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Abstract. Stabilized hybrid and mixed finite element methods are proposed for solving
Helmholtz problems in heterogeneous media. The methods are based on a hybridized dual
mixed formulation in velocity (flux) and pressure fields stabilized by adding least squares resid-
ual of the governed equations. The local problems, in the velocity and pressure fields, are solved
at element level to eliminate these variables in favor of the Lagrange multipliers, identified as
the trace of the pressure on the element edges of the finite element mesh. A global system is
assembled involving only the degrees of freedom associated with the Lagrange multipliers as
usually in Hybrid methods. Polynomial bases are adopted to approximate the global problem in
the Lagrange multipliers. Polynomial or special bases, such as plane-wave bases, can be also
used to approximate the local problems at the element level. Numerical results are reported to
illustrate the potential of the proposed formulation to efficiently solve Helmholtz problems in
homogeneous or heterogeneous media at medium and high frequency regimes.
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1 INTRODUCTION

The linear model for propagation of acoustic waves in an ideal compressible fluid is governed
by the wave equation

−∆ϕ +
1

c2

∂2ϕ

∂t2
= 0, (1)

where ϕ(x, t) represents small oscillations of the pressure and c is the velocity of the sound
in the acoustic medium. Considering harmonic solutions in time with circular frequency ω,
the pressure field is written as ϕ(x, t) = p(x)e−iωt, and the pressure amplitude p satisfies the
Helmholtz equation

−∆p− k2p = 0, (2)

where the parameter k = ω/c, known as wave number, characterizes the oscillatory behavior of
the solution ϕ.

Helmholtz problem has deserved especial attention in many physical applications associated
with refraction and scattering of electromagnetic, elastic or sound waves, for example. From
the numerical point of view k is a key parameter. It is well known that standard Galerkin finite
element approximations deteriorate as k increases. For large values of k the solution p is highly
oscillatory and, due to numerical dispersion and phase error, constructing finite element approx-
imations for Helmholtz equation is a great challenge as reported in vast literature. See, for exam-
ple, [4] and references therein. Several finite element methods have been developed to minimize
the phase error. Stabilized finite element methods such as Galerkin Least-Squares(GLS) have
been proposed with relative success [5]. An uniform nine node stencils with minimal pollution
error, referred as QSFEM, is constructed in [6]. Variationally consistent finite element methods
with stability properties equivalent to the QSFEM on uniform meshes have been proposed in
[7] using a generalized GLS formulation, and in [8] using discontinuous Galerkin finite element
methods. A Quasi Optimal Petrov-Galerkin (QOPG) finite element formulation for Helmholtz
problem in two dimensions is introduced in [9] using polynomial weighting functions with the
same support of the corresponding global test functions. The QOPG finite element formula-
tion is naturally applied to non uniform and unstructured meshes. Generalized finite element
methods using plane wave bases have been successfully developed in [3, 10, 11] to solve the
Helmholtz equation with great accuracy when applied to problem with regular solutions.

Here, we consider stabilized hybrid and mixed finite element methods for solving Helmholtz
problems in heterogeneous media with discontinuous wave number k. The proposed formu-
lations is based on a hybridized dual mixed formulation in velocity (flux) and pressure fields
stabilized by adding least squares residual of the governed equations. To simplify our presenta-
tion we consider as our model problem the Helmholtz equation

−∆p− k2p = f in Ω, (3)

in a bounded domain Ω ⊂ R2 with a Lipschitz continuous and piecewise smooth boundary Γ
subjected to Dirichlet boundary condition

p = g on Γ = ∂Ω. (4)

The reminder of the paper is organized as follows. In Section 2 our model problem is pre-
sented in a mixed form and a stabilized dual mixed formulation in continuous spaces is pre-
sented. In Section 3 we review the classical dual hybrid mixed formulation. The stabilized dual
hybrid mixed formulation is proposed in Section 4. The finite element approximation of the
proposed dual hybrid mixed formulation is presented in Section 5. Numerical results are shown
in Section 6 and some concluding remarks are presented in Section 7.
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2 MIXED FORMULATION

Introducing the vector field
u = −∇p

we can rewrite the Helmholtz equation (3) in the mixed form

u +∇p = 0 in Ω

divu− k2p = f in Ω ,

which will be used as the starting point to construct stabilized mixed and hybrid finite element
approximations.

