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Abstract. Beam elements are commonly used in the analysis of steel and reinforced concrete
structures in earthquake engineering practice. These elements reproduce the global behavior
of these structures at a reasonable computational cost. For this type of analysis the force-based
fiber beam element has proven an excellent compromise between accuracy and computational
cost for the simulation of the inelastic response of structural models of significant size. Recent
studies have proposed extensions of the model to account for the effect of shear and torsion
under fixed shear strain or stress distributions. These assumptions suffer from shortcomings
for the representation of the coupling between shear and torsion, and are not suitable for the
representation of local stress and strain distributions at critical sections. To describe such
complex stress states, shell finite element models are often used with a significant increase
in computational cost. This paper presents the mixed formulation of an enhanced 3d fiber
beam element that represents accurately the global and local response of structural members
under axial force, flexure, shear and torsion interaction. The proposed 3d fiber beam element
determines the shear strain distribution at a section from the satisfaction of local equilibrium
equations with the section warping displacements as local parameters. Unlike existing models,
the coupling between sections is taken in account. Hence the enhanced fiber beam-column is
able to capture the local effects due to constrained warping of the section, such as the flange
shear lag effect. The model is also capable of representing accurately the maximum local
stress at element boundaries, and of simulating the torsional response of beams under warping
constraints.

The element is validated with several examples involving inelastic response of steel members
under high shear force, such as shear links. The simulations are conducted under monotonic
and cyclic load conditions for specimens with wide flange and box sections. The accuracy and
computational efficiency of the proposed element is demonstrated by comparing the results with
experimental values and with local response estimates of shell finite element models.
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1 INTRODUCTION

Nonlinear analysis is used increasingly for the evaluation of structures under extreme load-
ing conditions. This type of loads induces high inelastic strains at critical sections and large
node displacements. Recent studies have shown that the corotational formulation is a suitable
framework for the description of large displacements allowing the nonlinear material response
of the basic element to be limited to small deformations. For frame elements the force-based
fiber beam element by Ciampi and Carlesimo [4] with its subsequent embedment in a consistent
variational framework by Taylor [11] and Lee [7] has proven an excellent choice for describing
the interaction between axial force and flexure under inelastic material response.
Recently, research interest has focused on the extension of the force-based beam element to the
effect of shear and torsion. In older structures and short span elements the shear affects the
failure mode and the member capacity. The first formulation of a beam element with shear was
based on Timonshenko beam theory with the assumption of a constant shear stress distribution
over the cross-section [12]. Subsequent models by A. Saritas [10], N. Gregori [5] and A. Pa-
pachristidis [9], postulate a strain or stress field distribution based on the analytical result for
a homogeneous section. These models were used to simulate the inelastic response of shear
links and shear walls with success. However, the assumption of a fixed shear distribution is not
justified when inelastic deformations spread through the section and render the response inho-
mogeneous. The model of J.M. Bairan [1] and S. Mohr [8] overcomes this limitation with the
addition of degrees of the freedom at the section level to represent the shear distribution while
also accounting for section warping. Equations of local equilibrium are used to determine the
response parameters at these degrees of freedom.
The model of A.Saritas [10] is limited to 2d applications, whereas the element proposed by N.
Gregori [5] and A. Papachristidis [9] apply to 3d response without, however, accounting for
the shear distribution due to torsion and the effect of warping. The model of J.M. Bairan [1]
accounts for section warping and is thus able to represent the torsional response with accuracy.
The model also accounts for the in-plane section deformation, which increases computational
cost significantly.
Even though existing models account for a variable shear distribution and section warping, the
interaction between sections of the beam element is not directly taken into account. In particular
the effect of warping on axial deformation is neglected resulting in the incorrect representation
of the local response near boundaries and other important local response phenomena such as
shear-lag [13]. While neglecting this effect and decoupling the response of different beam sec-
tions has the advantage of maintaining the number of element degrees of freedom and reducing
the element computational cost, the inability of representing the local stresses under warping
constraints and at element boundaries is a serious limitation.
The proposed 3d enhanced fiber beam element model sets out to address some limitations of
earlier formulations by allowing for arbitrary section warping under shear and torsion and by
including the effect of boundaries on the warping distribution. This objective is met first with
the introduction of warping degrees of freedom at each section, and secondly by imposing equi-
librium on the entire element, so as to account for section interaction and thus incorporate the
effect of boundary conditions. For simplicity only out-of-plane section displacements are rep-
resented by assuming that the section is rigid in its plane.
The paper presents a brief description of the theory of the proposed 3d enhanced fiber beam
element and concludes with a few examples that demonstrate its capability for representing the
shear stress distribution under combined loadings and the shear lag effect. In these examples
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the response of structural model with the proposed element is compared with the response of
the model with shell elements, thus permitting for the accurate comparison of the global as well
as the local response.

