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Abstract. The goal of this study is to investigate seismic behaviour of existing R/C buildings 

designed and constructed in accordance with standards that do not meet current seismic code 

requirements. In these structures, not only flexure, but also shear and bond-slip deformation 

mechanisms need to be considered separately and in combination. To serve this goal, a finite 

element model developed previously by the writers for individual non-ductile beam-column 

members is extended herein in order to cope with inelastic seismic analysis of complete pla-

nar R/C frames. The proposed finite element is able to capture gradual spread of inelastic 

flexural and shear deformations as well as their interaction in the end regions of R/C mem-

bers. Additionally, it is capable of predicting shear failures caused by degradation of shear 

strength in the plastic hinges of R/C elements, as well as pullout failures caused by inade-

quate anchorage of the reinforcement in the joint regions. The finite element is fully imple-

mented in the general inelastic finite element code IDARC2D. Then, the numerical model is 

calibrated against experimental data coming from three experimental plane frame structures 

with non-ductile detailing. It is shown that, in all cases, satisfactory correlation is established 

between the model predictions and the experimental evidence. The analytical results are in 

agreement with the experimental values in terms of stiffness, strength and displacement de-

mands. The failure mechanism is predicted accurately for all experimental specimens. Finally, 

parametric studies illustrate the significance of each deformation mechanism in the seismic 

response of the experimental frames. It is concluded, that all deformation mechanisms, as 

well as their interaction, should be taken into consideration in order to predict reliably seis-

mic damage of R/C structures with substandard detailing. 
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1 INTRODUCTION 

The vast majority of existing reinforced concrete (R/C) buildings was constructed prior to 

the development of modern seismic code provisions. The deficient design makes their struc-

tural elements susceptible to axial-flexural, shear or bond types of failure, which subsequently 

may lead to severe damage or collapse of the building. 

Current research on seismic assessment of R/C structures is focused primarily on flexural 

response. Deformations caused by shear and bond-slip related mechanisms are either ignored 

or lumped into flexure. However, the necessary assumptions inherent to both of these ap-

proaches may drive the assessment procedure to erroneous results. This is especially the case 

for ‘old type’ existing R/C structures, where shear and bond types of failure cannot be pre-

cluded, due to the absence of ductile detailing and capacity design. 

A significant number of analytical efforts have placed emphasis on seismic response of 

non-ductile R/C buildings. Among them, several studies [1-3] have demonstrated the neces-

sity for treating individual deformation components (i.e. flexure, shear, anchorage bond-slip) 

in a distinct manner.  

In this study, a finite element developed previously by the writers [4-7] for examining ine-

lastic response of individual R/C beam-column members is extended herein to deal with 

seismic damage analysis of complete R/C frames with substandard detailing. The novel fea-

ture of the proposed finite element is the fact that it is capable of modelling gradual spread of 

inelastic flexural and shear deformations as well as their interaction in the end regions of R/C 

members. Furthermore, it has the ability of predicting shear failures caused by degradation of 

shear strength in the plastic hinges of R/C elements, as well as pullout failures caused by in-

adequate anchorage of the reinforcement in the joint regions. 

The paper starts with a brief overview of the finite element model. Emphasis is placed on 

the abilities of the numerical model to predict brittle types of local failure (i.e. shear and 

bond). Moreover, the necessary alterations to the nonlinear solution algorithms are discussed 

in order for the proposed beam-column element to be fully implemented in a general inelastic 

damage analysis finite element code. 

Then, with the aim to verify the capabilities of the proposed numerical model to reproduce 

all of the aforementioned phenomena strongly related to R/C buildings with deficient configu-

ration, the proposed finite element is applied to the analysis of three well documented R/C 

frame specimens subjected to cyclic or seismic loading. Analytical results are compared with 

experimental recordings. It is shown that the numerical model is able to capture sufficiently 

experimental response in terms of strength, stiffness and displacements and to predict reliably 

the prevailing mode of failure for each specimen.  

Finally, parametric analyses illustrate the relative importance of each deformation mecha-

nism in the response of the examined specimens in the elastic and inelastic range. It is proven 

that proper modelling of all flexibility components, as well as their interaction, is a substantial 

prerequisite for reliable predictions of seismic response of R/C frames built with inadequate 

ductility capacity. 

 

2 FINITE ELEMENT MODEL  

The proposed, member-type, finite element is based on the flexibility method and belongs 

to the class of phenomenological models. It consists of three sub-elements representing flex-

ural, shear, and anchorage bond-slip response (Fig. 1). The total flexibility of the finite ele-

ment is calculated as the sum of the flexibilities of its sub-elements and can be inverted to 

produce the element stiffness matrix. Hence, it is 
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Where, Fb, F
fl
, F

sh
, F

sl
 are the basic total, flexural, shear and anchorage slip, respectively, 

tangent flexibility matrices. Kb is the basic tangent stiffness matrix of the element, connecting 

incremental moments ∆ΜΑ, ∆ΜΒ and rotations ∆θΑ, ∆θΒ at the element flexible ends A and B 

respectively, with the following equation 
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Figure 1: Proposed finite element model: a) geometry of R/C member; b) beam-column finite element with 

rigid arms; c) flexural sub-element; d) shear sub-element, e) anchorage bond-slip sub-element. 

