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Abstract. Base Isolation System (BIS) is a very effective strategy for reducing the effects of 
earthquakes on building structures. The classical Response Spectrum Method (RSM) contin-
ues to be the most common approach for the design of base-isolated buildings. This paper of-
fers a new strategy of seismic analysis and design for such structures in conjunction with the 
RSM. The main advantages of the proposed approach are: first, reduced computational effort 
with respect to an exact complex-valued modal analysis, which is obtained through a two-
stage transformation of coordinates, both involving real-valued eigenproblems; second, accu-
rate representation of the damping, which is pursued by consistently defining different viscous 
damping ratios for the modes of vibration of the coupled dynamic system made of superstruc-
ture and BIS; third, ease of use, since a convenient reinterpretation of the combination coeffi-
cients leads to a novel Damping-Adjusted Combination (DAC) rule, in which just a single 
response spectrum is required for the reference value of the viscous damping ratio. 

Keywords: BIS (Base Isolation System); CQC (Complete Quadratic Combination) rule; DCF 
(Damping Correction Factor); random vibration theory; RSM (Response Spectrum Method). 
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1 INTRODUCTION 

Different types of Base Isolation System (BIS) have been developed over the years in the at-
tempt of mitigating seismic effects on building structures, lowering structural and non-structural 
damages and reducing the risk for the occupants [1,2].  
The main result of a BIS is to increase the fundamental period of vibration of the isolated struc-
ture, which is permitted by large deformations at the isolation level. This effect is contrasted 
either by providing isolators with high inherent damping, or by coupling them with additional 
fluid and/or metallic dampers. This combination of large period of vibration and high damping 
capabilities tremendously reduces the earthquake-induced forces in the superstructure, which in 
turn can be designed to remain in the elastic range, even in the case of strong ground motions. 
As a consequence, less energy is dissipated in the superstructure. It follows that, from a mathe-
matical point of view, a seismically isolated structure is a non-classically damped system [3-6], 
with most of the energy being dissipated at the isolators’ level, although this point is often over-
looked in practice [7-10].  
The classical Response Spectrum Method (RSM) continues to be the most common approach 
for the design of base-isolated buildings. This technique requires the following steps: (i) solve 
an eigenproblem for the undamped structure, i.e. frequencies, participation factors and de-
formed shapes for the first modes of vibration; (ii) select the appropriate viscous damping ratio 
for each mode; (iii) take from the pertinent design spectrum the maximum value for each modal 
response; (iv) combine the modal maxima to get the sought design response of the structure. 
The last two steps introduce the main sources of inaccuracy in the practical application of the 
RSM. Indeed, most seismic codes furnish the response spectrum just for a reference value of the 
viscous damping ratio, which is typically 0 0.05ζ = , and thus quite different from the usual val-
ues assumed for BIS and superstructure. This circumstance motivates the use of a Damping 
Correction Factor (DCF), for which various expressions have been proposed [11-13]. It has 
been recently shown that such expressions can be quite different from each other [14], and they 
are not effective for seismically isolated structure [15,16]. 
In parallel, the combination rules available in the literature are not fully adequate. The so-called 
CQC (Complete Quadratic Combination) rule [17] is generally adopted by practitioners. This 
formula combines the ordinates of the given response spectrum by using the cross-correlation 
coefficients of the modal oscillators [18,19]. It has been recognized that the conventional ex-
pressions of CQC are unsuitable for analyzing non-classically damped structures, and hence 
alternative techniques have been proposed [20-22]. Unfortunately, the additional computational 
burden associated with the solution of complex-valued eigenproblems continues to limit the 
practical applications of these methods. 
It follows that a new combination rule would be required for the analysis and design of base-
isolated structures. To be effective in practice, and overcome the main shortcomings of existing 
techniques, an improved RSM should embed the following features: first, reduced computa-
tional effort; second, accurate representation of the damping; third, ease of use, requiring a sin-
gle response spectrum for the reference value of the viscous damping ratio. These practical 
needs constitute the motivation of the present study. 
The proposed DAC rule, which is alternative to the classical CQC rule and incorporates the fea-
tures highlighted above, can be viewed as a special variant of the method originally developed 
by Falsone and Muscolino [23,24] for non-classically damped structures, and recently improved 
by Muscolino and Palmeri [25] for the seismic analysis of primary structures with light secon-
dary appendages. The numerical results included in this contribution demonstrate the accuracy 
of the proposed method of analysis. 
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2 EQUATIONS OF MOTION OF COUPLED BIS-SUPERSTUCTURE 

