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Abstract. A major challenge in stochastic dynamics is to model nonlinear systems subject to 

general non-Gaussian excitations which are prevalent in realistic engineering problems. In 

this work, an n-th order convolved orthogonal expansion (COE) method is proposed. For li-

near vibration systems, the statistics of the output can be directly obtained as the first-order 

COE about the underlying Gaussian process. The COE method is next verified by its applica-

tion on a weakly nonlinear oscillator. In dealing with strongly nonlinear dynamics problems, 

a variational method is presented by formulating a convolution-type Lagrangian and using 

the COE representation as trial functions. 
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1 INTRODUCTION 

To evaluate probabilistic response of a structural dynamic system subject to parametric and 

external excitations, there are generally two approaches. The first approach uses Fokker-

Planck-Kolmogorov (FPK) equation to directly find probability density function (pdf) by as-

suming a white noise excitation. To solve FPK equation especially for nonlinear systems, var-

ious techniques have been proposed, including weighted residual, path integral, etc, which 

however are all limited to systems of low dimension (up to 4). The second approach includes 

perturbation method, moment closure method, and statistical equivalent techniques. While the 

perturbation method is limited to weak nonlinearity, the accuracy of moment closure method 

and statistical equivalent techniques on highly nonlinear problems remains an open question. 

A major deficiency of the existing approaches is their incapability in dealing with general 

non-Gaussian excitations which are prevalent in realistic engineering problems [5].  The mar-

ginal pdf and power spectral density of a loading process play a major role in determining the 

response of systems, e.g. seismic wave in earthquake engineering. Therefore, a new approach 

to model dynamic systems subject to non-Gaussian excitations is highly desired. 

A novel stochastic computation method based on orthogonal expansion of random fields is 

recently proposed [6]. In this study, the idea of orthogonal expansion is extended to the so-

called n-th order convolved orthogonal expansions (COE) especially in dealing with nonlinear 

dynamics. For linear vibration systems, the statistics of the output can be directly obtained as 

the first-order COE about the underlying Gaussian process. The COE is next verified by its 

application on a weakly nonlinear oscillator. In dealing with strongly nonlinear dynamics 

problems, a variational method is presented by formulating the convolution-type Lagrangian 

and using the COE representation as trial functions [7]. Theoretically, substitution of the trial 

response function into the Lagrangian will lead to the optimal solution. The effect of using 

different trial functions (COE of different orders) on the accuracy and efficiency of the pro-

posed approach will be examined in a forthcoming paper. 

2 CONVOLVED ORTHOGONAL EXPANSIONS 

2.1 The zero-th order convolved orthogonal expansion 

An underlying stationary Gaussian excitation ),(1 ϑth  is characterized with the autocorre-

lation function ρ(t) and unit variance, where Θ∈ϑ  indicates a sample point in random space.  

Based on the so-called diagonal class of random processes [1], the zero-th order convolved (or 

memoryless) orthogonal expansion of ),(1 ϑth  is proposed as [6] 
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where the random basis function hi corresponds to the i-th degree Hermite polynomial with 

10 =h . According to the generalized Mehler’s formula [4] the correlations among the random 

basis functions are given as 
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δ , and the overbar denotes ensemble average. 

Following Eq. (2), the two-point and three-point correlation functions are specifically ob-

tained as 
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where ',',' kji  must be non-negative integers, otherwise .0=ijkR  

The correlation relations can be extended to the derivatives of the random basis functions, 

e.g. 
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where 21 tt −=τ , and the subscripts  p, q denote p-th  and q-th derivatives. Similarly, the deri-

vations can be made for the convolution of the random basis functions, e.g. 
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where ∫
∞

∞−

= dtti

i )(ρτ  is the correlation time. 

2.2 n-th order convolved orthogonal expansion 

The idea of the memoryless orthogonal expansion presented above can be generalized to 

an n-th order convolved orthogonal expansion (COE) for representation of nonlinear output 

processes 
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where g is a given kernel, and the symbol * denotes the convolution operator. For notational 

simplicity, the superscript (0) of the zero-th order COE is usually dropped throughout the pa-

per. The memoryless orthogonal expansion thus corresponds to the zero-th order COE with 

n=0 in (6).  The correlation functions of the n-th order basis functions are therefore obtained 

as 
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with the two-point correlations 
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The derivatives of the n-th order basis functions can be similarly obtained, e.g. 
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By letting )(uU Φ= , )(hH Φ= , )(RS Φ= , )( nn gG ∗Φ=  and )( iiS ρΦ=∗ , with Φ be-

ing the Fourier transform operator, we specially rewrite the two-point correlation functions of 

the COE basis functions in frequency domain 
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where the tilde denotes complex conjugate. Note that in the cases of stationary correlation 

functions, it specially follows 
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Remark: The advantage of the n-th order COE (6) can be demonstrated by comparing it 

with the classical Volterra series expansion 
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The Volterra representation typically suffers from severe difficulties in solving for the un-

known kernels 
)(n

k . In the COE representation, the kernels are all explicitly given, and the 

problem is significantly reduced to solving of the unknown coefficients )(n

iu . 

