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Abstract. Near-fault ground motions are characterized by high values of the ratio PGA be-
tween the peak value of the vertical acceleration, PGAV, and the analogous value of the hori-
zontal acceleration, PGAH, which can notably modify the axial force demand in columns (e.g. 
producing both tension and high compressive forces larger than the balanced force) and the 
bending moment demand in girders (e.g. plastic hinges are expected along the span of r.c. 
girders, especially in the upper storeys). At present, the Italian seismic code (NTC08) does 
not consider the effects of near-fault ground motions in the design of a r.c. framed structure. 
In order to check the effectiveness of current code provisions, six- and twelve-storey r.c. spa-
tial framed structures are designed according to the provisions of NTC08, considering the 
horizontal seismic loads acting alone or in combination with the vertical ones. A numerical 
investigation is carried out considering the nonlinear response of the test structures subjected 
to horizontal and vertical accelerograms, representative of near-fault ground motions with 
different values of the acceleration ratio PGA. A lumped plasticity model (LPM) based on the 
Haar-Kàrmàn principle is proposed to model the inelastic behaviour of the r.c. frame mem-
bers. Specifically, the lumped plasticity model for a column (LPMC) includes a piecewise li-
nearization of the bounding surface of the axial load-biaxial bending moment elastic domain, 
at the end sections where inelastic deformations are expected. On the other hand, the lumped 
plasticity model for a girder (LPMG) takes into account the potential plastic hinges along the 
span, due to the vertical ground motion, modifying the uniaxial plastic moments of the end-
sections and so avoiding the computational effort required by the sub-discretization of the 
frame member. 



1 INTRODUCTION 

Structural damage of reinforced concrete (r.c.) framed buildings, designed according to re-
cent seismic codes and located in a near-fault area, has been observed during near-fault 
ground motions [1] and experimentally verified [2]. Generally, the design provisions of cur-
rent seismic codes are not very accurate for assessing near-fault effects, because only far-fault 
ground motions are considered. At present, the Italian [3] and European [4] seismic codes do 
not consider the effects of the vertical component of near-fault ground motions in the design 
of a r.c. framed structure. These motions are characterized by high values of the ratio between 
the peak value of the vertical acceleration (PGAV) and the analogous value of the horizontal 
acceleration (PGAH) [5]. More specifically, high values of the acceleration ratio PGA can not-
ably modify the axial load in r.c. columns, producing undesirable phenomena in these ele-
ments [6]: e.g., reduction in the shear capacity, buckling of the longitudinal bars, brittle failure 
in compression, bond deterioration or failure under tension. Moreover, plastic hinges are ex-
pected along the span of the girders, especially if rather long [7], and in the upper storeys, 
where the effects of the gravity loads generally prevail over those of the horizontal seismic 
loads and an amplification of the vertical motion is expected [8]. 

 In order to establish if suitable additional code guidelines are needed, it is very important 
to study the nonlinear response of r.c. spatial frames subjected to near-fault ground motions. 
The high computational effort required to obtain accurate results by finite elements or fibre 
models has encouraged the development of simplified approaches [9]. In the present work, a 
lumped plasticity model (LPM) based on the Haar-Kàrmàn principle is proposed to model the 
inelastic behaviour of r.c. frame members. Specifically, the lumped plasticity model for a r.c. 
column (LPMC) includes a piecewise linearization of the bounding surface of the axial load-
biaxial bending moment elastic domain, at the end sections where inelastic deformations are 
expected. Each flat surface corresponds to a plastic strain mechanism for the section, defined 
by axial strains and curvatures. This type of element represents a good choice for the response 
simulation of structural members, like columns, that may experience inelastic deformations at 
the end sections. On the contrary, the lumped plasticity model for a r.c. girder (LPMG) takes 
into account the potential plastic hinges along the span of the girders, due to the vertical 
ground motion, modifying the uniaxial plastic moments of the end-sections depending on the 
top and bottom plastic moments of selected critical intermediate sections and so avoiding the 
computational effort required by the sub-discretization of the frame member [10]. 

Six- and twelve-storey r.c. spatial frames are assumed as test structures and designed ac-
cording to the provisions of the Italian seismic code (NTC08) considering (besides the gravity 
loads) the horizontal seismic loads acting alone or in combination with the vertical ones. 
Horizontal and vertical accelerograms, representative of near-fault ground motions with dif-
ferent values of the acceleration ratio PGA, are considered for the numerical investigation. 

