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Abstract. A major challenge in stochastic dynamics is to model nonlinear systems subject to
general non-Gaussian excitations which are prevalent in realistic engineering problems. In
this work, an n-th order convolved orthogonal expansion (COE) method is proposed. For li-
near vibration systems, the statistics of the output can be directly obtained as the first-order
COE about the underlying Gaussian process. The COE method is next verified by its applica-
tion on a weakly nonlinear oscillator. In dealing with strongly nonlinear dynamics problems,
a variational method is presented by formulating a convolution-type Lagrangian and using
the COE representation as trial functions.
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1 INTRODUCTION

To evaluate probabilistic response of a structural dynamic system subject to parametric and
external excitations, there are generally two approaches. The first approach uses Fokker-
Planck-Kolmogorov (FPK) equation to directly find probability density function (pdf) by as-
suming a white noise excitation. To solve FPK equation especially for nonlinear systems, var-
ious techniques have been proposed, including weighted residual, path integral, etc, which
however are all limited to systems of low dimension (up to 4). The second approach includes
perturbation method, moment closure method, and statistical equivalent techniques. While the
perturbation method is limited to weak nonlinearity, the accuracy of moment closure method
and statistical equivalent techniques on highly nonlinear problems remains an open question.

A major deficiency of the existing approaches is their incapability in dealing with general
non-Gaussian excitations which are prevalent in realistic engineering problems [5]. The mar-
ginal pdf and power spectral density of a loading process play a major role in determining the
response of systems, e.g. seismic wave in earthquake engineering. Therefore, a new approach
to model dynamic systems subject to non-Gaussian excitations is highly desired.

A novel stochastic computation method based on orthogonal expansion of random fields is
recently proposed [6]. In this study, the idea of orthogonal expansion is extended to the so-
called n-th order convolved orthogonal expansions (COE) especially in dealing with nonlinear
dynamics. For linear vibration systems, the statistics of the output can be directly obtained as
the first-order COE about the underlying Gaussian process. The COE is next verified by its
application on a weakly nonlinear oscillator. In dealing with strongly nonlinear dynamics
problems, a variational method is presented by formulating the convolution-type Lagrangian
and using the COE representation as trial functions [7]. Theoretically, substitution of the trial
response function into the Lagrangian will lead to the optimal solution. The effect of using
different trial functions (COE of different orders) on the accuracy and efficiency of the pro-
posed approach will be examined in a forthcoming paper.

2 CONVOLVED ORTHOGONAL EXPANSIONS

2.1 The zero-th order convolved orthogonal expansion

An underlying stationary Gaussian excitation A, (¢,.9) is characterized with the autocorre-

lation function p(f) and unit variance, where ¢ € ® indicates a sample point in random space.
Based on the so-called diagonal class of random processes [1], the zero-th order convolved (or

memoryless) orthogonal expansion of A, (¢,%) is proposed as [6]

u(t, ) =D u, (Oh; (1,9 (1)

where the random basis function A; corresponds to the i-th degree Hermite polynomial with
hy, =1. According to the generalized Mehler’s formula [4] the correlations among the random
basis functions are given as

§180°S, (t]7t2?'.'7tn) = hsl (t]’lg)...hsn (tn’lg)

i s TRt —t 2
— Z z 5sm’”5erM Jees ! )

vip=0  v,,=0 nn Jj<k ij!



X. Frank Xu, George Stefanou

I s, =r
where 7, = ZV o Vie =V O, ={ “ “, and the overbar denotes ensemble average.
P 0 s, #r1,

Following Eq. (2), the two-point and three-point correlation functions are specifically ob-
tained as

R, (1, —t,) =h, (t;,.9h,(t,,9) =5, p'(t, —1,) 3)
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where i', j',k' must be non-negative integers, otherwise R, =0.

The correlation relations can be extended to the derivatives of the random basis functions,
e.g.

p+q '
R, ,,(t,—1,)=h") (1, 9Hh)(t,,9) = 5‘7”&”6#’ ot —t,)
1 2
L
=0, i p' (1)

where 7 =1, —t,, and the subscripts p, g denote p-th and g-th derivatives. Similarly, the deri-
vations can be made for the convolution of the random basis functions, e.g.