Let us consider the n -floor base-isolated building depicted in Figure 1, subjected to the hori-
zontal ground acceleration g  in the generic line of action defined by the angle ( )u t gα . Assum-
ing diaphragmatic constraint for slabs and masses lumped at the storey’s level, the building 
possesses  Degrees of Freedom (DoFs). The isolation level has three DoFs, listed in the 
array b  {

3( 1)n+
( )t =u }T(b) (b) (b)

x y( )u t ( ) ( )u t u tϕ , the superscript T  denoting the transpose operator; 
these DoFs can be respectively defined as horizontal displacements along x  and  directions 
of the origin O  and rotation of the base about the vertical axis 

y
z , all taken with respect to the 

ground. The superstructure has 3  DoFs, listed in the n -dimensional block array  n
{ }TT T T T

s 1 2( ) ( ) ( ) ( )t t t t=u u u un , where the i -th three-dimensional array ( )i t =u  
{ }T( ) ( ) ( )

x y( ) ( ) ( )i i iu t u t u tϕ  collects origin’s displacements and storey’s rotation for the i -th 
level, with , all taken with respect to the isolation level. Since BIS (Base Isolation 
System) and superstructure are characterised by a high contrast of mechanical properties, the 
substructure approach is resorted to. Accordingly, BIS and superstructure are handled as two 
interconnected substructures, and the equations ruling the seismic motion of the coupled dy-
namic system can be posed in the form: 

1, ,i = n

t   b g g
ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ,t t t uα⋅ + ⋅ + ⋅ = ⋅M u C u K u G τ (1) 

where the dot symbol ( )⋅  means matrix product; ( )t =u  { }TT T( ) ( )t tu us b  is the super-array of the 
DoFs of the base-isolated building; b g( )α =τ  { }T

cos( ) sin( ) 0α αg g  is the three-dimensional 
array listing the influence coefficients of the ground shaking; the matrices of mass M , viscous 
damping C and elastic stiffness  are those of the whole structure, and can be assembled from 
the corresponding matrices of superstructure and isolation level: 

ˆ
ˆ K̂
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s s sb s 3 ,3 s 3 ,3 s sb
T
sb s r 3,3 b 3,3 b r

ˆ ˆˆ ˆ; ; ;n n

n n

⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

M M R C O K O M R
M C K GR M m O c O k m ,

⎤
− ⎥

⎦
 (2) 

in which the symbol ,  stands for a zero matrix having p qO p  rows and  columns, while 
sb  

q
=R [ T

3 3 3I I I ] 3 is a Boolean matrix of dimensions 3n× , the symbol pI  being the 
identity matrix of size p ; s , s  and s  in Eqs. (2) are the -dimensional symmetric ma-
trices of mass, damping and stiffness of the superstructure, assumed to be fixed to its own base; 

M C K (3 )n

bc  and bk  in Eqs. (2) are the three-dimensional symmetric matrices collecting the effective 
values of viscous damping and elastic stiffness for the BIS, respectively; finally, rm  is the 
three-dimensional symmetric mass matrix of the whole structure assumed as a rigid body mov-
ing on top of the seismic isolators: 

T
r b sb s sb ,= + ⋅ ⋅m m R M R   (3) 

in which bm  is the three-dimensional mass matrix of the isolated base. One can easily verify 
that even though the mass, damping and stiffness matrices of two substructures separately taken 
satisfy the well-known condition due to Caughey-O’Kelly [26] the coupled BIS-superstructure 
assembly is in general a non-classically damped dynamic system. 
 