2 LUMPED PLASTICITY MODELING 

The nonlinear dynamic analysis of a spatial framed structure can be carried out adopting a 
numerical step-by-step procedure based on an initial stress-like iterative procedure [11]. At 
each step of the analysis, the elastic-plastic behaviour of a beam element is described using 
the Haar-Kàrmàn principle, without satisfying nodal equilibrium conditions, once the initial 
state and the incremental load in the step are known. Then, an implicit two-parameter integra-
tion scheme is adopted in order to satisfy the global dynamic equilibrium of the overall struc-
ture. Each frame member is modeled by a LPM composed of two parallel elements, one 
elastic-perfectly plastic and the other linearly elastic, assuming a bilinear moment-curvature 
(M-) law, depending on the axial load in the case of a column. The elastic component is cha-
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racterized by the flexural stiffness pEI, p being the hardening ratio of the (M-) law. Torsional 
strains are assumed to be fully elastic while shear strains are neglected. Distributed masses are 
considered along the girders to evaluate the influence of the vertical vibrations.  

2.1 Frame members in biaxial bending with axial force  

The nonlinear behaviour of r.c. structural elements under biaxial bending with axial force 
is generally based on the knowledge of the bounding surface of the cross-sections, resulting 
from the plastic moments obtained for different values of the axial force [12]. A lumped plas-
ticity model, labelled as LPMC, is proposed for a r.c. column, assuming that the bounding 
surface of the elastic domain is described by means of flat surfaces. More specifically, the ine-
lastic deformations, supposed as lumped at the end cross-sections, are represented by the axial 
strain P, along the longitudinal axis x, and the curvatures Py and Pz, along the principal axes 
y and z, collected in the vector 

 
T

P P Py Pz= , ,      (1) 

and referring to the (geometric) centroid of the cross-section. Denoting the corresponding ge-
neralized stresses at the end section by the vector 

 
T

y z= N ,M ,M    (2) 

and the plastic stresses, related to Pk=nk, by Pk, the elastic domain g()=0 can be approx-
imated by nfs flat surfaces gk(), each defined by a different (normal) direction nk.  

As suggested in [13], a satisfactory representation of the axial load-biaxial bending mo-
ment bounding surface of the elastic domain can be obtained considering 26 flat surfaces, in-
cluding: 6 surfaces normal to the principal axes x, y and z (Figure 1a); 12 surfaces normal to 
the bisections of the y-z, x-y and x-z principal planes (Figure 1b); 8 surfaces normal to the bi-
sections of the octants (Figure 1c). The piecewise linearized elastic domain is characterized 
by the corresponding 26 columns of the matrix 
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where each column represents a vector nk defined starting from  
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which refer to the plastic generalized stresses  
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In particular, once the plastic strain mechanism of the cross-section corresponding to the 
vector nk (k=1..nfs) is considered, the maximum compressive strain in concrete (cmax) and the 
maximum tensile strain in longitudinal steel reinforcement (smax) are evaluated, avoiding val-
ues greater than the corresponding ultimate ones (e.g. cu=0.35% and su=1%). In this way, 
the position of the neutral axis and the area of the compressed concrete section (Ac) being 
known, the components of the generalized plastic stress vector Pk can be evaluated by the 
equilibrium equations: 

b b b

c c c

n n n

Pk c si si Pyk c si si i Pzk c si si i
i=1 i=1 i=1A A A

N = σ dA  + A σ ,  M = σ z dA   A σ z , M = σ y dA  + A σ y             (6) 

where c=c() and si=si(). In Eq. (5) nb is the number of longitudinal bars while (yi, zi) 
and Asi define, respectively, the position and area of each bar. Elastic-perfectly plastic consti-
tutive laws are assumed for both concrete (cc) and steel (ss), assuming stresses and 
strains with the appropriate signs (i.e. negative for compression and positive for tension). 