 

The local stiffness matrix Ke, relating displacements and forces at the element joints, is 

easily determined following standard structural analysis procedures. The components of the 

examined finite element, as well as their interaction, are described in the following sections. 

2.1 Flexural Sub-Element 

This sub-element (Fig. 1c) is used for modelling flexural behaviour of an R/C member be-

fore and after yielding of the longitudinal reinforcement. It consists of a set of rules governing 

the hysteretic moment-curvature (M-φ) response of the member end sections and a spread ine-

lasticity model describing flexural stiffness distribution along the entire member. 

M-φ hysteretic model (Fig. 2) is composed by the skeleton curve and a set of rules deter-

mining response during loading, unloading and reloading. M-φ envelope curve is derived by 

section analysis and appropriate bilinearization. Loading response is assumed to follow the 

bilinear envelope curve. Unloading is based on the respective Sivaselvan & Reinhorn [8] hys-
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teretic rule adjusted for mild stiffness degradation. Reloading aims at the point with previous 

maximum excursion in the opposite direction. 

 
 

Figure 2: M-φ hysteretic model 

 

In order to capture variation of section flexural stiffness along the concrete member, a 

gradual spread inelasticity model is assigned [9]. The stiffness distribution along the member 

is assumed to have one of the shapes shown in Fig. 3, where L is the length of the member; 

EIA and EIB are the current flexural rigidities of the sections at the ends A and B, respectively; 

EIo is the stiffness at the intermediate part of the element; αA and αB are the yield penetration 

coefficients. The flexural rigidities EIA and EIB are determined from the M-φ hysteretic rela-

tionship of the corresponding end sections. The yield penetration coefficients specify the pro-

portion of the element where the acting moment is greater than the end-section yield moment. 

These coefficients are first calculated for the current moment distribution and then compared 

with the previous maximum penetration lengths.  

Stiffness distribution inside the inelastic zone depends on the loading state of the end sec-

tion hysteretic response. In particular, Fig. 4 illustrates hysteretic response of four discrete 

sections located inside the plastic hinge region. It can be seen that when all sections remain in 

the strain hardening branch (loading state), flexural stiffness remains constant in the inelastic 

zone. However, in the unloading and reloading state, stiffness varies from a minimum value 

(corresponding to the end section) to a maximum value, which is equal to EIo.  Hence, under 

the general assumption that the loading state of all sections of the yielded region remains the 

same, it may be considered that when M-φ end section hysteretic response is on the strain 

hardening branch, stiffness distribution remains uniform in the inelastic zone. In the case 

where end-section M-φ behaviour is in the unloading or reloading state, it is assumed that the 

stiffness varies linearly from EIA (EIB) to EIo.  

Having established the stiffness distribution along the R/C member at each step of the 

analysis, the coefficients of the flexibility matrix of the flexural sub-element can be derived 

from the general Eq. (4) and Table 1, determined by applying the principle of virtual work. 
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Figure 3: Element a) bending moment diagram; b) stiffness distribution when ends A and B are in the loading 

state; c) stiffness distribution when ends A and B are in the unloading or reloading state; d) stiffness distribution 

when end A is in the loading and end B is in the unloading or reloading state; e) stiffness distribution when end 

A is in the unloading or reloading state and end B is in the loading state. 

 
Figure 4: M-φ hysteretic response of four individual sections inside the plastic hinge region. 

 

Flexibility matrix coefficient Stiffness distribution co cA cB 

f11 Fig. 2b 4 12αΑ -12αΑ
2+4αΑ

3 4αΒ
3 

f12 Fig. 2b 4 4αΑ
3 12αΒ -12αΒ

2+4αΒ
3 

f22 Fig. 2b -2 4αΑ
3-6αΑ

2 4αΒ
3-6αΒ

2 

f11 Fig. 2c 4 6αΑ -4αΑ
2+αΑ

3 αΒ
3 

f12 Fig. 2c 4 αΑ
3 6αΒ -4αΒ

2+αΒ
3 

f22 Fig. 2c -2 αΑ
3-2αΑ

2 αΒ
3-2αΒ

2 

f11 Fig. 2d 4 12αΑ -12αΑ
2+4αΑ

3 αΒ
3 
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2 

f11 Fig. 2e 4 6αΑ -4αΑ
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3 4αΒ
3 

f12 Fig. 2e 4 αΑ
3 12αΒ -12αΒ

2+4αΒ
3 

f22 Fig. 2e -2 αΑ
3-2αΑ

2 4αΒ
3-6αΒ

2 
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2.2 Shear Sub-Element 

The shear sub-element represents hysteretic shear behaviour of the R/C member prior and 

subsequent to shear cracking, flexural yielding and yielding of the transverse reinforcement. 

This sub-element has been designed in a similar way to the flexural element described above. 

It consists of a hysteretic model determining V-γ (shear force vs. shear distortion) behaviour 

of the member ends and/or intermediate regions and a shear spread-plasticity model determin-

ing distribution of shear stiffness along the R/C member.  