2.1 Dual mixed formulation

Defining the space V = L2(Ω) of scalar functions with the corresponding inner product

(p, q) =

∫

Ω

pqdΩ ∀p, q ∈ V (5)

and associated norm
‖p‖2 = (p, p) ∀p ∈ V, (6)

and the space W = H(div) of vector functions:

H(div) = {v ∈ [L2(Ω)]2, divv ∈ L2(Ω)} (7)

with inner product

(u,v)H(div) = (u,v) + (divu, divv) ∀u,v ∈ W (8)

and associated norm

‖u‖2
H(div) = (u,u) + (divu, divu) ∀u ∈ W (9)

we present the dual mixed formulation of our model problem as
Find [u, p] ∈ W × V such that

(u,v)− (p, divv)− (divu, q)− k2(p, q)− (f, q) +

∫

∂Ω

gv · nds = 0 ∀ [v, q] ∈ W × V (10)

Dual mixed problems have been usually approximated using Raviart-Thomas (RT) or Brezzi-
Douglas-Marini (BDM) spaces to get accurate approximations for the gradient of the pressure
field. Stability of these mixed finite element methods depends on the well known inf-sup condi-
tion which preclude many desirable combinations of velocity and pressure interpolations. Sta-
bilized mixed formulations have been successfully introduced to overcome these limitations.
See references [12, 13, 14, 16] on stabilized mixed formulations for Darcy flow.
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2.2 Stabilized dual mixed formulation

In [14] an unconditionally stable mixed formulation is proposed for Darcy flow with optimal
rates of convergence in H1(Ω) and L2(Ω) norms for same order C0 velocity and pressure ap-
proximations. Applied to the Helmholtz problem this formulation leads to the following weak
form:

Find [u, p] ∈ W ∩ [H1(Ω)]2 × V ∩H1(Ω) such that, for all [v, q] ∈ W × V ,

(u,v)− (p, divv)− (divu, q)− k2(p, q)− (f, q) +

∫

∂Ω

gv · nds+ (11)

δ1

k2
(divu− k2p− f, divv − k2q) + δ2(u +∇p,v +∇q) +

δ3

k2
(rotu, rotv) = 0 . (12)

Of course, we should not expect unconditional stability and optimal rates of convergence
for same order C0 finite element approximations of the above dual mixed formulation of the
Helmholtz problem, especially for heterogeneous media. Its stability will certainly be depen-
dent on the choice of the stabilization parameters δi, i = 1, 2, 3. An other limitation of this
formulation is the required C0 approximations for both velocity and pressure which is not ap-
plicable to heterogeneous media with discontinuous material properties. In the next section we
introduce hybrid formulations more appropriate to construct finite element approximations of
our model problem on heterogeneous media.

3 HYBRIDIZATION

Let
Th = {K} := union of all elements K

be a regular finite element mesh on the two dimension domain Ω. To introduce the hybrid
formulation we first consider equation u +∇p = 0, in the local weak form

(u +∇p,v)K =

∫

K
u · vdΩ−

∫

K
pdivvdΩ +

∫

∂K
pv · nds = 0,

defined on each element K using integration by parts. Considering the spaces

QK = {q ∈ L2(K) ∀K ∈ Th},
UK = {v ∈ L2(K)× L2(K), divv ∈ L2(K) ∀K ∈ Th},

of local functions defined on each element K and defining the forms

aK ([u, p] , [v, q]) = (u,v)K − (p, divv)K − (divu, q)K + k2(p, q)K,

fK([vh, qh]) = −(f, q)K − cK(p̄,v),

cK(p̄,v) =

∫

∂K
p̄v · nds,

for given p = p̄ on ∂K we can solve the local problems:
For each K ∈ Th, find [u, p] ∈ UK ×QK, such that

aK ([u, p] , [v, q]) = fK([v, q]) ∀ [v, q] ∈ UK ×QK.