At each step of the analysis, the elastic-plastic behaviour of a column, once the initial state 
and the incremental load are known, can be obtained by using the Haar-Kàrmàn principle. It 
states that, among all the generalized stress fields  satisfying equilibrium, the elastic-plastic 
solution EP is that with minimum distance, in terms of complementary energy c, from the 
elastic solution E [11] 

      
1

T -1
c EP EP E c EP E

0

L
= d =min.

2  D         (7) 

(=x/L) being a nondimensional abscissa, L the length of the beam element and Dc the elastic 
matrix of a column. The plastic admissibility conditions 

     for k EP fsg 0 k =1..n  (8) 

also have to be satisfied at the end sections of the beam element. The elastic-plastic solution 
corresponds to the tangent point between a level curve of c(EP) and the piecewise approxi-
mation of the bounding surface of the elastic domain. Moreover, when the elastic solution lies 
within the fan limited by the planes normal to the boundaries of the flat surfaces, the elastic-
plastic solution corresponds to a point along the corner line resulting from the intersection be-
tween these surfaces. 
 

 

(a) Surfaces normal to the x, y and 
z axes. 

(b) Surfaces normal to the bisec-
tions of the y-z, x-y and x-z planes. 

Surface normal to the bisection of 
the octant. 

Figure 1: Flat surfaces approximating the elastic domain for the end sections of a column. 

2.2 Frame members in uniaxial bending without axial force  

A lumped plasticity model, already proposed by the authors [10], is adopted for a r.c. 
girder and labelled as LPMG. The elastic-plastic solution is evaluated only at the end sections 
(i and j) in the vertical plane (i.e. x-z plane) of bending. Moreover, the potential inelastic de-
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formations lumped at ns intermediate sections along the span, due to the vertical ground mo-
tions, are also checked. In order to avoid the computational effort due to the sub-discretization 
of the frame member, the elastic solution at the end section i (j) is modified taking into ac-
count the possible inelastic effects occurring at an intermediate section s (s=1.. ns), besides 
those at the end section j (i). Specifically, when a plastic (flexural) distortion 
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consequent to an elastic-plastic moment MEPys greater than the corresponding plastic moment 
occurs at an intermediate section of abscissa xs, the corresponding moments at the end sec-
tions can be evaluated as 
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With reference to the bending moment along the principal axis y and neglecting the inflec-
tion along the principal axis z, the generalized stresses of a girder are denoted by the vector  

 
T

yi yj= M ,M    (11) 

Then the elastic-plastic solution satisfying equilibrium is obtained, according to the Haar-
Kàrmàn principle, minimizing the complementary energy 
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where Dg is the elastic matrix of a girder. Moreover, the plastic admissibility condition 

  EPg 0  (13) 

also has to be satisfied at the end sections of the beam element. Specifically, the (uniaxial) top 
(T) and bottom (B) plastic moments at the end sections 
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are modified during the nonlinear analysis, assuming the following values when a plastic dis-
tortion occurs at an intermediate section (see Figure 2) 

 
T T
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The elastic-plastic solution of the problem defined by the Equations (12) and (13) can be 
obtained by a predictor-corrector procedure. It is triggered evaluating the elastic-plastic solu-
tion at an end section (e.g. end section i) by the formula: 
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Afterwards the elastic-plastic solution is alternately evaluated at the end section i (j) and j (i)  
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In cases where the intermediate sections experience inelastic deformations, Eqns. (17) and 
(18) are solved iteratively until, in these sections, at the iteration loop k the differences be-
tween the plastic moments and the elastic-plastic moments evaluated by the equilibrium, start-
ing from the elastic-plastic solution at the end sections, become less than a prefixed tolerance. 
 

 

Figure 2: Bounding surface of the elastic domain for the end sections of a girder. 

3 LAYOUT AND DESIGN OF THE R.C. FRAMED BUILDINGS 

Typical six- and twelve-storey residential buildings with r.c. framed structures, whose 
symmetric plan is shown in Figure 3, are considered as test structures. Deep girders are placed 
along the perimeter of the building together with infilled walls assumed as non-structural ele-
ments regularly distributed in elevation; deep and flat girders, perpendicular and parallel to 
the floor slab direction, respectively, are assumed inside the building. Geometric dimensions 
of the girders and columns are shown in Table 1. Moreover, the vibration periods correspond-
ing to the high-participation modes with prevailing components in the horizontal and vertical 
directions are: T1X=0.576s, T1Y=0.698s and T1Z=0.064s, for the six-storey buildings; 
T1X=0.993s, T1Y=1.249s and T1Z=0.103s, for the twelve-storey buildings. The gravity loads 
used in the design are represented by dead- and live-loads, equal respectively to: 4.8 kN/m2 
and 2 kN/m2, for the top floor; 5.7 kN/m2 and 2 kN/m2, for the other floors. The weight of the 
perimeter masonry-infills is taken into account considering a gravity load of 2.7 kN/m2. A cy-
lindrical compressive strength of 25 N/mm2 for the concrete and a yield strength of 450 
N/mm2 for the steel are considered.  