Shear hysteresis is determined by the V-γ skeleton curve and a set of rules describing re-

sponse during unloading and reloading. The primary curve is first calculated without consid-

ering shear-flexure interaction effect. This initial envelope curve (Fig. 5) is valid for 

modelling shear behaviour outside the plastic hinge region for members that have yielded in 

flexure or the response of the entire element for members, where the longitudinal reinforce-

ment remains in the elastic range. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Initial V-γ primary curve 
 

The V-γ initial primary curve consists of four branches (Fig. 5), but only three different 

slopes, as explained later on. The first branch connects the origin and the shear cracking point, 

which is defined as the point where the nominal principal tensile stress exceeds the mean ten-

sile strength of concrete [10]. The second and third branches of the initial primary curve have 

the same slope and connect the shear cracking point to the point corresponding to the onset of 

yielding of transverse reinforcement, or else the point of attainment of maximum shear 

strength (γst, Vuo). The second and third branches are separated at the point corresponding to 

flexural yielding (γy,Vy). This approach is adopted in order to distinguish hysteretic shear be-

haviour before and after flexural yielding.  

Shear strength Vuo is calculated by the Priestley et al. [11] approach for curvature ductility 

demand µφ≤3 (i.e. no strength degradation). Shear strain γst is evaluated by the truss analogy 

approach and two modification factors for the member aspect ratio and normalized axial load, 

as proposed by the writers of this paper [5,7] on the basis of calibration studies with the ex-

perimental evidence. 

The fourth branch is almost horizontal and describes shear response after yielding of trans-

verse reinforcement and until onset of shear failure, corresponding to shear distortion γu. On 

the basis of experimental results coming from 25 R/C specimens failing in shear mode, the 

writers [5,7] have developed an empirical formula correlating γu with the level of the applied 

axial load, the amount of transverse reinforcement and the member shear-span. Conserva-

tively, it is assumed in this study that shear failure coincides with onset of significant lateral 

strength degradation. 

It is well documented [10-12] that shear strength degrades due to disintegration of the plas-

tic hinge zones caused by inelastic flexural deformations. Hence, an R/C member originally 
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designed with shear capacity higher than the one corresponding to flexural yielding, may 

eventually experience a brittle shear failure. Additionally, it has been shown experimentally 

[13,14] that shear distortions in the plastic hinge regions may increase rapidly (shear yielding 

effect) after flexural yielding, despite the fact that shear force demand remains almost con-

stant as it is controlled by flexural yielding. 

The writers have developed a methodology according to which both of these phenomena 

can be modelled simultaneously and in a rational manner. Following this approach, effective 

tangent shear stiffness GAeff after flexural yielding is evaluated as a function of µφ. This stiff-

ness determines modified V-γ envelope curve inside the plastic hinge regions.  

Fig. 6 illustrates variation of capacity of shear resisting mechanisms (concrete Vc and truss 

Vs) in the plastic hinge region of a single R/C column following the Priestley et al. [11] shear 

strength approach (for clarity, contribution of axial load is lumped into Vc). It can be seen that 

after µφ>3, Vs increases to accommodate both additional shear demand ∆V and additional de-

terioration of the concrete resisting mechanism ∆degVc. 

Vcr

Vy

V

µφ

1 3 157

Vc

Vs

 
 

Figure 6: Variation of shear resisting mechanisms with µφ in plastic hinges 
  

Generally, after shear cracking, shear strain increment ∆γs is related to the additional shear 

force resisted by the truss mechanism ∆Vs by Eq. (5), where GA1 is the cracked stiffness of 

the initial primary curve determined by the truss analogy approach. 

 
1GA

Vs
s

∆
=∆γ  (5) 

After flexural yielding, ∆Vs can be considered as the sum of ∆V and ∆degVc. Hence 

 cs VVV deg∆+∆=∆  (6)   

If GAeff is the tangent stiffness of the shear primary curve including shear-flexure interac-

tion effect, it yields the same increment of shear distortions ∆γs only for the applied shear 

force increment ∆V (without ∆degVc), as illustrated in Fig. 7. Consequently 

 s
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∆
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Figure 7: Definition of GAeff 

  

By joining Eqs (5-7), Eq. (8) is derived for determining stiffness of the shear envelope 

curve after yielding in flexure. This formula shows that GAeff can only be either equal or 
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smaller than GA1. Equality holds only when the degradation of the concrete shear resisting 

mechanisms is negligible. 

 1
deg

eff

c

V
GA GA

V V

∆
= ⋅
∆ + ∆

 (8) 

 After determination of the initial and modified V-γ envelope curves, shear hysteretic re-

sponse has to be established. This behaviour is characterized by significant stiffness degrada-

tion and pinching effect. In this study, the empirical model by Ozcebe and Saatcioglu (Fig. 8) 

is adopted for this response, properly modified by the writers [4] in order to be incorporated in 

the general inelastic structural analysis framework. 

 

 
Figure 8: Shear hysteretic model 

 

 
Figure 9: Spread inelasticity models: a) moment diagram; b) shear diagram; c) flexural model; d) shear model 

 

Furthermore, following flexural deformations, inelastic shear strains tend to spread gradu-

ally from the ends to the member mid-span as the length of inelastic zones increases. The 

writers developed a shear gradual spread inelasticity model capable of monitoring variation of 
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shear stiffness along the concrete member throughout the response. This is achieved by a dual 

coupling procedure between the flexural and shear sub-element. According to this procedure, 

the lengths of the inelastic zones αAs and αBs of the shear sub-element are defined by the re-

spective ones of the flexural sub-element (Fig. 9). In addition, the stiffness of these zones 

GAA and GAB are determined by the modified V-γ envelope curves calculated for the curva-

ture ductility demands of the respective ends of the flexural member model. Shear stiffness 

GAM of the intermediate part of the member is determined by the initial V-γ primary curve, 

without considering shear-flexure interaction effect. 

