges had
lateral deformation wavelengths of the order of tens of meters. It may be expected that with
these latter wavelengths it is possible to produce some resonance or dynamic amplification of
the vehicles lateral movement, whose kinematic wavelengths are also in this order of magnitude.
On the other hand, for a long wavelength which will be generally longer than the complete train
it may be more unlikely to obtain synchronous amplification in all vehicles, as well as with
nosing motion.

However, there remain important uncertainties as the lateral dynamic coupled vibrations of
vehicles and bridges have not been throughly studied and the possibilities of obtaining high
amplifications or resonance may lead to tragic results for the safety of passengers. Furthermore,
external actions such as high lateral winds or earthquake may make these matters worse.

In this work we present a description of a model to consider in a realistic manner vehicle-
bridge interaction models, in order to apply to the type of long tall slender viaducts as described
above. As will be described below, models for coupled lateral dynamics of railway vehicle–
bridge interaction are considerable more complex in nature than those for vertical dynamic
actions, due to the specific nature of the wheel–rail contact which admits some lateral relative
movement.
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The model for vehicle–bridge interaction consists of five main ingredients: 1) dynamic
model for structure subsystem; 2) dynamic model for vehicle subsystem; 3) geometrical de-
scription of track including irregularities; 4) wheel–rail contact model and 5) a numerical solu-
tion algorithm for the equations.
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Figure 2: The basic ingredients of vehicle-structure interaction: vehicles, bridge and the interaction forces

The structure is usually discretised with finite elements, either beam type as in [7], [8], [9]
or shell type as in [10] or solid [11]. Vehicle models may be assembled from rigid bodies with
joints and/or constraints as multibody dynamic models, including discrete springs or dampers.
In railway vehicle–structure dynamics generally linear models are employed [7], [8], [12], [9],
[13]. More complete models with nonlinear effects are used in [14] and [15].

A key point of the vehicle-bridge interaction for lateral dynamics is to establish the geo-
metric and dynamic relationships between both subsystems (Figure 2). For establishing these
relationships wheel-rail contact theories are used.

The simplest approach for modeling the wheel-rail contact is to consider a perfectly guided
path, i.e. contact points between wheels and rails share positions and velocities, approach fol-
lowed in [16], [10], [13]. This approach neglects nosing relative movement between wheelsets
an rails. A relatively simple option to introduce this lateral movement is to prescribe a sinusoidal
relative displacement between the wheelset and the track, as in [17], [16], [12]. This procedure
permits consideration of a worst case of fully developed hunting motion, thus providing a hy-
pothetical upper bound for these effects, but is a relatively simplistic solution and does not take
into account the real dynamic coupling in lateral motion. This was also the approach followed
in our previous work reported in [18].

In order to include the dynamic effects from lateral motion in the wheel-rail contact the
relative displacements between wheels and rails must be considered, subject to the geometric
constraints and dynamic contact laws. The first basic ingredient of any such procedure is a
geometric model of wheel and rail profiles. Once the position is well determined it is necessary
to introduce the normal and tangential forces. For normal contact, the well established nonlinear
Hertz theory [19] is probably the best option, see [7], [20], [14] and [15]. Often a linearization
of this theory is applied, as in [9]. The full solution of tangential contact, including precise local
slip limits at each point within every contact area requires a high amount of computer resources.
For this reason Kalker’s linear theory [21] is often applied in vehicle-bridge interaction models
as in [7], [8], [9]. Other works more focused on the dynamic behaviour of vehicles [14], [15]
introduce more realistic and complex tangential contact models, such as Kalker’s variational
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theory [22] or the simplification of this in FASTSIM [4]. A practical alternative is the USETAB
tables [23], is based on Kalker Variational Theory [22], which is the approach followed in this
work.

In addition, it must be considered that tracks do not follow perfectly the ideal geometry. The
alignment irregularities are an essential ingredient for excitation of laterl vibrations of vehicles.
For considering a hypothetical upper bound scenario Irregularity profiles can be generated using
power spectral density functions as defined in [24]. This approach is followed in [9], [18] and
also in this work. Another option is of course to employ irregularity profiles measured directly
from the track, as in [17], [8] and [16].

The last ingredient for the model is the strategy for numerical solutiona t each time-step.
An option is to integrate separately both subsystems and establish at each time-step an iteration
loop for achieving force and displacement compatibility at contact points, as in [17], [9], [25]
and [26]. Another option is to form a global set of coupled equations including both subsystems
can be solved directly, as in [8], [16], [12], [13] and [27]. In this work the approach followed
is similar to this latter option, including both subsystems within the same dynamic model, with
special emphasis on the contact interface.