The proportioning of the test structures has been done according to the Italian seismic code 
(Technical Regulations for Constructions 2008, NTC08 [3]) assuming, besides the gravity 
loads, the horizontal seismic loads acting alone or in combination with the vertical ones. Each 
building (B) is identified by two symbols: the first one (6 or 12) indicates the number of 
storeys, the second one refers to the design seismic loads which are considered (i.e.: H, when 
considering only the horizontal component of the seismic loads; HV, when also considering 
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the vertical component of the seismic loads). The following assumptions have been made: 
medium subsoil (class B, subsoil parameters: SSH=1.13 in the horizontal direction and SSV=1 
in the vertical one); flat terrain (class T1, topographic parameter: ST=1).  

 
 
 
 
 
 
 
 
 
 

 

          (a) Plan of the buildings.           (b) Six-storey frames.      (c) Twelve-storey frames.

Figure 3: R.c. test structures (dimensions in cm). 
 

Storey  Corner columns Lateral columns Central columns Deep girders Flat girders 
12 30x30 30x40 40x40  30x50      50x25      
11 30x30 30x40 40x40    30x50      50x25      
10 30x40 30x50 40x40    30x50      60x25      
9 30x40 30x50 40x40    30x60      60x25      
8 35x40 35x60 50x50    30x60      70x25      
7 35x40 35x60 50x50   30x60      70x25      
6  40x50 (30x50) 45x60 (30x50) 60x60 (40x40) 40x65 (30x50) 80x25 (50x25) 
5 40x50 (30x50) 45x60 (30x50) 60x60 (40x40) 40x65 (30x50) 80x25 (50x25) 
4 50x60 (30x60) 50x70 (40x60) 70x70 (50x50) 40x65 (30x60) 90x25 (60x25) 
3 50x60 (30x60) 50x70 (40x60) 70x70 (50x50) 40x70 (30x60) 90x25 (60x25) 
2 50x70 (40x70) 50x90 (50x80) 80x80 (60x60) 40x70 (40x60) 100x25 (70x25) 
1 50x70 (40x70) 50x90 (50x80) 80x80 (60x60) 40x70 (40x60) 100x25 (70x25) 

Table 1: Section dimensions (in cm) of the six- (in brackets) and twelve-storey r.c. buildings. 

The design is carried out to comply with the ultimate limit state (ULS) of life safety, ac-
cording to the horizontal and vertical elastic response spectra whose main data are reported in 
Table 2: i.e. return period (Tr) corresponding to a nominal life of the structure equal to 50 
years; peak ground accelerations in the horizontal (PGAH) and vertical (PGAV) directions; 
amplification factors defining the maximum horizontal (Fo) and vertical (Fv) spectral accele-
ration on rock-site; upper limit of the period of the constant spectral acceleration branch in the 
horizontal direction (T*

C). Six- and twelve-storey structures have to be classified as regular in 
plan and irregular in elevation, according to the criteria imposed by NTC08. As a conse-
quence, a low ductility class is considered, assuming: behaviour factor for the horizontal 
seismic loads, qH=3.12; behaviour factor for the vertical seismic loads, qV=1.5. Finally, the 



serviceability limit state (SLS) of damage is also controlled, checking that, under the horizon-
tal seismic loads corresponding to the elastic response spectra whose main parameters are 
shown in Table 2, the inter-storey drift is less than 0.5% of the storey height. Detailing for 
local ductility is also imposed to satisfy minimum conditions for the longitudinal bars of the 
r.c. frame members. Finally, capacity design rules regarding the beam-column moment ratio 
and shear forces and local ductility requirement of girders and columns are also satisfied. 