After determining the distribution of GA along the R/C member at each step of the analysis, 

the coefficients of the flexibility matrix of the shear sub-element are given by Eq. (9).  

 
1sh As As Bs Bs

ij

A M B

a a a a
f

GA L GA L GA L

− −
= + +

⋅ ⋅ ⋅
 (i,j=1,2) (9) 

 

2.3 Bond-Slip Sub-Element 

The bond-slip sub-element accounts for the fixed-end rotations (θslip) which arise at the in-

terfaces of adjacent R/C members due to bond deterioration and slippage of the reinforcement 

in the joint regions. The proposed model consists of two concentrated rotational springs lo-

cated at the member-ends. The two (uncoupled) springs are connected by an infinitely rigid 

bar (Fig. 1e). Following this formulation, the coefficients of the bond-slip flexibility matrix F
sl
 

are given simply by Eq. (10), where fA
sl

 and fB
sl
 are the flexibilities of the concentrated rota-

tional springs at the ends A and B respectively. These flexibilities depend on the envelope 

curve and the model used to represent hysteretic behaviour of each rotational spring. 

 
0

0

sl

sl A

sl

B

f
F

f

 
=  
 

 (10) 

The M-θslip skeleton curve is derived on the basis of a simplified procedure [15,16] assum-

ing uniform bond stress along different segments of the anchored rebar (Fig. 10). These seg-

ments are the elastic region Le, the strain strain-hardening region Lsh and the cone penetration 

zone Lpc. The average elastic bond strength τbe of ACI 408 [17] is adopted here for the elastic 

region, while the frictional bond τbf of the C.E.B. Model Code [18] is assumed to apply within 

the strain-hardening region. In the cone penetration zone, it is assumed that the acting bond is 

negligible. 

For various levels of the applied end moment and using the results of the M-φ analysis, the 

stress σs and strain εs of the reinforcing bar at the loaded end are first determined. Then, by 

equilibrium and applying the assumed bond distribution, variation of reinforcing bar stress 

σs(x) along the embedment length is defined as shown in Fig. 10a, where σy is the yield 

strength of steel and σh is the stress at the end of the straight part of the rebar anchorage. Later, 

by assigning an appropriate constitutive material law [19], strain distribution εs(x) is deter-

mined, as shown in Fig. 10b, where εy and εsh are the steel strains at the onset of yielding and 

strain hardening and εh is the steel strain at the end of the straight part of the anchorage. It is 

important to note that nonlinearity of strain hardening material law should be taken into ac-

count because it influences significantly the final results [5]. 

 Once εs(x) is determined, slip of the reinforcement δslip can be calculated by integration 

along the anchored length of the bar. In the case of hooked bars, local slip of the hook should 

be added. This can be evaluated by the force acting on the hook Ph=Ab·σh, where Ab is the 

area of the anchored bar, and an appropriate hook force-hook slip relationship [20]. 



Panagiotis E. Mergos, Andreas J. Kappos 

 10 

Upon determination of δslip, the respective fixed-end rotation can be calculated by Eq. (11), 

where (d-xc) is the distance between the bar and the neutral axis.  

 
slip

slip

cd x

δ
θ =

−
 (11) 

The envelope M-θslip curve constructed by the various points of the afore-described meth-

odology is then idealized by a bilinear relationship for the purposes of analysis. 

 

Figure 10: Reinforcing bar with 90
o
 hook embedded in concrete; a) stress distribution; b) strain distribution; c) 

bond distribution. 

 

In R/C structures with substandard detailing, anchorage-bond failures cannot be precluded. 

In case of straight anchorages, bond failure takes place when the anchorage length demand 

Ldem reaches the available straight embedment length Lstraight. This occurs for σs>σy, when Eq. 

(12) holds, where db represents bar diameter. If σs exceeds the one corresponding to flexural 

failure, then bond is not the critical mode of failure for the examined anchorage. 
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For very short embedment lengths, where bond failure takes place for σs<σy, experimental 

evidence [17] shows that the assumption of uniform bond strength τbe underestimates signifi-

cantly the available anchorage capacity. To avoid over-conservative solutions, it is assumed in 

this study that actual available bond force Td is derived from linear interpolation between the 

capacity bond forces corresponding to two well documented available anchorage bond lengths 

(Fig. 11). The first bond strength Td1 refers to Lstraight=5db, where the ultimate bond stress τbu 

of the local bond-slip constitutive law (C.E.B. Model Code [18]) is assumed to develop uni-

formly. Thus  

 1 5d b buT d u τ= ⋅ ⋅ ⋅  (13) 
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Where, u is the bar perimeter. The second bond strength Td2=Ab·σy refers to Lstraight=ld, 

where ld is the development length (Eq. 14) corresponding to yielding of the reinforcement. 