In the remaining of this work firstly the details of the numerical model employed will be dis-
cussed. Following, this will be applied for the Las Piedras viaduct [5] in the spanish high-speed
railway Cordoba–Malaga, which has piers of 94 m and length of 1209 m. The results obtained
show that, for the scenarios considered, no adverse lateral vibration effects are foreseable.

2 NUMERICAL MODEL

The vehicle-bridge interaction system is composed of the vehicle and bridge subsystems
and the contact interface between them. The model is constructed within ABAQUS simulation
system [3], employing multibody capabilities for the vehicles, finite elements for the bridge,
and user-developed algorithms for the compatibility between both and the contact interface.

Common cartesian coordinates are used in both subsystems: x along the bridge’s lontigudinal
direction, z pointing upwards and y laterally. The corresponding rotations around each of these
axes will be called θx, θy and θz (Figure 3).

2.1 Vehicle model

The vehicle is considered as a multibody system. Car body, bogies and wheelsets are con-
sidered as rigid bodies. The primary and secondary suspensions are defined using linear springs
and dampers (figure 4). Anti-yaw dampers are included in the model with appropriate definition
of viscoelastic properties. For the vehicle model, the following assumptions are considered:

(A1) Small displacements are considered here (except for the wheel-rail contact interface).
However this is not a limitation of the model, there is no restriction for nonlinear multi-
body dynamics effects should they be necessary, as a full nonlinear solution is performed
at each time-step.

(A2) The train is supposed to cross the bridge at a constant speed v.

(A3) The train is composed of independent cars: no connection between cars is considered.

(A4) A constant velocity v along the x axis is considered for all the bodies of each car, therefore
the degrees of freedom of car-bodies and bogies are y, z, θx, θy and θz. For wheelsets, θy
is prescribed as θ̇y = v/r0, being r0 the nominal rolling radius of wheels.
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Figure 3: Vehicle schema and coordinates.

Figure 4: Multibody model showing vehicle box and bogies

(A5) The coordinates used for each of the rigid bodies are absolute inertial coordinates, not
relative coordinates with respect to the bridge.

The multibody capabilities within ABAQUS program [3] are employed in this work to obtain
the vehicle multibody dynamic models.

2.2 Bridge model

The bridge is modeled with finite elements through the finite element library provided within
ABAQUS [3]. In general, any type of finite elements can be employed (continuum, shell, beam
or truss). In this case the model has been built using 3D beam elements for the deck and the
piers of the viaduct. The assumptions that have been made are:

(A6) Small displacements and linear elastic materials are considered in this case (except for
the wheel-rail contact interface). However this is not a limitation of the model, there is
no restriction for nonlinear effects should they be necessary, as a full nonlinear solution
is performed at each time-step.
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Figure 5: Schematic representation of bridge deck and 3D beam finite elements.

Figure 6: Kinematic constraints for wheelset position on bridge deck: schema and deformed view of rigid contact
surfaces

(A7) The rails are supposed to be rigidly attached to the deck section, with the appropriate
offsets and eccentricities.

(A8) Elastic effects for rail deformation are neglected.

The points on the rails corresponding to each wheelset are derived by interpolation and kine-
matical constraints with the beam degrees of freedom. For this purpose, special rigid contact
surfaces are defined in the finite element model, linked kinematically to the structural beams
(figure 6).

2.3 Track alignment irregularities

An essential ingredient for proper consideration of the vehicle dynamic effects are the track
irregularities. For this work irregularities for horizontal alignment and vertical profile were
considered as these will be the most important for lateral dynamics. In order to provide prob-
abilistic upper bounds, irregularities were generated from a power spectral density spectrum
adjusted to upper bounds of deviations to be expected in the wavelength between 3 and 25 m
from maintenance operations (figure 7). The procedure used here is similar to that followed in
[24]
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Figure 7: Profile of generated alignment irregularities and check for fit to PSD spectrum

2.4 Vehicle-bridge interaction

The final ingredient are the forces for establishing the interaction between the vehicle and
the structure. This is achieved through contact models, including geometric and dynamic com-
ponents. The coupled system of equations may be represented as:(

MV 0
0 MB

){
ẌV

ẌB

}(
CV 0
0 CB

){
ẊV

ẊB

}(
KV 0
0 KB

){
XV

XB

}
=

{
FV +FV

c
FB +FB

c

}
, (1)

where superscripts (·)V and (·)B refer to the vehicle and bridge subsystems respectively. Ad-
ditionally, FV

c is the vector of forces applied on the vehicle as a consequence of the interaction
with the structure, and FB

c , on the structure, which will be computed from the vehicle and bridge
displacements, velocities and time. The components of the contact forces are described in Sec-
tion 2.5.

