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Abstract. Metal yielding devices have been used in structures for decades to absorb earthquake en-

ergy whereby damages to the major structural components could be minimised. A recent technique to 

exploit the shear deformation of thin metal plates to dissipate energy has given rise to a new yielding 

shear panel device (YSPD); a thin steel plate is welded within steel a square hollow section (SHS)to 

form the device. Laboratory test results showed the potential of YSPD in energy dissipation. The be-

haviour of YSPD is determined by a complex interaction among the thin diaphragm plate, the sur-

rounding SHS and the boundary conditions i.e. the structural elements that connect the device to the 

parent structure. This paper investigates the load-deformation response of YSPD and proposes a theo-

retical model to predict the experimental behaviour using the knowledge of the geometry of YSPD and 

the properties of the material. Previously proposed analytic method based only on the shear deforma-

tion of the diaphragm plate is revisited; appropriate modifications are proposed to include the effects 

of the deformations observed in the SHS and the obvious rotation of the loading plate. A tri-linear 

load-deformation model is proposed herein and the predictions obtained from the numerical models 

are compared with the available test results.  
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1 INTRODUCTION 

Earthquakes cause significant damages to structures resulting in either complete demolition 
or the affected structures require complex and expensive rehabilitation techniques to be ser-
viceable. Minimization of structural damages due to earthquake is a major area of research 
which contributed to the development of a number of active, semi-active and passive control 
mechanisms during the last few decades. The current research investigates the structural per-
formance of a newly proposed yielding shear panel device (YSPD) for passive energy dissipa-
tion. YSPD is simple to manufacture and is economical when compared against currently 
available devices. Tests carried out on the device demonstrate its potential for considerable 
energy absorption [1]. Hossain et. al. [2] developed finite element models and verified their 
performance against available monotonic and cyclic test results. An appropriate theoretical 
model for YSPD is required to understand the effects of this device by analysing structures 
including different YSPDs. Current paper proposes a tri-linear force-displacement model for 
YSPD, which is verified against the results obtained from tests and finite element simulation. 

2 YIELDING SHEAR PANEL DEVICE (YSPD) 

Diagonal tension field that develops in the post-buckling regime of a thin steel plate under 
shear offers significant strength and ductility and hence can be utilized to dissipate energy. 
This concept led to the development of a new metallic passive energy dissipating device 
‘Yielding Shear Panel Device’ (YSPD). YSPD was introduced by Williams and Albermani [3] 
based on the design proposed by U. Dorka at the University of Kassel, Germany to exploit the 
energy dissipative capability of steel plates through in-plane shear deformation and the con-
cept was further explored by Schmidt et.al. [4] and Williams and Albermani [5].  YSPD relies 
on the in-plane shear deformation of a thin diaphragm steel plate welded inside a square hol-
low section (SHS). This device can be placed beneath a structural beam using a V-braceso 
that it automatically comes into play in the event of any horizontal excitation. Figure 1 shows 
a typical assembly for YSPD. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Typical YSPD-brace assembly. 

Chan et. al. [1] conducted a series of monotonic and cyclic tests using various plate thick-
nesses and device configurations for YSPD. The tested specimens were fabricated using a 
short segment of a square hollow section (SHS) with a steel diaphragm plate welded inside, as 
shown in Figure 2. Four bolt holes spaced at a centre-to-centre distance ‘s’ were drilled on 
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each of the two opposite SHS flanges for connecting the device to the test setup; this connec-
tion is analogous to the practical assembly where YSPDs are proposed to be connected using 
bolts to ensure easy installation and replacement. The SHS provides a boundary to the dia-
phragm plate so that shear forces can be applied to the plate, in addition to providing neces-
sary detail for connections to the parent structural frame. Most importantly, the SHS serves as 
a boundary element allowing the tensile strips to be formed and the tension field to be devel-
oped following the post-buckling of the thin diaphragm plate. As a result of sufficiently large 
displacements occurring in the diaphragm plate, the input energy originating from an earth-
quake could be dissipated through plastic deformation. 

 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 2: (a) Yielding shear panel device (YSPD) (b) Schematic diagram showing the geometric parameters 

of YSPD [6]. 
 