Along this length, uniform bond strength τbe is considered. 

 
be

by

d

d
l

τ
σ
⋅

⋅
=

4
 (14) 

 
Figure 11: Determination of available straight anchorage bond strength for very short embedment lengths 

 

In the case of deficient end hooks, anchorage failure may be assumed to develop, when the 

force acting on the hook reaches ultimate hook capacity Phu. Depending on the range of σs and 

the available straight anchorage length Lstraight, Eq. (15) holds for determining σs, where 

Lsh=(σs-σy) ·db/(4· τbf) for σs>σy. 
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After determining M-θslip bilinear skeleton curve, bond-slip hysteretic behaviour (Fig. 12) 

is modelled following the suggestions of Saatcioglu and Alsiwat [21]. 

 
Figure 12: M-θslip hysteretic model. 

3 NUMERICAL IMPLEMENTATION 

The finite element model, described above, requires additional modifications to the nonlin-

ear analysis solution algorithms in order to be implemented with consistency. It is known that 

during nonlinear analysis the following equation is solved in incremental form. 

 Κ·∆U=∆F (16) 
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crements. The element stiffness matrices Ke are first calculated at the element level and later 

assembled into K.  

In the case of dynamic analysis, the equivalent dynamic stiffness and external load matri-

ces must be formed [22]. The solution of the incremental system is carried out using the un-

conditionally stable constant-average acceleration Newmark-Beta algorithm [23]. Viscous 

damping matrix is calculated by assigning the Rayleigh damping model with circular frequen-

cies corresponding to the first and second mode of vibration. 

The solution is performed assuming that the properties of the structure do not change dur-

ing the analysis step. Since the stiffness of some elements is likely to change during the step t, 

the new configuration at t+∆t may not satisfy equilibrium. If ∆Fln is the force increment vec-

tor arising from the assumption of constant stiffness during ∆t and ∆Fnl is the force increment 

vector determined by the element nonlinear hysteretic laws, then an unbalanced force vector 

∆Fub arises, given by the following equation 

 ∆Fub= ∆Fln- ∆Fnl (17) 

Typically, in the nonlinear analysis scheme, this issue is resolved by applying the one step 

unbalanced force correction method [22,24]. According to this technique, the unbalanced 

force vector is subtracted from the right part of Eq. (16) at the next time step of analysis. De-

spite the fact that this procedure minimizes computational effort in nonlinear analysis, it can-

not be applied with consistency for finite elements composed by different sub-elements 

connected in series. 

Fig. (13) presents determination of unbalanced forces produced by two different hysteretic 

laws (F-v1 and F-v2), which are connected in series. The two hysteretic relationships have dif-

ferent elastic (kT1 and kT2) and post-elastic stiffness (r1·kT1 and r2·kT2). It can be easily ex-

tracted that for the same force increment ∆Fln the restoring force increments ∆Fnl1 and ∆Fnl2 

and consequently unbalanced forces ∆Fub1 and ∆Fub2 become different, resulting in loss of 

member equilibrium. 

 
Figure 13: Unbalanced forces for two hysteretic relationships connected in series 

 

To overcome this problem, the ‘event to event’ solution strategy [25] is adopted herein. 

This method is enhanced to cope with the finite element model proposed in this study. In ac-

cordance with this procedure, the nonlinear response of the structure is subdivided into subse-

quent events, which mark the change of stiffness of the entire structure. Between these events, 

linear behaviour is considered. To achieve this goal, each step is divided (when required) into 

sufficient number of sub-steps, until no event takes place during the last sub-step. For the fi-

nite element developed herein, as an event is prescribed every change in stiffness of all hys-

teretic responses of all three sub-elements of each beam-column model. 
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If the incremental load vector ∆F yields the deformation increment ∆vmn for the hysteretic 

response n of the element m, assuming constant stiffness, then the next event e force scale 

factor λmn corresponding to this hysteretic response is determined by 

 








∆
−

=
mn

mnmne
mn

v

vv
,1minλ  (18) 

In Eq. (18), vmne is the deformation marking this event and vmn is the same deformation at 

the beginning of the loading step. It is obvious, that the immediate next event for the entire 

structure will correspond to the minimum value λmin of all λmn. After calculating λmin, the solu-

tion algorithm implemented to each nonlinear analysis step is presented in Fig. 14. 

 
Figure 14: Event to event solution algorithm 

 

 
Figure 15: Shear-flexure interaction implementation algorithm 

 

Additionally, following the procedure adopted in this study for determining tangent shear 

stiffness GAeff after flexural yielding when accounting for shear-flexure interaction effect, it is 

evident from Eq. (8), that GAeff becomes a function of the element shear force increment ∆V. 
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But if it is to be applied in the analytical procedure, ∆V will be influenced by GAeff as well, 

since the latter will affect the flexibility matrix of the element, as given by Eqs. (1) and (9). 

To resolve this issue, an iterative analytical scheme, applied in the respective load step of the 

nonlinear analysis, is proposed herein, as detailed in the algorithm shown in Fig. 15. 

Applying this procedure, it was found that numerical convergence is almost immediate. 

The number of iterations may increase as the influence of shear deformations on element 

flexibility enhances, but the additional computational cost required is justified by the signifi-

cance of calculating accurately shear response in this case. 

 

4 VALIDATION OF THE PROPOSED MODEL  

The numerical model described above is implemented in the general finite element code 

IDARC2D developed at the State University of New York at Buffalo [22]. Then, it is vali-

dated against experimental results coming from three well documented R/C frame specimens 

with substandard detailing.  