Equation (1) will be solved directly in time using the HHT Method [28], which is an implicit
algorithm. The tangent matrices of contact forces are needed for the numerical solution:

Kc =
dFc
dX

, Cc =
dFc

dẊ
, (2)

where Fc = (FV
c ,FB

c )
T. The expressions of the tangential forces applied in this work do not have

analytical derivatives and hence the tangent matrices are computed using numerical jacobians.

2.5 Nonlinear contact forces

The wheel-rail contact forces are developed in this Section. Considering some assumptions,
that are expossed below, this problem can be split in three main parts:

Geometric problem: it consists on computing the main geometric variables which depend on
the relative displacements between wheel and rail.

Normal problem: considering the geometric variables obtained before, the contact ellipse di-
mensions and the normal stress distribution is calculated using the Hertz theory [19].

Tangential problem: the tangential forces, which depend on the contact geometry, normal
stresses and relative velocities between wheel and rail, are computed.
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According to [22], if the wheel and rail materials have the same mechanical properties, the
three problems can be studied separately: geometric problem is solved firstly, normal problem
secondly and tangential problem thirdly.

2.5.1 Geometric contact problem

For obtaining the main geometric variables of the contact problems serveral assumptions are
made:

(A9) Separations between wheel and rail are not allowed.

(A10) The wheel-rail contact appears only in one area.

(A11) Only rigid body movements perpendicular to x axis are considered for the wheelset and
the track.

Considering that the distance between two wheelset of the same wheelset is 2dW , the geomet-
ric variables can be computed as a function of only variable: the lateral displacement of the
wheelset relative to the track ∆yW . These geometric variables for wheels A and B (Figure 9) are
(see Figure 8):

• rA and rB: the rolling radii of both wheels at the contact point.

• γA and γB: the angle between horizontal and contact plane (the plane where the contact
ellipse is contained).

• ka
A, kb

A, ka
B and kb

B : ellipse dimension coefficients that depend on the curvatures of wheel
and rail in the two main directions at the contact point (see [19]). a is the ellipse semiaxis
along xc, and b along yc.

• ∆ẑW and ∆θ̂x,W : relative vertical displacement and rotation between the wheelset and the
track, considering only geometric conditions.

zc γ

xc

yc

rr,y

r

rw,y

Figure 8: Main variables of the contact geometry.

In this article, realistic wheel and rail profiles are considered (biconic profiles are avoided),
due to that, when the relative lateral displacements of the wheelset respect to the track are small,
the variation of the previous variables is linear. However, when the displacements become
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larger, contact between the flange of the wheel and the rail occurs, and the variation becomes
nonlinear.

The relative displacements of the wheelset of vehicle respect to the track are:

∆yW = yW − yB
T (x) , (3a)

∆zW = zW − zB
T (x) , (3b)

∆θx,W = θx,W −θ B
x,T (x) , (3c)

∆θz,W = θz,W −θ B
z,T (x) , (3d)

being yW , zW , θx,W and θz,W the absolute displacements and rotations of the wheelset.

2.5.2 Normal contact problem

The Hertz theory [19], for solving the shape and dimensions of the contact surface and the
normal stress distribution, take into consideration the following assumptions:

(A12) At contact point, contact surfaces are continuous and nonconformal.

(A13) No plastic deformation is considered and strains are supposed to be small and elastic.

(A14) Stresses are neglected far from contact point.

(A15) Friction between surfaces does not affect to normal problem.

(A16) Quadratic functions of two variables can be used to define the wheel and rail surfaces
near to contact point.

With these assumptions, contact area is considered an ellipse and normal stress distribution an
ellipsoid.

The ellipse semiaxes can be computed as:

ak = ka
k(∆yW )

(
1−ν

G
Nk

)1/3

(4a)

bk = kb
k(∆yW )

(
1−ν

G
Nk

)1/3

(4b)

where k = {A,B}, G is the shear stress modulus, ν the Poisson coefficient of wheels and rails
and Nk the contact normal force in wheel-rail pair (it is explained below how to compute these
normal forces). The coefficients ka

k and kb
k , which depend on ∆yW , are computed before the

calculation and depend on the main curvatures of wheel and rail at contact point (see [4]).

2.5.3 Tangential contact problem

In this problem the tangential contact forces are computed. They appear as a consequence of
a rolling and sliding motion between wheels and rails. In each point of the contact surface the
shear stress value can not be greater than the normal stress times friction coefficient. Thus, in
the contact ellipse adhesion and slip areas could appear.