Chan et. al. [1] tested two different sizes of YSPD, 100mm  100mm and 120mm  

120mm, with three different thickness of 2 mm, 3 mm and 4 mm for the diaphragm plate. Bolt 
spacing of 50 mm was used for four M16 bolts on each side of the SHS to install the test 
specimen between a ground beam and L-beam. The geometric dimensions of the test speci-
mens are given in Table 1 and the reported material properties are summarized in Table 2. 
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YSPD         

Designation   

(D  D  t) 

Diaphragm 

Thickness, t 

(mm) 

SHS Size, D        

(mm) 

SHS Thick-

ness, T 

(mm) 

Bolt Spacing, 

S (mm) 

1001002 1.86 100 3.76 50 

1001003 2.83 100 3.76 50 

1001004 3.78 100 3.76 50 

1201202 1.86 120 4.91 50 

1201203 2.83 120 4.91 50 

1201204 3.78 120 4.91 50 

Table 1: Geometric details of YSPD test specimens [1] 

YSPD Designation       

(D  D  t) 

Tensile Yield Strength (MPa) 

Diaphragm Plate SHS 

1001002 211.3 414.9 

1001003 321.3 414.9 

1001004 351.2 414.9 

1201202 211.3 333.3 

1201203 321.3 333.3 

1201204 351.2 333.3 

Table 2: Material properties of the test specimens [1] 

3 ANALYTICAL EVALUATION OF YSPD BY CHAN ET. AL. [1] 

Chan et. al. [1] classified YSPDs into two different categories based on the slenderness ra-
tio of the diaphragm plate for theoretical evaluation. Material stress-strain response was con-
sidered elastic, perfectly-plastic with a von Mises yield criterion. Diaphragm plates were 
assumed to be simply supported by the SHS and were classified as either compact or slender 
depending on whether or not the critical shear buckling stress     exceeds the material yield-
ing stress. The critical shear stress for a simply supported plate is given by [7], 

 

      
   

        
 
 

 
 
 

              (1) 
 
where ke is a coefficient which depends on the aspect ratio and end restraints of the plate 

e.g. ke is equal to 9.34 for square pates, whilst E and  are Young’s modulus and Poisson’s 

ratio respectively. It is worth mentioning that the specimens used in the testing program fall 
within the category of YSPD with compact diaphragm plate.  

Assuming an insignificant contribution from SHS, Chan et. al. [1] proposed the theoretical 
elastic in-plane lateral stiffness of the YSPD,  kYSPDas  
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                                                                                                                                    (2) 
 
where   is the shear modulus of steel and   is the thickness of the diaphragm plate. For a 

device with compact diaphragm plate, the yield shear strength of YSPD is, 
 
   

  

  
                                                                                                                                (3) 

 
where   is the width of the steel plate and   is the yield strength in tension. Hence the yield 

displacement of the device becomes, 
 
   

  

     
 

   

   
                                                                                                                   

(4) 
 
Figure 3 shows a comparison between the test result and the theoretical predictions pro-

posed by Chan et al [1] for the load-deformation response of YSPD 1001004. This com-
parison clearly demonstrates that there is room for further modifications to the proposed 
theoretical model. The current research aims to develop FE models and to exploit the numeri-
cal results to propose more reliable analytic predictions for the load-deformation response of 
YSPD. 

 
 

Figure 3. Comparison between the test result and the predicted force-displacement response of YSPD 
1001004 based on the model proposed by Chan et al. [1]. 

4 ANALYTIC FORMULATION OF YSPD 

YSPD specimens used in the laboratory testing had compact diaphragms and hence the 
current paper proposes analytic modelling techniques for such YSPDs so that the proposed 
model can be verified against test results. Size of the considered YSPDs varies within 100 to 
120 mm to avoid the chance of developing large eccentric moment. Development of a tri-
linear load-deformation model for YSPD is described in the following sections.  

4.1 Evaluation of initial stiffness  

When subjected to loading, the YSPD has to resist two equal and opposite forces acting 
through the bolted connections and hence its initial stiffness would be equal to the force re-
quired to produce unit horizontal displacement at the loaded flange. The diaphragm plate and 
the SHS deform simultaneously due to the applied deformation as shown in Figure 4. 

0

20

40

60

80

100

0 5 10 15 20

Test result
Analytic Model (Eq. 3 and 4)

Fo
rc

e 
(k

N
) 

Displacement (mm) 



Md Raquibul Hossain, Mahmud Ashraf and Faris Albermani 

 6 

The loading and the supporting ends are assumed to remain parallel for preliminary calcu-
lations. The resulting stiffness of YSPD can be obtained by combining the individual stiffness 
of two constituent elements i.e. the SHS and the diaphragm. Firstly the stiffness of the dia-
phragm plate is formulated assuming it to be simply supported by the SHS and the diaphragm 
plate is assumed to deform due to pure shear. In the next step, the stiffness of the SHS is cal-
culated assuming that the diaphragm plate deforms due to in-plane compression. The vertical 
flanges are also compressed as a result of the flexural deformation of the bolted flanges. The 
overall stiffness of the YSPD may thus be obtained as follows, 

 
 

     
  

 

    
  

 

    
                                                                                                               (5) 

 
where,        = Stiffness of YSPD 
       = Stiffness of the diaphragm 
       = Stiffness of the SHS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Undeformed and deformed shapes of a yielding shear panel device (YSPD). 