Local Raviart-Thomas or BDM finite element approximations can be used to solve these lo-
cal problems on each element K. Following the classical hybrid formulation, an approximation
for the pressure trace p = p̄ on ∂K can be obtained by solving a global problem associated with
the dual hybrid mixed formulation, as presented in the next section.
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3.1 Dual Hybrid mixed formulation

To present the hybrid formulation some additional notations and definitions are need. Let

Eh = {e : e is an edge of K for all K ∈ Th} (13)

denote the set of all edges of all elements K of the mesh Th,

E0
h = {e ∈ Eh e is an interior edge} (14)

the set of interior edges, and
E∂

h = Eh ∩ ∂Ω, (15)

the set of edges of Eh on the boundary of Ω.
Following the commonly adopted notation on DG (Discontinuous Galerkin) formulations,

we consider the unit normal vectors n1 abd n2 on e pointing exterior toK1 andK2, respectively.
For a scalar function ϕ, piecewise smooth on Th, with ϕ = ϕ|K we define on each interior edge
e

{ϕ} =
1

2
(ϕ1 + ϕ2), JϕK = ϕ1n1 + ϕ2n2 on e ∈ E0 (16)

and for a vector function v

{v} =
1

2
(v1 + v2), JvK = v1 · n1 + v2 · n2 on e ∈ E0. (17)

Defining the function spaces M = {µ ∈ L2(e) ∀e ∈ E0
h}, U =

∏
K UK, Q =

∏
K QK and

the bilinear and linear forms:

a ([u, p] , [v, q]) =
∑
K

aK ([u, p] , [v, q]) ∀ [u, p] , [v, q] ∈ U ×Q

c(µ,v) =
∑
K

cK(µ,v) =

∫

E0

µJvKds ∀ µ ∈ M, ∀v ∈ U

f([v, q]) =
∑
K

(f, q)−
∫

E∂
h

gv · nds ∀v ∈ U, ∀q ∈ Q

the dual hybrid formulation consists in:
Find [u, p] ∈ U ×Q and the Lagrange multiplier λ ∈ M , such that

a ([u, p] , [v, q]) + c(λ,v) = f([v, q]), ∀ [v, q] ∈ U ×Q,

c(µ,u) = 0 ∀µ ∈ M,

with λ = p̄, the trace of the pressure p on E0
h and λ = g on E∂

k .

3.2 Recovering the dual mixed formulation

Considering that c(µ,u) = 0 ∀ µ ∈ M implies that JuK = 0 (continuity of the normal
component of the velocity field u), we note that the pair [u, p], solution of the above defined
dual hybrid mixed method, satisfies the dual mixed formulation

Find [u, p] ∈ U ∩H(div)×Q, such that

a ([u, p] , [v, q]) = f([v, q]) ∀ [v, q] ∈ U ∩H(div)×Q
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or, more explicitly
Find u ∈ W = U ∩H(div) and p ∈ V = Q such that

(u,v)− (p, divv) =

∫

∂Ω

gv · nds ∀ vh ∈ W

−(divu, q) = −(f, q) ∀ q ∈ V

which is the classical definition of the dual mixed formulation (Ravirat-Thomas) presented in
Section 2.1.

4 STABILIZATION

Adding to the dual mixed formulation least squares stabilization terms defined in each ele-
ment K and on the element boundaries we obtained the following residual form

a ([u, p] , [v, q]) + c(λ,v) + c(µ,u)− f([v, q]) +
∑
K

∫

∂K
β(λ− p)(µ− q)ds+

∑
K

(
δ1

k2
(divu− k2p− f, divv − k2q)K + δ2(u +∇p,v +∇q)K +

δ3

k2
(rotu, rotv)K

)
= 0

(18)

in which the added residual forms in the interior of the element, weighted by the stabilization
parameters δi, i = 1, 2, 3, are the same considered in the stabilized dual mixed formulation
presented Section 2.2 aiming at stabilizing the pair [u, p], while the residual form on the element
boundaries multiplied by β is introduced to stabilize the multiplier λ.