3 TWO-STAGE TRANSFORMATION OF COORDINATES FOR THE MODAL 
EQUATIONS OF MOTION 

The main difficulty in the direct use of Eq. (1) lies in the non classical nature of the energy dis-
sipation for the whole structural system, which does not allow diagonalising together the matri-
ces of mass, damping and stiffness in the real space. To overcome this drawback, a convenient 
two-stage transformation of coordinates is introduced in this section.  

3.1 Stage 1  

Two independent transformations of coordinates are initially operated on the base-isolated 
buildings, i.e. on superstructure and BIS, which can be written in compact form:  

s s 3 ,3 s

b 3, b b

( ) ( )
,( ) ( )

n

m

t t
t

⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪= ⋅⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

u O q
u O q

Φ
Φ t

  (4) 

where the arrays s ( )t =q  { }T
s,1 s,( ) ( )mq t q t  and b ( )t =q  { }T

b,1 b,2 b,3( ) ( ) ( )q t q t q t  list the first 
 modal coordinates of the base-fixed superstructure and the three modal coordinates of 

the BIS, respectively; and where the 
3m ≤ n

3n m×  tall matrix sΦ  and the 3 3×  square matrix bΦ  are 
the associated real-valued modal matrices of the two subsystems, which can be evaluated along 
with the corresponding spectral matrices s =Ω { }s,1 s,diag , , mω ω  and b =Ω  

{ }b,1 b,2 b,3diag , ,ω ω ω  as solution of two decoupled real-valued eigenproblems: 
1 12

s s s s s b r b b b;
− −−⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅K M k mΦ Φ Ω Φ Φ Ω 2 ,−

I

 (5) 

with the respective ortho-normalization conditions 
T T
s s s b r b 3; .m⋅ ⋅ = ⋅ ⋅ =M I mΦ Φ Φ Φ   (6) 

Upon substitution of Eqs. (4) into Eq.(1), after some simple algebra, the equations of motion 
take the form: 
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g( ) ( ) ( ) ( ) ( ) ,gt t t uα⋅ + ⋅ + ⋅ =m q c q k q g t   (7) 

in which { }TT T
s b( ) ( ) ( )t t t=q q q  is ( 3m )+ -dimensional array collecting the modal coordinates 

of both superstructure and BIS. The other quantities appearing in Eq. (7) are so defined: 
T
s s sb b

T T
b sb s s 3

2 T
s s ,3 s ,3 s s sb

2 Tg b
3, b b 3, b b r

;

2
; ; ( ) ( ) .2

m

m m

m m

ζ
α αζ

⎡ ⎤⋅ ⋅ ⋅
= ⎢ ⎥⋅ ⋅ ⋅⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = = −⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I M R
m

R M I

O O M R
c k gO O m

Φ Φ
Φ Φ

Ω Ω Φ
τ

Ω Ω Φ g⋅

 (8) 

3.2 Stage 2 

The reduced matrices m , c  and k  specified in Eq.(8), as the corresponding matrices of Eqs.(1)
, do not satisfy the Caughey-O’Kelly condition [26]. Hence, the practical difficulty persists that 
the conventional formulation of the RSM is not applicable. This drawback can be overcome by 
using a further transformation of coordinates: 

g( ) ( ) ( ) ,t α= ⋅ ⋅q Φ γ θ t   (9) 

where  {( ) =tθ }T

1 3( ) ( )mt tθ θ +  is the ( 3m )+ -dimensional array of the modal coordinates 
obtained by combining superstructure and BIS; the square transformation matrix , along with 
the diagonal spectral matrix  

Φ
=Ω { }1diag , , mω ω +3 , can be obtained as solution of the new real-

valued eigenproblem: 
1 ,− ⋅ ⋅ = ⋅k m Φ Φ Ω 2−   (10) 

with the ortho-normalization condition T
3m+⋅ ⋅ =m IΦ Φ ; g( )α =γ  { }1 g 3 gdiag ( ), , ( )mγ α γ α+  is 

the diagonal matrix collecting the ( 3m )+  modal participation coefficients g( )iγ α =  
{ }T

g( )
i

α⋅ gΦ , { }
i
 being the i -th column of the matrix Φ Φ; and where the over-tilde denotes all 

the quantities associated with the proposed stage-2 transformation of coordinates. In doing so, 
the reduced equations of motion in the modal space take the alternative form: 