4.1.1. Stiffness of the diaphragm plate  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Undeformed Pure shear deformation of diaphragm plate. 
For a unit displacement (  = 1) of the diaphragm plate (Figure 5), B is displaced to B′ and 

the shear stain is given by, 
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δ

 
 

 

 
                                                                                                                       (6) 

Considering small strain, it can be reduced to, 
 
  

δ

 
 

 

 
                                                                                                                              (7)                   

 
For elastic deformation, the shear stress, 
 
     

 

 
                                                                                                                            (8)                                                                                                                  

 
Hence the elastic stiffness of diaphragm plate in pure shear may be expressed as, 
 
                                                                                                                               (9) 

4.1.2. Stiffness of the SHS  

The bolted flanges of the SHS undergo flexural deformation due to the in-plane compres-
sion of the diaphragm plate and the vertical flanges,. Figure 6 shows the details of assumed 
deformations with acting forces F1 and F2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)                                                                                               (b) 

 
Figure 6. (a) Deformation of bolted flanges, (b) Dimensions of bolted flange. 

 
Bolted flanges experience bending about an axis perpendicular to the loading direction due 

to the force F1. By assuming a zero rotation along the line passing through the centre of 
nearby bolts and ignoring the effects of bolt holes we can calculate, 
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                                                                                                              (10) 

 
where,     

   

  
 

              = Radius of the bolt hole 
 
The compression at the diaphragm plate causes deformation along the line joining the 

flange and the diaphragm plate. . This deformation results in an additional bending  to the 
flange about an axis parallel to the loading direction. The acting force F2 responsible for this 
deformation is assumed to have a triangular distribution due to the large in-plane rigidity of 
the diaphragm plate. This force may be obtained by taking strips in the flange. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                               (b) 
 

Figure 7. (a) Assumed zero rotation line on SHS flange. (b) Typical contour plot of the out of plane deforma-
tion of SHS flange 

 
The zero rotation line is assumed as a zigzag dotted line as shown in Figure 7(a); this pat-

tern is due to the boundary condition provided by the bolted connections. Each strip is consid-
ered to be fixed on both sides bounded by the dotted ‘zero rotation’ line and the line joining 
the diaphragm to the flange. Figure 7(b) shows a contour plot of the typical out of plane de-
formation of the SHS flange obtained from FE analysis [2]. The contour plot confirms that the 
deformation at the right part of the top flange is due to bending about both the orthogonal di-
rections. The deformation pattern due to the compression of the diaphragm plate also verifies 
the assumed zigzag line for zero rotation. 

The zero rotation line is assumed to make an angle of θ (Figure 6(b)) with a plane parallel 
to the diaphragm. The average distance (d2) between the diaphragm line and zigzag support 
line can be calculated as follows, 
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The resultant of the triangular force considering a unit deformation at the end becomes, 
      

      
  

 
  

    

  
  

    

   
                                                                                        (12) 

 
where,    

   

  
 

 
 
 
 
 
 
 
 
 

 
 
 

(a)                                                                                (b) 
Figure 8. (a) Deformed shapes due to force F1 and F2 of SHS flange (b) Equation of the deformed shape for 

the force F1 and reduction force Fr 
 
A reduction in the total calculated force is required for bending moments acting at or-

thogonal directions.  Figure 8(b) shows the deformed shape with a unit deformation at the end 
for F1. The average deformation becomes 3/8 by calculating the area and dividing it with the 
deformed length (a+r). The common deformation due to force F1 and F2 are calculated. Force 
required to produce this common deformation is the reduction force which can be calculated 
as,  
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  

 

 
 

         

   
                                                                                            (13) 

where,    
       

  
  

 
Force Fr acts at a distance of                  from the zero deformation end. 
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Figure 9. Compressive deformation of diaphragm plate and vertical flanges 
The compression of the diaphragm plate and the vertical flanges in an YSPD is analogous 

to the deformation of an I-Section as shown in Figure 9. The force required to make a unit de-
formation i.e. strain = 1/d at the end of the flange, 