4.1 Stabilized dual hybrid mixed formulation

Collecting appropriately the residual terms in (18) corresponding to the pair [u, p] and the
multiplier λ, the stabilized dual hybrid mixed method can be presented as:

SDHM: Find [u, p] ∈ U ×Q and the Lagrange multiplier λ ∈ M such that

aδ ([u, p] , [v, q]) + c(λ,v) +
∑
K

∫

∂K
β(p− λ)qds = fδ([v, q]) ∀ [v, q] ∈ U ×Q (19)

c(µ,u) +
∑
K

∫

∂K
β(λ− p)µds = 0 ∀ µ ∈ M (20)

where

aδ ([uh, ph] , [vh, qh]) =
∑
K

aδ
K ([uh, ph] , [vh, qh]) ; fδ([v, q]) =

∑
K

f δ
K([v, q]) (21)

with

aδ
K ([uh, ph] , [vh, qh]) = aK ([u, p] , [v, q]) +

δ1

k2

(
divu− k2p, divv − k2q

)
K −

δ2

k2
(u +∇p,v +∇q)K +

δ1

k2
(rotu, rotv)K (22)

f δ
K([v, q]) = fK([v, q]) +

δ1

k2
(f, divv − k2q)K
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Considering the definitions (16) and (17) we restate problem SDHM as:
SDHM: Find [u, p] ∈ U ×Q and the Lagrange multiplier λ ∈ M such that ∀ [v, q] ∈ U ×Q

aδ ([u, p] , [v, q])+

∫

E0
h

λJvKds+

∫

E0
h

2β ({p} − λ) {q}ds+

∫

E0
h

β

2
JpK · JqKds = fδ([v, q]) (23)

∫

E0
h

2β ((λ− {p}) + JuK) µds = 0 ∀ µ ∈ M. (24)

In Section 5 finite element approximations will be constructed for this stabilized dual hybrid
formulation considering finite dimension polynomial spaces for all fields.

4.2 Hybridizable mixed DG method

Solving equation (24) for the multiplier λ we get

λ = {p} − 1

2β
JuK. (25)

Replacing (25) in (23) yields the following stabilized mixed discontinuous Galerkin method
SMDG: Find [u, p] such that

aδ ([u, p] , [v, q]) +

∫

E0
h

({p}JvK+ JuK{q}) ds+

+

∫

E0
h

β

2
JpK · JqKds−

∫

E0
h

1

2β
JuKJvKds = fδ([v, q]) ∀ [v, q] ∈ U ×Q (26)

Setting δi = 0, for i = 1, 2, 3, the above SMDG formulation recovers the LDG-H (Lo-
cal Discontinuous Galerkin - Hybridizable) method analyzed in [15] in the context of elliptic
problems.

5 FINITE ELEMENT APPROXIMATIONS

Let us consider the finite dimension spaces

Ql
h = {q ∈ Q : q|K ∈ Rl ∀K ∈ Th},

Um
h = {v ∈ U : v|K ∈ Rm ×Rm ∀K ∈ Th},

Mn
h = {µ ∈ M : µ|e ∈ Pn ∀e ∈ E0},

where Rl is the set of polynomial of degree less then or equal to l when K is a triangle or less
then or equal to l in each coordinate when K is a quadrilateral, and Pn is the set of polynomials
of degree less then or equal to n on each edge e.