2
3( ) ( ) ( ) ( ) ,m gt t t u++ ⋅ + ⋅ = 1θ Ξ θ Ω θ t   (11) 

in which the symbol s1  stands for a unit array of size s , while Ξ =  T ⋅ ⋅cΦ Φ  is the matrix of 
viscous damping in the transformed modal space. Given the non-classical nature of the energy 
dissipation in base-isolated buildings, this matrix is generally sparse, but with off-diagonal 
terms much less than the diagonal ones. Hence, from an engineering point of view, the modal 
coupling in terms of damping forces can be neglected, so that the time evolution of i -th modal 
coordinate  is ruled by: ( )i tθ

2( ) 2 ( ) ( ) ( ) .+ + =i i i i i i gt t t uθ ζ ω θ ω θ t   (12) 

where 2i ii iζ ω= Ξ . In this equation iiΞ  and i iiω = Ω  are the elements on principal diagonal 
of the matrices  and Ξ Ω , respectively. It is worth emphasizing that the additional computa-
tional burden required by the proposed two-stage transformation of coordinates is very low. 
Indeed, in real applications the size of the second eigenproblem (Eq. (10)) is much less than 
the size of the eigenproblem required for a conventional modal analysis, being very often 

. ( )3 3 1m n+ << +
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Remarkably, only two approximations have been introduced so far, namely: 
i) modal truncation for the superstructure, since only the first  modes of vibration are 

retained for the base-fixed superstructure; 
m

ii) modal decoupling, since the off-diagonal terms in modal matrix of viscous damping 
are neglected. 

Both approximations are acceptable in the vast majority of practical design situations. 
 

4 CONVENTIONAL RESPONSE SPECTRUM METHOD 

Before proceeding with the formulation of the proposed Response Spectrum Method (RSM), let us 
summarize the conventional implementation of the RSM as formulated in EC8 [27], for base-
isolated buildings, which requires the following steps: 
 
1. Select the number  of vibrational modes to be retained for the superstructure-BIS cou-

pled dynamic system (in practice, 
m̂

ˆ 3( 1)m n<< + ); 
 

2. Compute modal matrix , whose columns are the real-valued modal shapes of the super-
structure-BIS combined system, and the associated spectral matrix 

Φ̂
ˆ =Ω  { }ˆ1ˆ ˆdiag , , mω ω , 

which are solution of the real-valued eigenproblem: 

  (13) 
1 2ˆ ˆ ˆˆ ˆ ,

− −⋅ ⋅ = ⋅K M Φ Φ Ω

 with the normalization condition Τ ˆˆ ˆ⋅ ⋅MΦ Φ m̂ = I , where  and  are the block matrices 
of mass and stiffness introduced in Eq. (2). 

M̂ K̂

 
3. Define the equivalent viscous damping ratio bζ  for the BIS and sζ  for the superstructure. 
 
4. For the generic structural response of interest, , define the set of influence coefficients 

 of the  modal coordinates , with i  
( )y t

îe m̂ ˆ ( )iq t ˆ1, ,m= , so that: 

  (14) 
ˆ

1

ˆ ˆ ˆ( ) ( ) ( ) ,
m

i i
i

y t y t e q t
=

≅ =∑

where the hat means the use of conventional approach. Notice that in the influence coeffi-
cients . îe
 

5. Evaluate the design value of  according to the Complete Quadratic Combination 
(CQC) rule (Wilson et al. 1981): 

ˆ( )y t

 ( ) ( )ˆ ˆ
e e

g g 2 2
1 1

ˆ ˆˆ ˆ, ,
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ,

ˆ ˆ

m m i i k k
i i k k

i k i k

A T A T
Y i k e g e g

ζ ζ
ρ α α

ω ω= =

= ∑∑  (15) 

where { }Τg bi i g
ˆˆˆ ( ) ( )g α α= ⋅ ⋅GΦ τ is the i-th participation factor;  ˆ ( , )i kρ  is the correlation 

coefficient between i -th and k -th modes of vibration, usually computed under the assump-
tion that the seismic acceleration is a zero-mean stationary Gaussian white noise [17-19]; 
and (e