Cy = hy (t,,9) % h; (1,9 = 5t [ p' (1, = 20,)dt, = 5z,
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where 7, = J. p'(t)dt is the correlation time.
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2.2 n-th order convolved orthogonal expansion

The idea of the memoryless orthogonal expansion presented above can be generalized to
an n-th order convolved orthogonal expansion (COE) for representation of nonlinear output
processes

u(t,$) =D u(Oh" (1,9 (6)
n=0 i=0
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where g is a given kernel, and the symbol * denotes the convolution operator. For notational
simplicity, the superscript (0) of the zero-th order COE is usually dropped throughout the pa-
per. The memoryless orthogonal expansion thus corresponds to the zero-th order COE with
n=0 in (6). The correlation functions of the n-th order basis functions are therefore obtained
as

R (ty,1y,00,0,) = B (6,9 b (2, 9)
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with the two-point correlations

Ry (t, —1,) = 0" (t,, D" (t,,9)
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The derivatives of the n-th order basis functions can be similarly obtained, e.g.
R (1, —1,) = hi(’f;:) (tl,g)hj.f‘; (t,,9)
5 "J‘]’i *m(t ) *n(t ) ap+q i( )d d (10)
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By letting U = ®(u), H = D(h), S=D(R), G" =D(g™) and S = D(p'), with ® be-
ing the Fourier transform operator, we specially rewrite the two-point correlation functions of
the COE basis functions in frequency domain

Sy (@) = H™ (0, HH" (0,9) = 5,1G" (0)G" (@)S " () (11)

s (@) =(aN=1) " H (. HA " (0.9

(12)
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where the tilde denotes complex conjugate. Note that in the cases of stationary correlation
functions, it specially follows

H™ (0, HH" (0,9 =65,5" ()

,pq
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Remark: The advantage of the n-th order COE (6) can be demonstrated by comparing it
with the classical Volterra series expansion
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The Volterra representation typically suffers from severe difficulties in solving for the un-

known kernels k"

problem is significantly reduced to solving of the unknown coefficients u " .

3 THE COE METHOD ON RANDOM VIBRATION

3.1 Linear oscillators
Suppose the linear oscillator
i+2lwi+ou=f
u(0)=u(0)=0

is subjected to a non-stationary non-Gaussian translation input, i.e.

f(t,9= Zf,-(t)hi (t,9)

By using the Green function
1 )
g(t) =—e " sin(w,t)
a)d
0, =w0,1-¢°
1
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the first three correlations of the non-stationary output u# can be directly calculated from

Glw) =

u(t) = [ g(t=1) fy(x)dr
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where R, is given in Eq. (4).
When the excitation in Eq. (15) is stationary, the output can be directly given as

. In the COE representation, the kernels are all explicitly given, and the

(15)
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(20)
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u(t,H=>f; K" (t,9) 1)
i=0

which is a special case of the COE representation (6). Note that, with the Green function g
and the underlying Gaussian process being given, the stationary probability density function
(pdf) of the output in Eq. (21) can be rapidly estimated by using Monte Carlo method in the
frequency domain.

A numerical example for application of the COE on linear oscillator is given in [6]. With
regard to the multi-degree-of-freedom linear systems, the oscillator equations given above can
be directly applied by using the modal decomposition as shown in [8].

3.2 Weakly nonlinear oscillators

A Duffing oscillator subjected to a Gaussian white noise excitation with intensity D is con-
sidered

ii+2lou+ o, (ut+ou’) =W (22)

The Gaussian response of the linear filter can be given as u, = o,/ , and h, is characterized by
unit variance and power spectral density (PSD)

s= o) 3
°°| 1 i Dr
2
%0 = D'[wa -’ +x/—_12§a)a)n‘ dw:?“)s .
For small o, the nonlinear output of Eq. (22) can be approximated as
u=o,h —awlc g*h +3a’w o) g* (hfg * b )+ o(a’) (25)

By noting A’ = h, +3h, and h’ =h, +1, Eq. (25) can be rewritten in terms of the random ba-
sis functions

u=o,h—aw oc.g *(h3 +3h, )+

3a’ w0, g *[(h, +1)g * (hy +3h)]+0(”) 20
U=0,H, —aa)fagG(H3 +3H, )+
30’0’ c G|(H, +5(0))*G(H, +3H,) |+ 0(a’) i
By using the correlations of Egs. (3)-(4) and (11), it follows that the stationary mean
u=0(’) (28)
and the stationary PSD
Sy =UU =028 —3a0’6¢ (G +G)S +a’ 0! 6195 (G + G 0

+G)+6lG]"s7 1+ 0(a?)