9



J.M. Goicolea and P. Antolı́n

The main variables of the tangential contact are the creepages, which are defined as the
non dimensional relative velocities between wheel and rail. ζ k

x , ζ k
y and ζ k

R are, respectively,
longitudinal, lateral and rotational creepages of wheel-rail pair k and can be expressed as:

ζ k
x = 1− rk

r0
± ∆θ̇z,W

v
dW (5a)

ζ k
y =

1
v

[(
∆ẏW +∆θ̇x,W rk

)
cosγk

+
(
∆żW ±∆θ̇x,W dW

)
sinγk

] (5b)

ζ k
R =−sinγk

r0
(5c)

where the upper sign of ± and ∓ in the above equations corresponds to the wheel-rail pair A,
and the lower, to B (see Figure 9).

Depending on the assumed hypothesis, different methods for solving tangential contact exist.
The Kalker Variational Method [22] is a very accurate method for computing tangential forces,
however, due to it is computationally very expensive, it can not be applied in an analysis like
that. The USETAB approximation [23], proposed by Kalker, is used in this work. This method
obtains the tangential forces in a pre-calculated table whose input variables are the contact
normal force, the ellipse semiaxes, the friction coefficient and the creepages, and the output
variables are the tangential forces in longitudinal T k

x and lateral T k
y local directions and moment

around normal direction Mk
z . The values of this table have been computed using the Kalker

Variational method for different values of the input variables.

2.5.4 Vehicle-structure interaction forces

As it has been seen above, vertical relative displacement ∆zW and relative rotation ∆θx,W
can be computed as geometric variables, without regard to dynamic aspects. Thus, the relative
displacements computed as geometric variables and those obtained from the dynamic response
of vehicle and structure must be equal:

∆zW = ∆ẑW (∆yW ) , (6a)

∆θx,W = ∆θ̂x,W (∆yW ) . (6b)

For imposing these constraints, a penalty force and moment are introduced in wheelsets gravity
centre:

Fz
c = kz (∆ẑW (∆yW )−∆zW )3/2 , (7a)

Mx
c = kθ

(
∆θ̂x,W (∆yW )−∆θx,W

)3/2
. (7b)

These nonlinear penalty expresions derive from the approach expression bewtween two bodies
of the Hertz theory. Stiffness coefficients kz and kθ depend on ∆yW and Nk

W , but in order to
simplify the equations, they are computed considering only the train own weight in a static case
and ∆yW = 0.
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The forces applied on the wheelset gravity centre, shown in Figure 9, can be written as:

Fy
c =−NA sinγA +T A

y cosγA−NB sinγB +T B
y cosγB , (8a)

Fz
c = NA cosγA +T A

y sinγA +NB cosγB +T B
y sinγB , (8b)

Mx
c =

(
−NA cosγA−T A

y sinγA +NB cosγB

+ T B
y sinγB

)
dW +

(
T A

y cosγA−NA sinγA

)
rA

+
(
−NB sinγB +T B

y cosγB
)

rB ,

(8c)

Mz
c =

(
T A

x −T B
x

)
dW +MA

z cosγA +MB
z cosγB . (8d)

Using equations (7), (8b) and (8c), normal forces NA and NB, which are needed to compute
the tangential forces and moments, can be obtained and applied to compute the values of Fy

c
and Mz

c. Thus, the equation set (8) is nonlinear and, in order to solve a linear system, as it is
proposed in [14], the normal forces computed in the previous time step are used for computing
the tangential forces in the current time step. Before obtaining Fy

c and Mz
c, the contact forces

T A
y , T B

x , T B
y and moments MA

z and MB
z must be computed using normal forces of the previous

time step and the creepages of current step.

3 Application

3.1 Models for viaduct “Arroyo las Piedras”

The above numerical model has been applied to a bridge representative of the type discussed
in this work, the “Arroyo las Piedras” viaduct, in operation in the Córdoba–Málaga high speed
line. The viaduct is a double-track composite steel-concrete continuous deck beam, supported
on concrete piers with pot-type bearings. The spans of the deck are of 65 m, and the section has
upper and lower concrete slabs performing a so-called double composite action, with adequate
torsional stiffness. The tallest piers are of 94 m height. The first natural frequency oc this
viaduct is 0.313 Hz and corresponds to a lateral deformation mode (figure 1). More complete
details of the structure may be seen in [5].

As described above, the model for the viaduct is based on 3D beams with appropriate kine-
matic constraints. The Rayleigh method has been used for the damping matrix of the structure
subsystem, with a 0.5% damping centered in the two first natural frequencies. The train that
has been used in the calculations is an approximation of the Siemens ICE 3 composed of 8 cars,
each of 24.775 m length. The ICE3 is a distributed power train, and, for that reason, all cars
ares supposed to have the same geometrical and mechanical properties.