ˆˆ ,i iA T )ζ  is the -th ordinate of the elastic response spectrum in terms of pseudo-
acceleration. This quantity depends in turn on periods of vibration 

i
ˆ ˆ2i iT π ω=  and viscous 

damping ratios îζ  of the  modes of vibration. It is generally assumed that the modal vis-
cous damping ratios for the BIS-superstructure combined system take the values 

m̂
îζ =  bζ  

for  and 3i ≤ îζ =  sζ  for i . Indeed, the first three modes of vibrations are those associ-
ated with large deformations of the seismic isolators, and hence the energy dissipation of the 

4≥
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BIS dictates the damping, while higher modes of vibration mainly involves the deformation 
of the superstructure, which dissipates less energy. 

 
It may be useful to remember that Eq. (15) is consistent with the random vibration theory, so 
that the sought design value  is defined as the expected extreme value of the structural re-
sponse  during the seismic motion, that is: 

Ŷ
ˆ( )y t

ˆ ˆ ˆ ˆE max ( ) =PF ( ) SD ( ) ,Y y t y t y= t   (16) 

where the symbols E ⋅ , PF ⋅  and SD ⋅  denote Expectation (E) operator, dimensionless 
Peak Factor (PF) and Standard Deviation (SD), respectively; and where the notation x  stands 
for the modulus of the scalar .x  In the conventional CQC rule it is also made the additional 
simplifying assumption that PFs of structural response  and modal coordinates   are 
approximately equal. 

ˆ( )y t ˆ ( )iq t

 

5 PROPOSED DAMPING-ADJUSTED COMBINATION RULE  

Aim of this section is to then formulate a Damping-Adjusted Combination (DAC) rule in which 
a new set of combination and correction coefficients, consistently based on the random vibra-
tion theory, enables one to make use of a single response spectrum in combining the modal 
maxima. The particularization of the proposed DAC rule in the case of white noise excitation, 
leading to handy closed-form expressions, is presented in the next section. The equivalence of 
dimensionless PF for structural response and PFs for the contributing modal responses (i.e. one 
of the main assumptions of CQC rule) is also removed. 
 
Let  be the time history of a generic structural quantity of interest for the purposes of de-
signing a base-isolated building. Without loss of generality, this structural response can be ex-
pressed as linear combination of the DoFs of the system: 

( )y t

T T
s s b b( ) ( ) ( ) ,y t t t= ⋅ + ⋅d u d u   (17) 

where the arrays s  =d { }T

s,1 s,3nd d  and { }T

b,1 b,2 b,3d d d=bd  collect the influence co-
efficients of superstructure and isolation level, respectively. Once the suggested two-stage trans-
formation of coordinates is adopted, the generic structural response  can be expressed by a 
linear combination of the modal responses: 

( )y t

3

g
1

( ) ( ) ( ) ( ) ( ) ,
m

T
i i i

i

y t y t t tε γ α θ
+

=

≅ = = ∑ε θ   (18) 

in which 3m{ T
1 }ε ε +=ε   is the array listing the influence coefficients of the  modal 

coordinates for structural response under consideration, and can be assembled as: 
3m +

TT
s sT
T
b b

.
⎧ ⎫⋅⎪ ⎪= ⋅ ⎨ ⎬⋅⎪ ⎪⎩ ⎭

d
d

Φ
ε Φ

Φ
  (19) 

By assuming that structural response  and modal responses  , with i( )y t ( )i tθ = 1, , ( 3)m+ , 
are zero-mean Gaussian random processes, the standard deviation SD ( )y t  can be expressed 
in the form: 
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3 3

g g
1 1

SD ( ) ( , ) ( ) ( ) ,
m m

i i i k k k
i k

y t i kρ ε γ α σ ε γ α σ
+ +

= =

= ∑∑   (20) 

where ( , )i kρ  is the following correlation coefficient: 