 
      

 

 
 

  

 
 

 

 
                                                                                                          (14)                  

 
The distance between the zero deformation and the line of action of the force, 
 
   

         

  
                                                                                                                    (15) 

 
The stiffness of the SHS can be calculated by the moment balance of these forces and thus 

may be expressed as follows 
 
        

  

 
 

         

 
 

         

 
                                                                              (16) 

 
Calculation showed that the contribution of force F3 is more than 98.5%. The inclination of 

the zero deformation angle θ, thus, has negligible effect on the overall stiffness of the SHS  
and hence the angle θ may be taken as 45° whilst calculating the stiffness of SHS. 

4.1.3. Combined Stiffness  

Test results showed considerable rotation of the loading end within the elastic range [2], 
which causes the stiffness of the SHS to degrade. Hence the stiffness of the SHS may be taken 
as      , where   is a reduction factor. The modifies stiffness of YSPD (k’YSPD) is thus ex-
pressed as follows, 

 
 

     
′   

 

    
  

 

     
                                                                                                           (17) 

 
The value of   can be determined using the initial stiffness of YSPDs obtained from the 

experimental investigation. Theoretical stiffness of the diaphragm plate and the SHS are cal-
culated individually using Equations 9 and 16 ignoring the effects of rotation. Obtained stiff-
ness magnitudes for the YSPDs and their corresponding diaphragm plates and SHS are used 
to plot Figure 10. The slope of the straight line is equal to     according to Equation 17.  The 
obtained value of    is equal to 0.03 ignoring one outlier, which represents significantly low 
initial stiffness showed by YSPD 120×120×3 in the monotonic test. 
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Figure 10. Stiffness plot of SHS to determine the reduction factor  . 

4.2 Yield Strength of YSPD  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. State of elastic stress of the diaphragm plate. 
 
The yielding of YSPD occurs due to the combined action of axial compression and shear 

deformation of the diaphragm plate. The yield force and the corresponding deformation is ini-
tially calculated assuming the loading end and the support end remain parallel. The effect of 
support rotation is then incorporated to calculate the actual deformation. According to von 
Mises yield criterion, 

 
  
         

    
                                                                                                          (18) 

                                                                                                   
where,    is the tensile yield strength 
 

           Principal stresses,        
 

 
  

  

 
    

 
The applied horizontal deformation δ can be divided into two components - 1for the pure 

shear deformation of the diaphragm plate and δ  for the deformation of SHS. Thus, 
 
δ  δ  δ                                                                                                                          (19) 
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δ  
     

    
δ                                                                                                                         (20) 

 
δ  

     

    
δ                                                                                                                         (21) 

 
The resulting stresses become, 
 
  

δ  

 
                                                                                                                                 (22) 

 
  

δ  

 
                                                                                                                                (23) 

 
The yield deformation δ  can be calculated by solving Equation 18. This yield displace-

ment changes due to the rotation of the loading end. By incorporating the effect of end rota-
tion, yield displacement becomes, 

 
δ 
′  δ 

     

     
′                                                                                                                        (24) 

 
The yield strength of YSPD can be calculated as, 
 
  
′       

′ δ 
′                                                                                                                       (25) 

 
Equation 25 gives the same yield strength as calculated by Chan et. al. [1], but the initial 

stiffness is modified by considering the deformation of the SHS in Equation 24. 
The underlying assumption of this calculation is the diaphragm plate is simply supported 

by the SHS. Practically the diaphragm plate is welded inside the SHS. The thickness ration of 
diaphragm plate and the SHS plate (t/T) determines the support rigidity. The rigidity of the 
support increases with the decreasing t/T ratio. Consequently, the theoretical yield strength 
decreases with the increasing t/T ration. Figure 12 shows the variation of the ration of theo-
retical yield strength and actual yield strength with the varying td2/T. The term d2 is used to 
normalize the values with different diaphragm size. The graph shows a good correlation and 
indicates the yield strength reduces with the increasing t/T ration. 