2 BEAM DESCRIPTION

This section presents a brief derivation of the enhanced 3d beam element. The element is
formulated in a system without rigid body modes, which are removed with the corotational for-
mulation.
The element degrees of freedom consist of local degrees of freedom uIJ and of warping degrees
of freedom uw

IJ . The warping degrees of freedom describe the out-of-plane displacements of
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Figure 1: Basic element kinematics

the section. The number of these degrees of freedom for each section is nw. These are local
degrees of freedom associated with local equilibrium equations. To satisfy displacement com-
patibility between adjacent elements, the warping displacements of the end sections are retained
as element variables.

uw
IJ =

[
uw
I uw

J

]
(1)

In the local reference system the element deformations are denoted by v and consist of the
axial deformation, of the rotations θy and θz at the element ends, and of the angle of twist
φ. The associated forces q are the axial force, the bending moments about the y and z axis,
and the torsional moment. The deformations are related to the local displacements with the
compatibility matrix ag:

v = aguIJ (2)

2.1 Section Kinematics

The displacements of any point (y,z) of a section, defined by its x along the element axis, are
decomposed as follows:

utotal = ur + uw (3)

The rigid displacement of the section is denoted by ur and is expressed in terms of the cross-
section generalized displacements

u(x) =
[
u v w θz θy φ

]T
(x) (4)
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The warping displacements uw(x, y, z) are defined everywhere in the beam element by interpo-
lation functions

uw(x, y, z) =
∑
ij

Mi(x)Nj(y, z)u
w(xi, yj, zj) (5)

In contrast to the formulation by J.M. Bairan [1], only the axial component of the warping
displacement is taken into account by neglecting the in-plane section deformation.

The warping displacements are orthogonal to the section rigid body displacements ur. This
condition is enforced by removing the rigid body modes from the displacements uw with the use
of a projection matrix. The details of this matrix are not presented here for the sake of brevity.

The displacement of any material point (y,z) of the cross section at position x along the axis
is given by

ux(x, y, z) = u(x) − yθz(x) + zθy(x) + uw(x, y, z) (6)
uy(x, y, z) = v(x) − zφ(x) (7)
uz(x, y, z) = w(x) + yφ(x) (8)

The strains are derived from the definition of the displacements and are expressed in the compact
form:

εεε(ur,uw) =

 εxx2εxy
2εxz

 =

1 −y 0 0 z 0
0 0 1 −z 0 0
0 0 0 y 0 1




u′

θ′z
v′ − θz
φ′

θ′y
w′ − θy

+

 εxx(uw)
2εxy(u

w)
2εxz(u

w)

 (9)

= ase(u) + εεε(uw) (10)

where the notation ′ denotes the derivative of the variable with respect to coordinate x.
The notation e for the generalized section deformations is introduced

e =
[
ε0 κz γy κx κy γz

]T (11)

where ε0 is the axial strain, κz and κy the two curvatures and γy and γz the shear strains.
According to equation (10), the warping displacement contributes to the axial strain and to the
shear strain. This fact is critical in the description of the effect of boundary conditions and the
additional stresses due to warping constraints.