( ),( , ) ,i k i ki kρ σ σ σ=   (21) 

in which iσ  and ,i kσ  stand for Standard Deviation (SD) of the i -th stationary modal response 
 and steady-state covariance between  and , respectively: ( )i tθ ( )i tθ ( )k tθ

2SD ( ) E ( ) ;i i itσ θ θ= = t   (22) 

, E ( ) ( )i k i kt tσ θ θ= .   (23) 

Following now the same strategy recently proposed by Muscolino and Palmeri [25] for the 
seismic analysis of light secondary substructures, let us rewrite the modal correlation coefficient 
in the equivalent form: 

(0) (0)
,( , ) ( , ) ,i k i k

i k i k

i k r i k
σ σ σρ
σ σ σ σ

= =   (24) 

in which the novel combination coefficient  is so defined: ( , )r i k

(0) (0)

E ( ) ( )
( , ) ,i k

i k

t t
r i k

θ θ

σ σ
=   (25) 

where the denominator (0) (0)SD ( )i i  denotes the standard deviation of the stationary 
seismic response of a dummy SDoF oscillator associated with the -th mode of vibration of the 
base-isolated building. This dummy oscillator has unit mass, a reference value of the viscous 
damping ratio, 

tσ θ=
i

0ζ , for which the elastic response spectrum in known, and undamped period of 
vibration 2iT = iπ ω . Therefore, the dynamic response of this dummy oscillator is ruled by: 

(0) (0) 2 (0)
0( ) 2 ( ) ( ) ( ) .i i i i it t tθ ζ ω θ ω θ+ + = gu t   (26) 

Interestingly, Eq. (26) can be simply derived from Eq. (12) by substituting the viscous damping 
ratio (i.e., the reference value 0ζ  instead of the actual modal value iζ ). 
Once the new set of combination coefficients has been introduced, substitution of Eq. (24) into 
Eq.(20), and the result into Eq. (16), gives: 

3 3
(0) (0)

g g
1 1

PF ( ) ( , ) ( ) ( ) .
m m

i i k k i k
i k

Y y t r i k ε γ α ε γ α σ σ
+ +

= =

= ∑∑   (27) 

This formula can be further manipulated by multiplying and dividing each term in the dou-
ble summation by the PF of the corresponding dummy oscillator, and by introducing the di-
mensionless correction coefficient (0)

iχ  so defined: 
(0) (0)PF ( ) PF ( ) .i y t tχ = iθ   (28) 

Indeed, according to Eq. (16) and to the conventional CQC rule, the expected extreme value of 
the dynamic response of a dummy oscillator can be assumed to be equal to the maximum dis-
placement given by the pertinent elastic response spectrum: 
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{ } ( )0(0) (0) (0)
2

,
PF ( ) E max ( ) .e i

i i i
i

A T
t t

ζ
θ σ θ

ω
= =  (29) 

Therefore, Eq. (27) gives:  

( ) ( )
(0) (0)3 3

g g
02 2

1 1

( ) ( )
( , ) , , ,

  

m m
i i i k k k

e i e k
i k i k

Y r i k A T A T
ε γ α χ ε γ α χ

ζ ζ
ω ω

+ +

= =

= ∑∑ 0  (30) 

which is formally similar to the CQC rule of Eq. (15). However, there are three fundamental 
novelties in the proposed formula:  
 
1. The combination coefficient , defined by Eq.(25), is no  more the correlation coeffi-

cient between i -th and k -th modal oscillators of the base-isolated building, and requires 
the evaluation in the frequency domain of the following quantities: 

( , )r i k

 2(0) (0)

0

2 ( ) ( )i i gH S d ;σ ω ω
+∞

= ∫ ω  (31) 

 
0

E ( ), ( ) 2 ( ) ( ) ( )i k i k gt t H H S d .θ θ ω ω
+∞

∗= ∫ ω ω  (32) 

in which g ( )S ω  is the Power Spectral Density (PSD) function simulating the energy distri-
bution of the design ground shaking and:  