 

 
 

Figure 12. Correlation curve for theoretical and actual yield strength. 
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A strength reduction factor Ω1 is calculated as follows, 
 
Ω1=0.0003td2/T                                                                                                                   (26) 
 
Reduced yield displacement and yield strength of YSPD becomes, 
 
δ 
′    δ 

     

     
′                                                                                                                   (27) 

 
  
′         

′ δ 
′                                                                                                                  (28) 

4.3 Plastic Buckling Strength in Shear 

Early investigations into plastic plate shear buckling were reported by Gerard [8], Stowell 
[9] and Bijlaard [10]. Stowell [9] and Bijlaard [10]  used deformation theory for the analysis 
of plastic buckling of plates, whilst Gerard [8] followed the secant modulus approach. Stowell 
[9] derived an expression using the deformation theory and finally suggested a simplified 
form depending on the secant modulus of elasticity for materials with nearly constant harden-
ing behaviour in the plastic range. Gerard [8] suggested the critical shear stress is rather de-
pendent on the secant shear modulus. Bleich [11] proposed a simplified approximation of 
Stowell’s plastic reduction factor using the tangent modulus concept. Later, Inoue [12] used a 
Tresca yield criterion [12] based modified incremental theory to analyse the plastic shear 
buckling of thin plates. Tugcu [13] adopted bifurcation approach to determine the effect of 
tensile or compressive loading on the critical buckling stress for infinitely long shear plates.  
Wang and Aung [14] applied the p-Ritz method for the plastic buckling analysis of thick 
plates based on both deformation theory and incremental theory. Alinia et al. [15] showed that 
incremental theory based p-Ritz method provides upper bound solutions whereas deformation 
theory based method predicts lower bound solutions. 

Stowell [16] derived a closed form solution for determining the critical shear stress for 
long plates using the deformation theory. Critical buckling stress may be expressed as, 

 

      
    

        
 
 

 
 
 

                 (29) 
 
where  cr is the critical shear stress, ke is a coefficient which depends on the aspect ratio 

and the end restraints of the plate, E is the Young’s modulus,  is the Poisson’s ratio and  is 
the coefficient allowing reduction in plastic range. The coefficient depends on the secant 
modulus of elasticity, support restraint and the plasticity behaviour of the material. For a lin-
ear hardening material Stowell [16] suggested, 

 
          

  

 
           (30) 

 
For 24S-O aluminium alloy, Stowell [16] found this constant as 0.89 for both simply sup-

ported edges and clamped edges. Bleich [11] proposed a simplified conservative approxima-
tion for the value of   as 

 

   
  

 
            (31) 
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Gerard [8] approximated the value of   incorporating secant shear modulus     and shear 
modulus   as, 

 
  

  

 
            (32) 

 
Gerard [8] further advanced the theory by introducing the concept of critical shear strain 

cr. Using Equation 34, the critical shear strain can be found as, 
 

 
  

   
        

        
 
 

 
 
 

           (33) 
 
The expression for critical shear strain cr is not dependent on coefficient   and hence cr 

could be easily calculated using the knowledge of the size, the slenderness ratio and the sup-
port conditions of a thin plate. 

Equation 29 and 33 are used to predict the critical bucking stress and strain for the dia-
phragm plate and used to calculate the buckling force of a YSPD.  

Real et. al. [17] presented a method to identify the critical buckling stress for a metal plate 
subjected to shear using finite element analysis. The bucking occurs when the stress reversal 
takes place in the principal stress plot; the compressive principal stress suddenly decreases 
once the plate starts to buckle. Finite elemnt simulation of YSPD showed the critical buckling 
forceis over predicted. The redused strength is resulted by the axial compressive stress acting 
along with the shear stress. Buckling strain is found larger in the FE model. This excessive 
deformation is resulted from the support rotation. Figure 13(a) shows the variation of the ratio 
of theoretical critical buckling strength and actual buckling strength with varying slenderness 
ratio (d/t). The graph shows a good correlation and the buckling strength reduction factor is 
calculated as, 

 
Ω2 = 1+0.011d/t                                                                                                                   (34) 
 
Critical plastic buckling strain calculated according to the equation 35 can be divided into 

elastic and plastic parts as follows, 
 
   

  
  

  
   

  
                                                                                                                   (35) 

 
The multiplication factor for increasing the value of the plastic shear strain to include the 

effect of the support rotation depends on the plate area (td). Figure 13(b) shows the variation 
of the ratio of theoretical plastic shear buckling strain and actual plastic strain obtained from 
FE models with varying area of the diaphragm plate area (td). The graph showed a good cor-
relation and the plastic strain multiplication factor is calculated as, 

Ω3 =0.0116td-1.81                                                                                                               (36) 
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(a)                                                                                         (b) 
 

Figure 13. (a) Correlation curve for theoretical and finite element critical plastic buckling strength. (b) Corre-
lation curve for theoretical and finite element critical plastic buckling strain. 