 
Limit state Tr (years) PGAH (g) PGAV (g) Fo Fv T*

C (s) 
ULS (Life safety) 475 0.312 0.276 2.44 1.73 0.370 

SLS (Damage) 50 0.108 - 2.28 - 0.301 

Table 2: Main parameters of the horizontal elastic response spectra. 

4 NUMERICAL RESULTS 

In order to evaluate the effects produced by the combination of the horizontal and vertical 
components of near-fault ground motions on the response of r.c. spatial frames, a computer 
code has been implemented according to the LPMs proposed in Section 2. A bilinear mo-
ment-curvature law is adopted, assuming a hardening ratio p=5%. In the Rayleigh hypothesis, 
the damping matrix is assumed as a linear combination of the mass and stiffness matrices, as-
suming a viscous damping ratio equal to 5% or 2% with reference to the two vibration periods 
corresponding to high-participation modes with components prevailing in the Y (T1Y) or Z (T1Z) 
direction, respectively. In this way, an intermediate value of the damping ratio is achieved in 
the range of vibration periods T1Z-T1Y, while the higher frequency modes, which do not con-
tribute significantly to the dynamic response, are practically eliminated due to their high 
damping ratio. Plastic conditions are checked at the end sections of the columns, considering 
an approximation with flat surfaces of the axial force-biaxial bending moment bounding sur-
face of the elastic domain (see Section 2.1). Three intermediate sections (i.e. the two quarter-
span sections and the mid-span section) are checked along the span of the girders, in addition 
to the end sections (Figure 3b) even if, according to the model proposed in Section 2.2, gird-
ers are discretized with only one element instead of four sub-elements, reducing the computa-
tional effort of the discretization by about 2/3. 

The nonlinear dynamic response of the B6H, B6HV, B12H and B12HV test structures, 
which are described in Section 3, is studied with reference to the records of the Imperial Val-
ley earthquake, available in the Pacific Earthquake Engineering Research center database [14]. 
More specifically, ground motions recorded at different stations placed at close range to one 
another and exhibiting high values of the acceleration ratio PGA(=PGAV/PGAH) are consi-
dered. It is worth mentioning that the accelerograms are characterized by a PGAH value ap-
proximately comparable, for one of the two horizontal directions, with the one adopted in the 
design of the test structures (i.e. PGAH=0.312g in Table 2). In Table 3 the main data of the 
selected near-fault ground motions are reported: recording station, closest distance to fault 
rupture (D); magnitude (Ms), peak ground acceleration for the horizontal components (PGAH,1 
and PGAH,2) and the vertical one (PGAV) and acceleration ratios (PGA,1 and PGA,2). As can be 
observed, PGA has a maximum value of 2.009 for the El Centro Differential Array (D.A.) sta-
tion as opposed to the value 1.13 prescribed by NTC08 in the examined case (see Table 2).  

 
Station D Ms PGAH,1 PGAH,2 PGAV PGA,1 PGA,2 

El Centro Array #5 1.0 km 6.9 0.379g 0.519g 0.537g 1.417 1.035 
El Centro Array #7 0.6 km 6.9 0.338g 0.463g 0.544g 1.609 1.175 

El Centro Differential Array 5.3 km 6.9 0.352g 0.480g 0.707g 2.009 1.473 

Table 3: Main data of the selected near-fault ground motions (Imperial Valley, 15/10/1979). 
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The elastic (normalized) response spectra of acceleration in the horizontal (SaH,1 and SaH,2) 
and vertical (SaV) directions are plotted in Figure 4, assuming  an equivalent viscous damping 
ratio in the horizontal direction, H, equal to 5%, and an analogous ratio in the vertical direc-
tion, V, equal to 2% due to the low damping capacity of the structure expected in this direc-
tion [1]. The response spectra of these motions are compared with the corresponding target 
NTC08 response spectra for a high-risk seismic region and a medium subsoil class (class B): 
i.e. PGAH=0.312g and PGAV=0.276g. It is interesting to note that in the vertical direction the 
spectral values for the El Centro ground motions (Figure 4c) are much greater than those cor-
responding to NTC08, at least in the range of the vibration periods which are more relevant 
for the test structures. 
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Figure 4: Acceleration (elastic) response spectra. 