 ( ) ( )
1(0) 2 2

0( ) 2 ;i i iH jω ω ω ζ ω ω
−

⎡ ⎤= − +⎣ ⎦  (33) 

 ( ) ( ) 12 2( ) 2 .i i i iH jω ω ω ζ ω ω
−

⎡ ⎤= − +⎣ ⎦  (34) 

 
2. The correction coefficient (0)

iχ  is introduced with respect to the i -th dummy oscillator 
(Eq.(28)), so that the hypothesis of equivalence between dimensionless PFs for structural 
response and contributing modal responses is removed; 

 
3. Most importantly, only the elastic response spectrum for the reference value 0ζ  of the vis-

cous damping ratio is required. It follows that the use of a semi-empirical DCF is avoided, 
and the effects of different viscous damping ratios in the actual modal oscillators are con-
sistently taken into account by the novel combination ( ) and correction (r (0)χ ) coeffi-
cients introduced in the double summation of Eq.(30). For this reason the formula has been 
termed Damping-Adjusted Combination (DAC) rule.  
 

It is worth mentioning that all the quantities appearing in the proposed DAC rule of Eq. (30) can 
be easily evaluated in practice, so that the computational effort is just slightly higher with re-
spect to the traditional CQC rule. Indeed, the modal parameters ( iε , iγ , iω  and iT ) simply re-
quire the application of  the two-stage transformations of coordinates presented in the third 
section, while the novel coefficients r  and i

(0)χ  introduced for the DAC rule just depend on the 
first spectral moments of both actual modal oscillators and dummy oscillators, which in turn can 
be easily computed by using traditional techniques of the random vibration theory. 
 

 9



G. Muscolino, A. Palmeri and C. Versaci 

6 CLOSED FORM EXPRESSION UNDER WHITE NOISE ASSUMPTION  

The traditional CQC rule is usually applied under the simplified assumption that the ground ac-
celeration is a stationary white noise, i.e. with energy uniformly distributed over the frequen-
cies. The same assumption is considered in this section with the purpose of deriving simple 
closed-form expressions for the new coefficients introduced in the proposed Damping-Adjusted 
Combination (DAC) rule, in so reducing the computational burden. Indeed, when the Power 
Spectral Density (PSD) function of the input is constant, it is possible to evaluate the exact solu-
tion of the following integrals appearing in previous expressions. In particular by assuming that 

( ) 1gS =ω  the new combination coefficients of Eq. (25) becomes: 

0( , ) ( , ) ,
i k

r i k i kζ ρ
ζ ζ

=   (35) 

where ( , )i kρ  is the correlation coefficient between i -th and k -th modes of vibration evalu-
ated assuming the seismic excitation as a white noise process [18,19]: 

( )
,

8( , ) ,i k i k i k i i k k
i k

i k
C

ρ ζ ζ ω ω ω ω ζ ω ζ= + ω

2 2 2 ,

  (36) 

and  
2 2

, , ,4 4( )i k i k i k i k i k i k i kC B A ζ ζ ω ω ζ ζ ω ω= + + +   (37) 

2 2 2 2
, ,;i k i k i k i kA B .ω ω ω= + = −ω   (38) 

Under the white noise approximation, an additional simplification arises in the computation of 
the coefficient (0)

iχ  defined in Eq. (28) by introducing the Vanmarcke’s PF [28,29], for the 
structural response of interest PF ( )y t  and for the dummy responses (0)PF ( )i tθ : 

( )( ){ }1.20PF ( ) 2 ln 2.89 ( ) 1 exp 1.77 ( ) ln 2.89 ( ) ;y t N y t q y t N x t+ +⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (39) 

( )( ){ }(0)
gPF ( ) 2 ln 0.4601 1 exp 0.3283 ln 0.4601 .i it Tθ ω ⎡= − −⎢⎣ gi Tω ⎤

⎥⎦
 (40) 

Importantly, (0)PF ( )i tθ depends only on the dimensionless quantity gi Tω , g  being the dura-
tion of the strong-phase of the ground motion, while 

T
PF ( )y t  depends on the expected number 

of upcrossings of the time axis, ( )N y t+ , and on the bandwidth parameter ( )q y t . These 
quantities can be evaluated as: 

2
g

0

( )1( ) ;
2 ( )

y t
N y t T

y t
λ

π λ
+ =   (41) 

2
1

0 2

( )
( ) 1 .