Calculations have been carried out for train speeds of 250, 300 and 350 km/h, in several
different models:

2dW

Fz,c Mz,c
Fy,c

Mx,c

MA
z

γA
γB rBrA

NA

T A
y

NB T B
y

MB
z

z

yθx

Figure 9: Wheelset equilibrium.
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(1) Bridge only model with moving loads, consisting only of the bridge dynamic subsystem,
with the vehicle wheelsets simplified as moving loads of fixed magnitude. This amounts
to neglecting the dynamic effects of vehicle vibration, and serves as a basic result with
which to compare the influence of the vehicle vibration on the results. It also serves the
purpose of obtaining a so-called virtual path for the wheelsets of the vehicles, which can
be later applied to these in a decoupled approach to the vehicle-bridge dynamics: the
bridge history of displacements is obtained in a first step, and these histories are then
applied in a second step to the vehicle wheelsets to obtain the response of the train.

(2) Vehicle model, consisting only of the vehicle subsystem, in two different scenarios:

(a) Vehicle on rigid platform (i.e. no bridge) with prescribed profiles of irregularities.
This model will enable to compare the influence of the bridge deformation on the
vibrations of the vehicle.

(b) Vehicle on virtual path, as described above, this path results from previous analysis
of the bridge with moving loads. The geometric track irregularities are added to the
virtual path in order to consider their effect on the vehicle.

(3) Bridge-Vehicle model, performing the calculation for the global system with the wheel-
rail contact interaction. In this case, two scenarios have been considered:

(a) Model with interaction but without track irregularities

(b) Model with interaction and with track irregularities

3.2 Results for bridge and vehicle response

Following we show only the results for train speed of v = 350 km/h, as they correspond
to the greatest effects. Firstly we present results for the deformation of the bridge deck. The
displacements and rotations at the center of span 11, corresponding to the tallest pier, are shown
in figure 10. These correspond to the three different scenarios defined in section 3.1, the cases
enumerated as 1, 3a and 3b. It may be clearly seen that the influence of the vehicle vibration
and of the track irregularities on the bridge deformation is negligible. It is also seen that these
deformations are small, with maximum lateral displacement of 9 mm, which for a viaduct of
1209 m length is very small.
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Figure 10: Displacements and torsional rotation of bridge deck at center of span 11, v = 350 km/h.
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Regarding the response of the vehicle, the accelerations of vehicle body on coach 4 are shown
in figure 11. Four scenarios are shown, as defined in section 3.1, the cases enumerated as 2a,
2b, 3a and 3b. Maximum accelerations experienced are in the order of 0.2 – 0.3m/s2. First we
remark that very clearly irregularities are the main cause responsible for vehicle vibrations, as
in the case 2a accelerations are negligible compared to other cases with irregularities. In other
words, the vehicle body accelerations attributable to deformation of the bridge are of the order
of 0.05m/s2. In figure 12 the lateral loads exerted by one of the wheels of the vehicle on the rail
are shown. These achieve maximum values of the order of 15 kN.

4 CONCLUSIONS

The following remarks are concluded from the above work:

• Lateral dynamic effects in tall and long railway viaducts are an important issue with high
lateral compliance must be studied in order to consider adequately the safety of the traffic.

• In this paper a model considering the dynamics of the bridge, the vehicle and the geo-
metric and dynamic aspects of wheel-rail contact has been developed and validated. This
model includes multibody subsystems for the vehicles, a structural finite element sub-
system for the viaduct, and a specially developed wheel-rail contact interface between
them.

• The case of HS viaduct on “Arroyo las Piedras” [5] has been studied as a representative
case. The loading considered includes only the vertical effects from the traffic, consid-
ering track alignment irregularities, but not other possible actions such as lateral wind or
earthquake. For the cases studied it is shown that the lateral effects on the viaduct are
small and do not compromise in any way its safety.

• The lateral vibration of the vehicle is originated mainly from the assumed irregularities
of the track, with a small contribution from the bridge deformation and interaction. The
level of acceleration obtained as well as the loads transmitted by vehicle wheels to the
rails are small and well within acceptable limits.

• The above procedure could be applied to evaluate realistically the effect of high lateral
winds on the vehicles as they traverse the viaduct, as well as the earthquake actions.
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Figure 11: Acceleration of coach body, v = 350 km/h
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Figure 12: Lateral wheel force (for a single wheel), v = 350 km/h
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