In addition, parametric analyses reveal the necessity of incorporating each deformation 

mechanism in seismic assessment of ‘old type’ R/C structures in the linear and nonlinear 

range of response. To this puropose, each frame specimen is examined using four different 

beam-column models. The F model simulates only member flexural response. The FB model 

incorporates flexural and anchorage bond-slip response, while the FS one applies flexural and 

shear flexibility. Finally, the FSB model, which is the one proposed in this study, simulates all 

deformation mechanisms, as well as their interaction. 

4.1 Frame specimen Duong et al. (2007) [26] 

A single-span, two-storey, shear critical R/C frame with a fixed base condition was con-

structed and tested in the facilities at University of Toronto. This test frame was 2:3 in scale 

and stood approximately 4.6m tall and 2.3m wide. Beams and columns had dimensions 

300mmX400mm. Frame reinforcement layout is depicted in Fig. 16 as well as cross-sections 

detailing. The average concrete compressive strength at the time of the test was 43MPa. No. 

10, No. 20 and US No. 3 were used in the specimen, with yield strengths of 455, 447 and 

506MPa respectively. Further information regarding material characteristics can be found in 

[26]. 

An axial load of 420kN was applied to the top of each column and maintained in a force-

controlled manner. Lateral action was applied only at the top level of the frame. Initially, the 

specimen was subjected to a forward lateral drift of about 1.0% (44mm) by which point sig-

nificant shear damage had occurred in the beam of the first storey and failure appeared immi-

nent. Then, the specimen was unloaded and afterwards a reverse load was applied until the 

frame reached the same displacement as in forward cycle. Finally, the specimen was again 

unloaded until approximately zero lateral force. 

Fig. 17 presents the analytical finite element model used for the analysis of the frame under 

examination. It solely consists of six beam column elements assuring high computational effi-

ciency. Frame joints are modelled via rigid arms at the ends of each member. Columns are 

assumed to be fixed into the foundation beam. 

Initially and in order to investigate specimen capacity, pushover analyses are conducted for 

all finite element model types (F, FB, FS, FSB). Fig. 18 illustrates the lateral force-lateral top 

displacement curves obtained. It is clear that considering only flexural deformations leads to 

significant overestimation of frame stiffness, strength and displacement capacity. Incorporat-

ing fixed end rotations arising from anchorage bond-slip in model FB, reduces substantially 
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the predicted initial frame stiffness. However, since no shear failure can be predicted, dis-

placement capacity is grossly overestimated. Ultimate lateral strength capacity almost reaches 

the respective one coming from the F model. The FS analytical model predicts adequately ini-

tial frame stiffness. Nevertheless, since fixed-end rotations are not included, the model under-

estimates the level of lateral displacement at which shear failure is initiated (35mm instead of 

44.7mm).  

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

Figure 16: Duong et al. (2007) frame reinforcement layout and cross-section detailing 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 17: Duong et al. (2007) frame finite element model 
 

The complete FSB model follows closely experimental response. Very small underestima-

tion of initial stiffness may be attributed to the fact that the flexural pre-cracking response is 

not modelled in this study. The analytical model predicts accurately the lateral displacement 

corresponding to onset of shear failure (45mm instead of 44.7mm). Lateral strength capacity 

is slightly overestimated (about 10%).  

For the same model, if degradation of shear strength with flexural demand is neglected, 

then displacement capacity becomes 159mm. On the contrary, if shear strength is assumed 

from the beginning of the analysis equal to its minimum value (corresponding to µφ≥15), then 

displacement capacity drops to 10mm. It is recalled that the latter approach is the one adopted 

by modern seismic codes. 
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Figure 18: Pushover curves for Duong et al. (2007) frame specimen 

 

Fig. 19 illustrates the modes of failure predicted by all analytical models at the end of 

pushover analysis. It is shown that while the models including inelastic shear effect (FS and 

FSB) predict the experimental mode of failure, which is the development of shear failure at 

the first-storey beam after flexural yielding, the other two models foresee erroneously a flex-

ural failure of the same beam. 

Fig. 20 compares the experimental and analytical base shear vs. top displacement response 

derived by the analytical models F, FB and FSB. As explained before, FS model predicted a 

premature shear failure and analysis had to stop prior to unloading response. It can be seen 

that the FSB analytical model correlates well with the experimental evidence in the whole 

range of response. Residual displacement after first unloading is estimated 13.5mm instead of 

10.8mm. At the end of loading in the negative direction lateral frame strength is again slightly 

overestimated (approx. 10%). During unloading in the negative direction, initial frame stiff-

ness is underestimated, but as an average in the whole unloading range stiffness is calculated 

satisfactorily. Hence, residual displacement after second unloading is found equal to 10.5mm 

opposed to 7.5mm. The analytical models F, FB overestimate significantly frame lateral stiff-

ness and strength yielding higher estimates regarding total energy dissipated by the specific 

specimen. 

 

 

 

 

 

 

 

 

   

 
 

Figure 19: Predicted modes of failure for Duong et al. (2007) frame specimen by pushover analysis with a) F and 

FB; b) FS and FSB analytical model.  