We can now present a finite element approximation for the stabilized dual hybrid mixed
formulation introduced in Section 4.1 as:

SDHMh: Find [uh, ph] ∈ Um
h ×Ql

h and the Lagrange multiplier λh ∈ Mn
h such that

aδ ([uh, ph] , [vh, qh]) +

∫

E0
h

β

2
JphK · JqhKds

+

∫

E0
h

λhJvhKds +

∫

E0
h

2β ({ph} − λh) {qh}ds = fδ([vh, qh]) ∀ [vh, qh] ∈ Um
h ×Ql

h (27)
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∫

E0
h

2β ((λh − {ph}) + JuhK) µhds = 0 ∀ µh ∈ Mh. (28)

For n ≥ l and n ≥ m we can solve explicitly equation (28), for the multiplier λh, obtaining

λh = {ph} − 1

2β
JuhK, (29)

which when replaced in (23) yields the following hybridizable discontinuous Galerkin method
SMDGh : Find [uh, ph] ∈ Um

h ×Ql
h such that

aδ ([uh, ph] , [vh, qh]) +

∫

E0
h

({ph}JvhK+ JuhK{qh}) ds+

+

∫

E0
h

β

2
JphK · JqhKds−

∫

E0
h

1

2β
JuhKJvhKds = fδ([vh, qh]) ∀ [vh, qh] ∈ Uh ×Qh. (30)

Computationally, the best option to solve the systems of linear equations (28) and (29) is to
solve first (28) at element level to obtain [uh, ph] in terms of λh, replace [uh, ph] in (29) and
assemble a global system in λh only. After solving the global system in λh, the pair [uh, ph] is
computed by solving the following set of local problems defined at element level.

LPh : For given λh, find [uh, ph] ∈ Um
K ×Ql

K, at each element K, such that

aδ
K ([uh, ph] , [vh, qh]) +

∫

∂K
βphqhds =

f δ
K([vh, qh]) +

∫

∂K
βλhqhds−

∫

∂K
λhvh · nds ∀ [vh, qh] ∈ Um

K ×Ql
K, (31)

where Um
K = Rm ×Rm and Ql

K = Rl.
This strategy, typical of hybridized mixed finite element methods, will be adopted here in the

numerical experiments presented next.

6 NUMERICAL RESULTS

The parameters δi and β play an important role in the stability and accuracy of the proposed
dual hybrid mixed formulation. However, here we will not invest in finding their optimal values.
In all numerical results presented next we adopted the following choice:

δ1 = δ3 = −1; δ2 = 1; β =
1

he

;

with he denoting the length of the edge e of the element K. We have also adopted equal order
approximations for all fields, that is, l = m = n.

6.1 Homogeneous media

Initially we consider Helmholtz equation, with k2 = constant and f(x, y) = 0, subject
to Dirichlet boundary conditions such that the exact solution is a plane wave (real part only)
propagating in θ-direction:

w(x, y) = cos[k(x cos θ + y sin θ)].
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The objective is check the convergence of the proposed formulation. In this study we consider
θ = π/6, k = 30 and Ω = [0, 1] × [0, 1]. First we check the h-convergence of the stabilized
formulation for l = m = n = 2 and a sequence of 10×10, 20×20, 40×40 and 80×80 uniform
meshes. Figure 1 shows convergence results in L2(Ω) norm (left) and H1(Ω) seminorm (right)
for the pressure approximation ph of the stabilized dual hybrid formulation (pDH) compared to
the its interpolant (pI) and the local projection (pLP ), obtained by solving the local problems
LPh replacing λh (approximation of the lagrange multiplier) by λ (exact value). In Figure 1 we
observe pollution effects on both DH and LP solutions for coarse meshes, but these pollution
effects disappear with refinement. Figure 2 show results of convergence study using a fixed
10 × 10 uniform mesh and varying the degree of the polynomial approximations by setting
l = m = n = 2, 3, 4, 5, 6, 7 sequentially. We can see that highly accurate solutions are obtained
by increasing the order of the polynomial approximations (l-refinement). In this study, neq is
the the number of equation in the global system associated with the approximation of multiplier
λh.
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Figure 1: Convergence of the finite element approximations for the homogeneous problem with h-refinement.
Error in the L2-norm (left) and H1-seminorm (right). Stabilized dual hybrid mixed (DH) solution compared to the
local projection (LP) and the interpolant (I).