4.4 Post Buckling Stiffness  

Force-displacement response of YSPD for large deflections after the buckling of the dia-
phragm plate is necessary to identify its energy dissipation characteristics. A tension field is 
developed after the shear buckling of diaphragm plate. A typical state of stress of the dia-
phragm plate with a tension field inclined at an angle α is shown in Figure 14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Tension field stresses in diaphragm plate after buckling. 
 
The incremental shear strength of the YSPD after buckling becomes, 
 
dF =½.d ty(sin2α)td                                                                                                            (37) 
 
Kharrazi [18] determined the elastic post bucking shear deformation by equating the work 

done by the post buckling component of the shear forces to the strain energy produced by the 
tension field. Kharrazi et. al. [19] extended the concept to consider hardening after reaching 
yield point by replacing the modulus of elasticity (E) with the tangent modulus of elasticity 
(Et). Using the same technique, the incremental post buckling shear deformation becomes, 
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dδ= 2d ty.d/Etsin2α                                                                                                             (38) 
 
Thus, the post buckling stiffness of the YSPD may be expressed as, 
 
kt = ¼.Ettsin2

2α                                                                                                                   (39) 
 
Equation 39 indicates that the shear deformation behaviour after buckling depends on the 

inclination angle  of the tension field. A number of research works have been conducted in 
the last few decades to identify the angle of inclination in tension field action; Shishkin et. al. 
[20] summarised all available literature relevant to inclination angle. CAN/CSA-S16-01 [21] 
suggests a limit varying between 38° and 45° for the inclination angle of pin ended strips in 
steel plate walls. Shishkin et. al. [22] reported that inclination angle values between 38° to 50° 
gave similar results for calculating the ultimate capacity of steel plate shear walls. An inclina-
tion angle of 45° can be reasonably assumed for the tension strips developed within the square 
diaphragm plate of YSPD. Considering an inclination angle of 45°, the post buckling stiffness 
may be expressed as follows 

 
kt = ¼.Ett                                                                                                                              (40) 

5 COMPARISON WITH TEST RESULTS AND FE MODELLING 

The performance of the proposed tri-linear load deformation response is compared against 
those obtained from test and FE simulation. Figure 15 compares the load-deformation re-
sponse for different YSPDs. The devloped FE model and analytic model with 2 mm 
diaphragm plate significantly underpredicts the test behaviour; this discrepancy is due to a 
higher strength shown by the material although the reported yield strength (211.3 N/mm2) is 
unusually low. 
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Figure 15. Force-displacement response of YSPDs. 
 
Table 3 compares the amount of energy required to achieve specified displacements during 

the monotonic loading tests of YSPDs to those obtained from tri-linear models. The ratio of 
energy required for different displacements indicates that the developed tri-linear model can 
predict the required energy with reasonable accuracy. 

 
 
 

YSPD Designation 

(D × D × t) 

Ratio of Energy for different displacements (Theoretical/Test) 

5 mm 10 mm 15 mm 20 mm 

100×100×2 0.77 0.72 0.73 0.76 

100×100×3 1.09 1.08 1.05 1.04 

100×100×4 0.91 0.96 0.97 0.97 

120×120×2 0.79 0.71 0.71 - 

120×120×3 1.15 0.99 0.94 - 

120×120X4 1.12 1.07 1.07 - 

 
Table 3: Comparison of energy required in monotonic loading. 
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6 CONCLUSION 

An analytic model for a newly proposed passive energy dissipation device YSPD has been 
presented in the current paper explaining all necessary theoretical derivations. The force-
displacement response of YSPD has been idealized as a tri-linear curve. The first linear seg-
ment represents the elastic deformation; the slope of which depends on the individual stiffness 
of the diaphragm plate and that of the surrounding SHS in addition to the rotation of the sup-
port. Yield strength is calculated based on the yield capacity of the diaphragm plate, which is 
eventually reduced by introducing a yield strength reduction factor to consider the stiffness  of 
the surrounding SHS. Second linear segment corresponds to the plastic deformation of the 
shear plate. Critical buckling strength is identified using Gerard’s plastic buckling theory by 
calibrating the theoretical values using finite element results. Final linear segment represents 
the post buckling tension field response. Inclination of the tension field is observed not to play 
a significant role and hence an angle of 450 is adopted. Positive tangential stiffness (kt) pre-
sents a hardening behaviour for post bucking response. The proposed theoretical model is 
compared with the available test results and the corresponding finite element simulations; 
overall, the comparisons showed good agreement. Developments of fully nonlinear theoretical 
formulations for YSPD are currently underway. 
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