2.2 Variational principle

The element formulation is based on the Hu-Washizu variational principle [7]. The potential
function of displacements u and uw, section deformations e and stresses σσσ is defined over the
element volume V by

Π(u,uw, e,σσσ) =

∫
V

σσσT (ase(u) − ase) dV +

∫
V

W (e,uw)dV + Πext(uIJ ,u
w
IJ) (12)

where W is the internal potential energy. In the form of (12), the element formulation is mixed:
the warping strain is derived from the warping displacements, while the section deformations
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are imposed in weak form.
The external load is defined by

Πext = −uT
IJ p̄− uwT

IJ p̄w (13)

The forces p̄ and p̄w are the applied forces at the end nodes of the element. If the end sections
are free to warp, the applied warping force is p̄w = 000. Otherwise, warping displacements uw

IJ

are imposed. The case of element loading is not included for the sake of simplicity.
The variation of potential Π leads to the definition of the associative section forces by inte-

gration over the cross-section area A:

s =

∫
A

aT
s σσσdA , swj

x =

∫
A

NjσxxdA , swj
yz =

∫
A

∂Nj

∂y
σxy +

∂Nj

∂z
σxzdA (14)

By minimization of the potential Π, we obtain a set of equations:

p̄ = agq (15)
si = b(xi)q (16)

v =

∫ L

0

bTedx (17)

σσσ =
∂W

∂εεε
(18)

pwj
i =

∫ L

0

∂Mi

∂x
swj
x dx+

∫ L

0

Mis
wj
yz dx (19)

where b is a linear interpolation matrix given by

b(x) =


1 0 0 0 0 0
0 x/L 1 − x/L 0 0 0
0 1/L 1/L 0 0 0
0 0 0 1 0 0
0 0 0 0 x/L 1 − x/L
0 0 0 0 1/L 1/L

 (20)

The first four equations correspond to the mixed formulation equations for the beam: the equi-
librium equations (15-16), the compatibility equation (17) and the constitutive law (18). The
additional equations (19) correspond to the equilibrium conditions that need to be satisfied by
the warping section forces swx and swyz. These equilibrium equations are imposed at each section
xi with warping displacements uw(xi, ., .) as the unknowns (5). The section deformations and
the warping displacements are determined during the element state determination by satisfying
the equilibrium and compatibility equations.
The tangent stiffness associated with the set of equations (15-19) ensures optimal convergence
of the element state determination algorithm.

2.3 Interpolations

The section warping is described by warping parameters denoted with uw
ij . The warping

is then described over the section with the functions Nj(y, z) in equation (5). With Lagrange
polynomials for the functionsNj the warping parameters uw

ij can be interpreted as local warping
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values. This approach differs from the fixed strain distribution assumed in earlier studies [10].
The enforcement of the warping equilibrium equations results in an accurate strain distribution.
This formulation can be applied to any section geometry and does not require a shear correction
factor, as is the case with earlier studies [10] and [9]. To reduce the number of warping param-
eters, advantage can be taken of the geometric characteristics of the section, such as symmetry
and double-symmetry, in the choice of interpolation functions Nj(y, z), as proposed in the re-
port by Setec-Tpi [6].
The determination of the warping distribution over the element length is accomplished with
the interpolation functions M(x). For constrained warping, the choice of interpolation func-
tions is critical. Under linear elastic response, the analytical solution consists of an exponential
distribution of warping displacements along the element axis. Among the different choices
for interpolation functions M are exponential functions, Lagrange polynomials, and quadratic
spline functions. In the examples of the following section Lagrange polynomials are used.

3 EXAMPLES

The examples presented below demonstrate the capabilities of the enhanced 3d element.
The element is tested on two shear links. Its response is compared to the response of the beam
element by A.Saritas[10], which is extended to 3d with the assumption of a fixed shear strain
distribution. The link response is also compared with the response of a model consisting of
MITC shell elements [2]. The nonlinear material response of structural steel is described with
the J2 plasticity model. The studies compare the global force-displacement response as well
as the local stress distributions with focus on the axial stress σxx associated with the warping
constraints.
The test configuration for the two shear links is shown in figure 2. Warping is assumed to be
constrained at both ends. To demonstrate the coupling between shear and torsion, the element is
allowed to twist at one end when the shear force is applied with an eccentricity. The shear link
is modeled with one 3d beam element with 5 Gauss-Lobatto integration points along its axis.