6.2 Heterogeneous media. Interface problem

We now solve Helmholtz equation in unite domain Ω = (−0.5, 0.5) × (−0.5, 0.5) with a
discontinuity in the wavenumber. We consider k = k1 for x < 0, k = k2 for x > 0 and impose
Dirichlet boundary conditions, weakly as presented in the stabilized dual mixed formulation,
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Figure 2: Convergence of the finite element approximations, with the polynomial degree l, for the homogeneous
Helmholtz problem. Error in the L2-norm (left) and H1-seminorm (right). Stabilized dual hybrid mixed (DH)
solution compared to the local projection (LP) and the interpolant (I).

such that the exact solution is given by

for x < 0 :

u(x, y) = exp[−ik1(x cos θ1 + y sin θ1)] + R exp[−ik1(−x cos θ1 + y sin θ1)] , (32)
for x > 0 :

u(x, y) = T exp[−ik2(x cos θ2 + y sin θ2)] , (33)
with :

R = (k1 cos θ1 − k2 cos θ2) / (k1 cos θ1 + k2 cos θ2) (34)
T = 2k1 cos θ1/ (k1 cos θ1 + k2 cos θ2) , (35)
k2 sin θ2 = k1 sin θ1. (36)

In this study we set k1 = 30, k2 = 20 and θ1 = π/6. Again, the same sequence of uniform
meshes used in the previous example is adopted in the h-convergence study for l = m = n = 2.
From Figure 3 we can see pollution effects even higher than those observe in previous example,
corresponding to the homogeneous Helmholtz problem, probably due to the an inappropriate
choice of the stabilization parameters. Much more accurate solutions are obtained by increasing
the degree of the polynomial approximations as shown in Figure 4 where l-convergence results
are presented for this heterogeneous problem using a fixed 10×10 uniform mesh and varying the
degree of the polynomial approximations by setting l = m = n = 2, 3, 4, 5, 6, 7 sequentially, as
in the previous study of the homogeneous Helmholtz problem. Finally, we present in Figure 5
a comparison of h-refinement and l-refinement convergence results. From 5 we clearly observe
that higher order are much more accurate than lower lower order polynomial approximations
for the the same number of degree of freedom (neq).
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Figure 3: Convergence of the finite element approximations for the heterogeneous problem with h-refinement.
Error in the L2-norm (left) and H1-seminorm (right). Stabilized dual hybrid mixed (DH) solution compared to the
local projection (LP) and the interpolant (I).
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Figure 4: Convergence of the finite element approximations, with the polynomial degree l, for the heterogeneous
Helmholtz problem. Error in the L2-norm (left) and H1-seminorm (right). Stabilized dual hybrid mixed (DH)
solution compared to the local projection (LP) and the interpolant (I).

7 CONCLUSIONS

Stabilized dual hybrid and mixed finite element methods are proposed for solving Helmholtz
problems in homogeneous or heterogeneous media using Galerkin and least square residual
of the governing equation. Local problems, in the velocity and pressure fields, are solved at
element level and these variables are eliminated in favor of the Lagrange multipliers, identified
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Figure 5: Convergence of the finite element approximations, with the polynomial degree l compared to h-
refinement, for the heterogeneous Helmholtz problem. Error in the L2-norm (left) and H1-seminorm (right).
Stabilized dual hybrid mixed (DH) solution and local projection (LP) corresponding to uniform meshes.

as the trace of the pressure on the element edges of the finite element mesh. A global system
is assembled involving only the degrees of freedom associated with the Lagrange multipliers.
Polynomial bases are adopted to approximate all fields. Numerical results are presented using
equal order approximations for all fields to illustrate the potential of the proposed formulation
to efficiently solve Helmholtz problems in homogeneous or heterogeneous media at medium
and high frequency regimes. Higher order polynomial approximations are shown to be much
more accurate than lower lower order polynomial approximations for the the same number of
global degree of freedom.
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