Since
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the variance calculated from the first two terms of Eq. (29) is simply obtained as
o’ =0,(1-3ac;) (31)

which is identical to the result obtained using other approaches, e.g. [2,3]. In addition to serv-
ing as verification to the COE method, this example shows simplicity and efficiency of the
orthogonal expansions in nonlinear problems.

3.3 Strongly nonlinear oscillators

For strongly nonlinear systems, the perturbation method is inapplicable. In this part, a vari-
ational method will be presented following the variational principles formulated for random
media elastodynamics [7]. The variational functional, or Lagrangian, of a nonlinear oscillator

i+ 28w, i+ o) (u+gu,u))= f (32)
can be formulated by using the convolution form

S = Su*[ii + 2¢w, i + o> (u + g(u,11))— £1=0 (33)

For a Duffing oscillator g(u,i) = au’, the Lagrangian is derived from Eq. (33) as

Z(u)z%u*u+§u*u+%wfu*u
3 (34)
+0wof(u3 >!<u—Zu2 *u’)— f*u+u0)u

where any trial function u satisfies the specified initial condition u(0). To the authors’ know-
ledge, the convolution Lagrangian (34) is the first variational form formulated for nonlinear
dissipative systems. It is especially noted that the classical point-wise Lagrangian form does
not work on the dissipative term.

For nonlinear random vibrations, the stochastic Lagrangian is directly obtained by taking
ensemble average of Eq. (34), i.e.

ol =0 (35)

with the trial function u based on the COE representation (6).
For stationary solutions, Eq. (35) can be rewritten in frequency domain as

SL({U)=0

Z(U):(—%a)2+\/—_la)§+%a)fj17+ (36)

aa){(U xU xU)U —%(U *U)Z}—ﬁ

Suppose the excitation is stationary
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f@. 9= fh9) 37)

i=0

and choose the zeroth-order COE
u(t,9) =Y uh(t,9) (38)
i=0

as the trial function for the stationary solution. By substituting Eq. (38) into Egs. (34)-(35)
and taking derivative with respect to u;, it leads to a series of equations to solve for u;

o _

0
o (39)

Similarly the first- or higher-order COE can be chosen as the trial function. The detail of nu-
merical examples and investigation of accuracy and computational efficiency of the different
trial functions will be provided in a forthcoming paper.

4 CONCLUDING REMARK

By developing a diagonal class of random fields/stochastic processes to represent high-
dimensional uncertainty, the proposed convolved orthogonal expansion method opens a new
direction to deal with nonlinear stochastic dynamics. The advantage is especially noted for its
efficiency in computing of large and nonlinear dynamical systems, in comparison with the
classical Volterra series representation and the recently developed random variable based po-
lynomial chaos expansions.

REFERENCES

[1] J.F. Barrett, D.G. Lampard, An expansion for some second-order probability distribu-
tions and its application to noise problems, IRE Trans. Inform. Theory, vol. IT-1, 10-15,
1955.

[2] Y.K. Lin, Probabilistic Theory of Structural Dynamics, Krieger Pub., Florida, 1976.

[3] G.D. Manolis, P.K. Koliopoulos, Stochastic Structural Dynamics in Earthquake Engi-
neering, WIT Press, UK, 2001.

[4] D. Slepian, On the symmetrized Kronecker power of a matrix and extensions of Meh-
ler’s formula for Hermite polynomials, SIAM J. on Mathematical Analysis, 3, 606-616,
1972.

[5] G. Stefanou, The stochastic finite element method: past, present and future, Computer
Methods in Applied Mechanics and Engineering, 198, 1031-1051, 2009.

[6] X.F. Xu, Stochastic computation based on orthogonal expansion of random fields,
Computer Methods in Applied Mechanics and Engineering, to appear.

[7] X.F. Xu, Variational principles of random media elastodynamics, submitted for publica-
tion.

[8] X.F. Xu, Quasi-weak and weak formulations of stochastic finite element methods,
Probabilistic Engineering Mechanics (Special issue on CSM 6), to appear.