Figure 2: Shear Link Configuration

3.1 Example 1

The cross-section of the shear link is shown in figure 3. The length of the shear link is
L= 456 mm. This example is part of the experimental campaign by Berman and Bruneau [3].
The analysis with beam elements is compared with the experimental results and the results
with a shell model by limiting attention to the first three load cycles. The enhanced 3d beam
element uses nw=12 parameters in each section to describe the section warping. Figure 4 shows
that the response of the three models is very close in terms of the shear reaction force for an
imposed vertical displacement (or shear link rotation) and agrees very well with experimental
measurements.
The local stress results are plotted for a link rotation γ = U/L = 0.006 in the transition to
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Figure 4: Shear link rotation vs. Shear Force

the plastic range. The figures 5 and 6 present the shear stresses of the middle section of the
element, where warping is free. The results confirm that the enhanced 3d beam reproduces the
shear stress distribution postulated by the fixed shear strain assumption of A. Saritas [10]. The
distribution of the shear stresses σxz in the upper flange is also represented accurately.

The shear lag effect takes place at the boundary of the beam and at the load application
points. At this boundary section, the warping constraint creates additional axial stresses. The
comparison of the axial stresses in the web and in the flange is presented in figures 7 and 8. The
enhanced 3d beam element gives a correct estimation of the maximum axial stress in the web,
which is 30% higher than the value predicted by the beam with a fixed shear strain distribution.
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Figure 5: Shear stresses in the left web
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Figure 6: Shear stresses in the lower flange
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Figure 7: Axial stresses in the web
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Figure 8: Axial stresses in the lower flange

3.2 Example 2

The dimensions of the I cross-section of the shear link are presented in figure 9. The length
of the shear link is L =28in. The steel material is described by a generalized J2 plasticity
Model, as presented in [10].

A shear force is applied on the shear link. To model the effect of torsion, the force is applied
with an eccentricity of ec =2 in from the centroid to create a torsional moment proportional to
the shear force. The enhanced 3d beam describes the section warping with nw=28 parameters.
The figures 10 and 11 present the force-displacement response of the shear link: the shear force
is plotted against the vertical displacement and the torsion force against the angle of twist φ.
The enhanced beam model is able to represent with accuracy the lateral and torsional stiffness
as well as the yielding force. In comparison, the beam with a fixed shear strain distribution
cannot represent the exact elastic torsional stiffness, since warping is not taken into account.
The interaction between shear and torsion is demonstrated in 10.

In addition to the global response, the proposed element describes with accuracy the local
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Figure 10: Shear Force vs. Vertical Displacement
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Figure 11: Torsion Force vs. Twist Angle
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Figure 12: Axial stresses in the web
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Figure 13: Axial stresses in the lower flange
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response in the plastic range. For a shear force of 88.5 kips, the axial stresses at the boundary
section are plotted for the web 12 and the lower flange 13 respectively.

4 CONCLUSIONS

The paper presents a 3d enhanced fiber beam element formulation that includes warping de-
grees of freedom so as to represent the effect of shear and torsion. No shear correction factor
is required with the shear strain distribution determined directly from the section warping. The
element is capable of representing accurately the local response of beams under different con-
straints for which a shell element is usually required. It is also capable of describing accurately
the shear lag effect at a significantly lower computational cost than a shell model.
A few examples demonstrate the capabilities of the element for simulating inelastic response
of steel structures under flexure, shear and torsion. Studies are under way to extend the el-
ement formulation to reinforced concrete frames, for which existing studies demonstrate the
importance of shear modeling [8]. Further studies to optimize the element performance for
earthquake engineering applications by reducing the number of warping degrees of freedom are
under way.
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