 

The hysteretic responses of the shear critical first storey beam produced by the FSB ana-

lytical model are presented in Fig. 21. Only one end-section is shown, since anti-symmetric 

response was predicted for this member. It can be inferred by this figure that the specific end-

section yields first in positive bending developing high curvature ductility demand. Due to 

shear-flexure interaction effect, shear strains inside plastic hinge increase more rapidly than 

a) bb) 
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outside plastic hinge region. This increase is followed by yielding of the transverse rein-

forcement, which differentiates substantially shear response inside and outside the inelastic 

region. At peak response, maximum shear strain is 1.8% and 0.7% in the yielded and non-

yielded part of the member respectively. In the negative direction, the analytical model does 

not predict yielding of the transverse reinforcement, as observed experimentally. This is due 

to the fact that µφ demand is not calculated to be higher than 3 and shear-flexure interaction 

effect is not triggered according to [11]. Hence, shear strains inside and outside plastic hinge 

region are estimated to be equal. 
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Figure 20: Pushover curves for Duong et al. (2007) frame specimen 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 21: Duong et al. (2009) first storey beam hysteretic responses a) end-section M-φ; b) V-γ inside plastic 

hinge region; c) V-γ outside plastic hinge region. 

 

4.2 Frame specimen 1 by Elwood & Moehle (2008) [27] 

The specific half-scale specimen was constructed and tested on the shaking table at the 

University of California, Berkeley. It comprised three columns interconnected at the top by a 

1.5m wide beam and supported at the bottom on footings (Fig. 22). The columns supported a 

total mass of 31t. To represent R/C columns typical of 1960s construction in the western 

United States, the central column was constructed with light transverse reinforcement having 

90
o
 hooks (Fig. 22). The outside columns were detailed with closely spaced spiral reinforce-

ment to ensure ductile response and to provide support for gravity loads after shear failure of 

the central column. The specimen was subjected to one horizontal component of the ground 

a) b) 

c) 
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motion recorded at Viña del Mar during the 1985 Chile earthquake (SE32 component). The 

normalized central column axial load was 0.10. During testing, the central column of speci-

men 1 experienced a loss of lateral load capacity, apparently due to shear failure [27]. In Fig. 

23, the finite element model applied for this analytical study is depicted. Its simplicity secures 

maximum computational efficiency. In the following, shear strength coming from transverse 

reinforcement of the central column is reduced to the half due to its deficient anchorage. 
 

 

 

 

 

 

 

 

 
Figure 22: Elwood & Moehle (2008) frame reinforcement layout and cross-section detailing 

 

Initially, modal response analyses were conducted including all four finite element models. 

Table 1 summarizes the vibration periods T estimated. The smallest period comes from the 

stiffest F model, which ignores shear and bond flexibility. Anchorage slip lengthens signifi-

cantly the vibration period from 0.28sec to 0.33sec. On the contrary, shear deformations have 

minor effect on T. This is because of the fact that at this analysis stage uncracked shear stiff-

ness is employed in the analytical model. The models FB and FSB predict well the experi-

mental value of T ranging between 0.30sec and 0.35sec. 
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Figure 23: Elwood & Moehle (2008) frame finite element model 

 

Model F FB FS FSB 
T (sec) 0.283 0.333 0.285 0.335 

Table 2: Elwood & Moehle (2008) frame predicted vibration periods 

Fig. 24 presents base shear (Vbase) vs. top displacement (∆top) relationships attained by 

pushover analysis of this frame as well as the experimental response recorded in the positive 

direction of loading. It can be seen that the F analytical model overestimates considerably ini-

tial lateral stiffness and undervalues very importantly displacement corresponding to onset of 

lateral failure. Inclusion of anchorage slip leads to sufficient prediction of initial stiffness until 

a value of Vbase≈150kN. After this level, the analytical model fails to follow closely gradual 

1.83m 

1.475m 

Section A Section B 
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degradation of lateral stiffness and predicts a displacement capacity value of 38mm. The FS 

model prediction lies between the two aforementioned analytical curves. Lateral displacement 

capacity is found 29mm in this case. The FSB analytical model prediction converges ade-

quately the experimental envelope for almost the entire range of response. Lateral displace-

ment capacity is estimated equal to 46mm, which is in relatively good agreement with the 

experimental observation (approx. 55mm).  
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Figure 24: Elwood & Moehle (2008) frame predicted pushover curves 

 

Fig. 25 illustrates the critical modes of failure as foreseen by the four analytical models. It 

is shown that the models not incorporating shear effect predict erroneously the development 

of flexural type of failure at the base of the central column. On the contrary, the FS and FSB 

analytical models drive to the experimentally observed final damage state composed by a 

shear failure at the top of the central column following flexural yielding. 

Closing with pushover analysis, it is important to mention that if degradation of shear 

strength with flexural demand is neglected, the FSB analytical model predicts erroneously a 

flexural failure at the base of the central column for lateral displacement equal to 48mm. On 

the other hand, if shear strength is assumed from the beginning of the analysis equal to its 

minimum value (corresponding to µφ≥15), then a shear failure is predicted corresponding to a 

displacement demand of only 17mm. 

 

 
 

 

 

 

 
 

Figure 25: Predicted modes of failure for Elwood & Moehle (2008) frame specimen by pushover analysis with a) 

F and FB; b) FS and FSB analytical model.  