3 THE COE METHOD ON RANDOM VIBRATION 

3.1 Linear oscillators  

Suppose the linear oscillator 
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is subjected to a non-stationary non-Gaussian translation input, i.e. 
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By using the Green function 
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the first three correlations of the non-stationary output u can be directly calculated from 
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where ijkR  is given in Eq. (4). 

When the excitation in Eq. (15) is stationary, the output can be directly given as 
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which is a special case of the COE representation (6). Note that, with the Green function g 

and the underlying Gaussian process being given, the stationary probability density function 

(pdf) of the output in Eq. (21) can be rapidly estimated by using Monte Carlo method in the 

frequency domain. 

A numerical example for application of the COE on linear oscillator is given in [6]. With 

regard to the multi-degree-of-freedom linear systems, the oscillator equations given above can 

be directly applied by using the modal decomposition as shown in [8]. 

3.2 Weakly nonlinear oscillators  

A Duffing oscillator subjected to a Gaussian white noise excitation with intensity D is con-

sidered 

 Wuuuu nn =+++ )(2 32 αωζω &&&  (22) 

The Gaussian response of the linear filter can be given as 100 hu σ= , and h1 is characterized by 

unit variance and power spectral density (PSD) 
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For small α, the nonlinear output of Eq. (22) can be approximated as 
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By noting 13

3

1 3hhh +=  and 12

2

1 += hh , Eq. (25) can be rewritten in terms of the random ba-

sis functions 
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By using the correlations of Eqs. (3)-(4) and (11), it follows that the stationary mean 

 )( 3αOu =  (28) 

and the stationary PSD 
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Since 
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the variance calculated from the first two terms of Eq. (29) is simply obtained as 
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which is identical to the result obtained using other approaches, e.g. [2,3]. In addition to serv-

ing as verification to the COE method, this example shows simplicity and efficiency of the 

orthogonal expansions in nonlinear problems. 

3.3 Strongly nonlinear oscillators  

For strongly nonlinear systems, the perturbation method is inapplicable. In this part, a vari-

ational method will be presented following the variational principles formulated for random 

media elastodynamics [7]. The variational functional, or Lagrangian, of a nonlinear oscillator 

 ( ) fuuguuu nn =+++ ),(2 2 &&&& ωζω  (32) 

can be formulated by using the convolution form 

 ( ) 0]),(2[ 2 =−+++∗= fuuguuuu nn
&&&&l ωζωδδ  (33) 

For a Duffing oscillator 3),( uuug α=& , the Lagrangian is derived from Eq. (33) as 
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where any trial function u satisfies the specified initial condition u(0).  To the authors’ know-

ledge, the convolution Lagrangian (34) is the first variational form formulated for nonlinear 

dissipative systems. It is especially noted that the classical point-wise Lagrangian form does 

not work on the dissipative term. 

For nonlinear random vibrations, the stochastic Lagrangian is directly obtained by taking 

ensemble average of Eq. (34), i.e. 

 0=lδ  (35) 

with the trial function u based on the COE representation (6). 

For stationary solutions, Eq. (35) can be rewritten in frequency domain as 
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Suppose the excitation is stationary 
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and choose the zeroth-order COE 

 ∑
=

=
0

),(),(
i

ii thutu ϑϑ  (38) 

as the trial function for the stationary solution. By substituting Eq. (38) into Eqs. (34)-(35) 

and taking derivative with respect to ui, it leads to a series of equations to solve for ui 

 0=
∂
∂

iu

l
 (39) 

Similarly the first- or higher-order COE can be chosen as the trial function. The detail of nu-

merical examples and investigation of accuracy and computational efficiency of the different 

trial functions will be provided in a forthcoming paper. 

4 CONCLUDING REMARK 

By developing a diagonal class of random fields/stochastic processes to represent high-

dimensional uncertainty, the proposed convolved orthogonal expansion method opens a new 

direction to deal with nonlinear stochastic dynamics. The advantage is especially noted for its 

efficiency in computing of large and nonlinear dynamical systems, in comparison with the 

classical Volterra series representation and the recently developed random variable based po-

lynomial chaos expansions. 
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