 
To emphasize the importance of also considering the vertical ground motion, the main re-

sponse parameters affected by this component are considered: i.e. curvature ductility demand 
at the potentially critical sections (i.e. end, quarter span and mid-span sections) of the girders, 
for each of the two loading directions; curvature ductility demand, at the end sections, and 
axial force demand for the columns. More specifically, the ductility demand for a column is 
evaluated with reference to the radial direction defined by the bending moment axis vector 
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where max,r and E,r represent the maximum and yielding curvatures, respectively, in the radi-
al direction. Plastic curvatures at each step of the analysis (i.e. Py and Pz) are accumu-
lated and added to the yielding curvatures at the current step (i.e. Ey and Ez). Finally, the 
plastic moment (MPr) is calculated considering the axial force due to the gravity loads only 
(NV) and referring to the radial direction identified by max,r. 

In order to compare the response of the test structures designed for the horizontal seismic 
loads only (i.e. B6H and B12H structures) with that of the analogous structures designed also 
for the vertical seismic loads (i.e. B6HV and B12HV structures), the mean values of the duc-
tility demand of girders and columns are reported in Figures 5 and 6. The results below were 
obtained as an average of the maximum (local) curvature ductility demand attained at the 
most critical sections of the structures subjected to the selected Imperial Valley ground mo-
tions (see Table 3). The numerical investigation is carried out considering the horizontal com-
ponents of motion acting alone (H), for B6H and B12H structures, or contemporaneously with 
the corresponding vertical component (H+V), for B6HV and B12HV structures. Moreover, 
the horizontal accelerogram with PGAH,1 (PGAH,2) is applied twice, once along the principal 
axis X (Y) and the other along the principal axis Y (X) of the building plan.  

The curves in Figures 5a and 6a correspond to the mean ductility demand for the end sec-
tions and quarter-span sections of the interior deep girders, perpendicular to the floor slab di-
rection shown in Figure 3a. As shown, the effects of the vertical component of ECDA, 
ECA#5 and ECA#7 ground motions proved to be more evident at the upper floors where 
bending moments due to vertical seismic loads are more important than those due to the hori-
zontal seismic loads. More specifically, the end sections, at the top side, and quarter-span sec-
tions, at the bottom one, proved to be the more stressed sections. This kind of behaviour can 
be explained observing that the ductility demand at these sections, in contrast to the mid-span 
ones, already appears under the horizontal components of the Imperial Valley ground mo-
tions. Moreover, the bottom plastic moments of the quarter-span sections, at the upper floors, 
were less than or equal to those assumed at the mid-span sections. This result emphasizes the 
need to take into account the vertical ground motion in the design of the girders, especially at 
the upper storeys. Further results, omitted for the sake of brevity, highlighted that flat girders, 
parallel to the floor slab direction, exhibit plastic deformations at the end sections due to the 
horizontal components of the ground motion, but the intermediate sections are practically in-
dependent of the vertical component due to their small tributary mass.  
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Figure 5: Mean ductility demand of B6H and B6HV structures subjected, respectively, to the horizontal 
components (H) and horizontal and vertical components (H+V) of the Imperial Valley earthquakes. 



F. Mazza and M. Mazza 

 
Successively, the maximum values of the mean ductility demand at the end sections of the 

columns are evaluated with reference to the same cases as discussed above. As can be ob-
served, the effects of the vertical ground motion are negligible for the B6HV structure (Figure 
5b) and generally limited to the upper storeys for the B12HV structure (Figure 6b). However, 
note that the mean ductility demand at each storey is shown for the (central, lateral or corner) 
column section exhibiting the maximum value, but in many cases the section where the 
maximum ductility value is attained is different, when the horizontal ground motions alone 
(H) or in combination with the vertical ground motion (H+V) are considered. As expected, a 
“strong-column weak-beam” mechanism is achieved, with acceptable maximum values of the 
ductility demand for the columns of all the storeys.  
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Figure 6: Mean ductility demand of B12H and B12HV structures subjected, respectively, to the horizontal 
components (H) and horizontal and vertical components (H+V) of the Imperial Valley earthquakes. 