 

Fig. 26 compares the experimental recordings and the analytical predictions produced by 

the proposed FSB finite element model, when the examined specimen is subjected to the 

ground motion component. For the analysis purposes, time step is chosen to be 0.005sec and 

viscous damping coefficient equal to 1% of its critical value. It can be seen that the analytical 

model estimates very well the displacement and base shear time histories for the major part of 

the response. Deviations from the experimental measurements are observed between 18.6sec 

and 23.1sec and between 26.0sec and 28.6sec. These time periods follow sharp excursions 

during which yielding of transverse reinforcement has been observed. The deviations may be 

Onset of lateral 

strength degradation 
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attributed to the fact that the proposed finite element cannot model, in its present form, degra-

dation of shear strength after yielding of the transverse reinforcement, as observed experimen-

tally. 
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Figure 26: Elwood & Moehle (2008) frame specimen responses as recorded experimentally and predicted by 

FSB analytical model. a) lateral displacement time history; b) base shear time history; c) Vbase vs. ∆top response. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 27: Elwood & Moehle (2008) central column predicted hysteretic responses. a) M-φ at the top; b) M-θslip 

at the top; c) V-γ at the top plastic hinge; d) V-γ outside plastic hinges 
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Fig. 26c compares the experimental and analytical Vbase-∆top hysteretic relationships. It is 

evident that the proposed model captures sufficiently initial (elastic) stiffness, strength capac-

ity as well as unloading and reloading response up to onset of lateral strength degradation. It 

must be emphasized that nonlinear dynamic analysis using the FSB model estimates accu-

rately the magnitude of displacement corresponding to onset of shear failure and consequent 

lateral strength degradation, while pushover analysis yields approximately 17% underestima-

tion of the specific response. 

Fig. 27 presents hysteretic responses of the central shear-critical column, as derived by the 

analytical model. It can be seen that flexural yielding has been predicted at the top of the spe-

cific column followed by significant hysteretic response in flexure and anchorage slip. Due to 

inelastic flexural deformations, shear strength degrades in the plastic hinge of the member. 

Based on the shear-flexure interaction procedure proposed in this study, shear strains increase 

more rapidly inside than outside the inelastic zone. This phenomenon is accompanied by 

yielding of transverse reinforcement in the plastic hinge region driving to further differentia-

tion of shear strains in the two discrete regions. 

Finally, it is worth reporting that the predicted damage state of the examined frame from 

inelastic dynamic analysis is the same with the one shown in Fig. 25b, in agreement with the 

experimental evidence. 

 

4.3 Frame specimen El-Attar et al. (1997) [28] 

A 1/6 scale 2-storey one-bay by one-bay lightly reinforced concrete building was tested on 

the Cornell University shake table. The structure was designed solely for gravity loads, with-

out regard to any kind of lateral loads. The reinforcement details (Fig. 28) were based on typi-

cal R/C frame structures constructed in the Central and Eastern United States since the mid 

1900’s. Model structure concrete strength was 32.3MPa (4.7ksi) and steel reinforcement yield 

capacity 414MPa (60ksi).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 28: El-Attar et al. (1997) frame specimen configuration (values outside and inside parentheses correspond 

to prototype and model structure respectively). 

 

The model structure was tested using the time-scaled Taft 1952 S69E earthquake with peak 

ground acceleration set in increasingly higher values. After running Taft 0.45g, wide, deep 
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cracks were observed in the beams around the locations of discontinuous positive beam rein-

forcement (at the joint panels), indicating bond failure and pending pullout of these bars [28]. 

Fig. 29 compares frame response histories derived by the FSB analytical model and ex-

perimental recordings for the 0.36g peak ground acceleration. It is evident that the proposed 

model follows closely the experimental response after the first 1.5sec. Small differentiations 

are justifiable considering the large scale (1/6) of the examined specimen. 
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Figure 29: Comparison of El-Attar et al. (1997) frame specimen time history responses from the experimental 

recordings and analytical model FSB for Taft 0.36g acceleration record: a) 1
st
 storey total displacement; b) 2

nd
 

storey total displacement; c) base shear 

 

 
 

 

 

 

 

 

Figure 30: Hysteretic responses of left end of the 1
st
 storey beam of the El-Attar et al. (1997) frame specimen 

predicted by the FSB analytical model for the 0.45g Taft acceleration record: a) M-φ; b) M-θslip 

 

 The FSB analytical model predicts the anchorage failure of the positive reinforcement at 

the left end of the first storey beam for the 0.45g Taft earthquake motion. This is clear by Fig. 

a) 

b) 

c) 
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30 presenting hysteretic M-φ and Μ-θslip responses of this end. It can be seen that while flex-

ural response remains at the reloading stage, M-θslip concludes the reloading branch, moves on 

to the positive envelope curve and finally drives to failure, exceeding ultimate anchorage 

moment capacity. 

5 CONCLUSIONS 

A new beam-column model is introduced for seismic damage analysis of R/C frame struc-

tures with substandard detailing. This finite element models inelastic flexural, shear, and an-

chorage slip deformations, as well as their interaction in an explicit manner. Hence, it is 

capable of simulating with accuracy the seismic response of R/C frames with inadequate de-

tailing, where shear flexibility and fixed end rotations caused by anchorage slip usually play a 

vital role in their response. Additionally, it is able to predict, in the general case, brittle types 

of failure that cannot be precluded in structures, which do not conform to modern seismic 

guidelines. The numerical model is implemented in a general finite element code and it is 

validated against experimental results from three well documented frame specimens with brit-

tle detailing. It is concluded that the proposed model provides accurate and reliable predic-

tions of the frame specimen responses.  
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