 
Finally, attention was focused on the axial force attained by the columns, in order to check 

whether failure phenomena occur: i.e. failure under compression or tension, due to the attain-
ment of the corresponding ultimate compressive load, Ncu, or tensile load, Ntu; brittle failure 
under a compressive load greater than the balanced load Nb. For this purpose, the minimum 
(Nmin) and maximum (Nmax) values attained by the axial load (assuming positive to be a com-
pressive load) in the corner and central columns of B6H and B6HV structures subjected, re-
spectively, to the horizontal (H) and horizontal and vertical (H+V) components of ECDA 
ground motion are plotted in Figure 7. Analogous curves are also plotted in Figure 8 with ref-
erence to B12H and B12HV structures subjected, respectively, to the H and H+V components 
of ECA#5 ground motion. As can be observed, the axial-force variation induced a rather high 
compressive force, which in many columns was greater than the balanced load, thus produc-



ing a reduction in both the ultimate bending moment and available ductility. It should be 
noted that a compressive load greater than Nb does not necessarily imply a brittle failure, be-
cause it depends on the value attained by the bending moment, which may be less than the 
ultimate moment corresponding to the current axial load. Nevertheless, caution is needed 
when the compressive load is greater than Nb. It is also useful to note that NTC08 requires 
that, in the case of medium ductility class, the maximum compressive load for the columns 
should not be greater than 65% of the corresponding ultimate load Ncu.  
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Figure 7: Typical values of column axial forces for the corner and central columns of B6H and B6HV struc-
tures subjected to El Centro D.A. records. 
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Figure 8: Typical values of column axial forces for the corner and central columns of B12H and B12HV 
structures subjected to El Centro Array #5 records. 
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The overturning moment due to the horizontal components of ECDA and ECA#5 ground 
motions induced an evident variation of the axial load in the corner columns of B6H (Figure 
7a) and B12H (Figure 8a) structures. On the other hand, for the central columns, having the 
greatest tributary mass (i.e. their tributary mass in a storey is about four times the analogous 
mass corresponding to the corner columns, respectively), the addition of the vertical ground 
motion produced an evident variation in the axial force giving rise even to a tensile force, 
which in many sections of B6HV (Figure 7b) and B12HV (Figure 8b) structures is very close 
to the ultimate tensile force Ntu. 

 

5 CONCLUSIONS 

An efficient nonlinear beam model based on the Haar–Kàrmàn principle has been proposed 
for the analysis of r.c. spatial frames subjected to the vertical component of near-fault ground 
motions. Specifically, the lumped plasticity model for a column (LPMC) includes a piecewise 
linearization of the bounding surface of the elastic domain corresponding to axial load-biaxial 
bending moment interaction. A satisfactory compromise between accuracy and computational 
efficiency has been attained considering 26 flat surfaces: i.e., 6 surfaces normal to the princip-
al axes; 12 surfaces normal to the bisections of the principal planes; 8 surfaces normal to the 
bisections of the octants. Moreover, the lumped plasticity model for a girder (LPMG) takes 
into account the potential plastic hinges along the span of the girders, due to the vertical 
ground motion, modifying the uniaxial plastic moments of the end-sections depending on the 
top and bottom plastic moments of selected critical intermediate sections. LPMG allowed a 
reduction in the computational effort due to the sub-discretization of the girders by about 2/3.  

Afterwards, a computer code was developed on the basis of the proposed LPMC and 
LPMG, in order to investigate the effects of the vertical component of near-fault ground mo-
tions on the inelastic behavior of r.c. spatial frames. To this end, six- and twelve-storey r.c. 
framed buildings were designed assuming, besides the gravity loads, the horizontal seismic 
loads acting alone or in combination with the vertical ones. In order to emphasize the effects 
due to the vertical component, the numerical investigation was carried out with reference to 
cases in which the considered horizontal components of the motion acted alone or contempo-
raneously with the corresponding vertical component. The numerical results showed that the 
frame members should be designed to also take into account the vertical ground motion. Spe-
cifically, the ductility demand increased in many end sections and quarter-span sections of 
deep girders, while for flat girders it did not depend on the vertical component due to their 
small tributary mass. As regards the columns, a large variation in the axial force occurred 
producing even tension (close to the ultimate tensile force) and high compressive forces (lar-
ger than the balanced force) which are more evident, respectively, at the upper and lower sto-
reys of the test structures. 
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