( ) ( )
y t

q y t
y t y t
λ

λ λ
= −   (42) 

The symbol ( )y tλ  in Eqs. (41) and (42) is the spectral moments of order  of the 
structural response , which under the white noise approximation can be evaluate in closed 
form as: 

0,1,2=
( )y t
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( )
3 3

0
1 1 ,

4( ) ;
m m

i k
i k i i k k

i k i i k

y t
C
π ε ελ γ γ ζ

+ +

= = +

= +∑ ∑ ω ζ ω   (43) 

( ) ( ) ( )
3 3

1 , ,
1 1 ,

2( ) 2 2 ln ;[ ]
m m

i k
i k i i k k i k i k i k i i k k i k i k

i k i i k

y t A D A D B
C
ε ελ γ γ ζ ζ ω ω ζ ζ ω ω

+ +

= = +

= + + + −∑∑ , ω ω  (44) 

(
3 3

2
1 1 ,

4( ) ,
m m

i k
i k i k i k k i

i k i i k

y t
C
π ε ελ γ γ ω ω ζ

+ +

= = +

= ∑ ∑ )ω ζ ω+  (45) 

in which: 

2

2

11 arctan .
1

i
i

ii

D
⎛ ⎞−
⎜=
⎜− ⎝ ⎠

ζ
ζζ

⎟
⎟

)

  (46) 

 

7 NUMERICAL APPLICATIONS 

7.1 Objective structure  

Aimed at validating the proposed method of analysis and design, the seismic response of a rep-
resentative 5-storey base-isolated building ( 5n =  has been investigated. A superstructure with 
irregular distributions of mass and stiffness in plan and elevation has been chosen (see Figure 
1). The first three storeys have dimensions of  by 10 , which reduce to 13  by  
for the last two storeys. The floor layouts are sketched in Figure 2, where the position of centres 

25 m m m 10 m

Figure 2. Bottom (left) and top (right) plan layouts of the base-isolated building considered in 
the numerical applications; circle (o) and cross (x) identify centre of mass (C ) and centre oM f 
rigidity (C ), respectively. R

 

x

y

ϕ

25.00 m

 10
.0

0
m

MC

RC

x

y

ϕ

13.00 m

RC

MC

Table I. Exact (T ) and approximate (T ) periods of vibration for the base-isolated build-
ing. 

î i

Mode 
i 

ˆ (s)iT  (s)iT  Inaccuracy (%) Mode 
i 

ˆ (s)iT  (s)iT  Inaccuracy (%)

1 2.086 2.086 −0.002 5 0.244 0.243 −0.555 
2 2.077 2.077 −0.005 6 0.214 0.208 −2.592 
3 1.809 1.808 −0.011 7 0.143 0.141 −1.288 
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Case 

(1) 
(2) 
(3) 
(4) 
(5) 

of mass MC  (o) 
three storeys and

tot  1M = ,106 M
nal value of the 

7.2 Modal an

Aimed at invest
against the conv
periods of vibra
ing the full eigen
Table I, exact an
of the novel two
the proposed DA

7.3 Seismic a

Five methods o
Method (RSM),
ples of artificial
spectrum; iii) di
of the accelerog
version of the D
each analysis, th
In order to test 
cases have been
ber of retained m
sidered, i.e. grou
in EC8 [27], alo
and ; two s

s

30 s
{ 0.02,ζ =  bζ
have been retain
Figure 3 depicts
shaking for the f
which is the wea

 samples is
(mean value  
the random vibr

400
±

 

Table II. Analysis cases considered for validation purposes. 
Duration of 

stationary part Damping ratios superstruc-
ture’s modes

Ground type 
g (s)T  superstructure

sζ  
BIS 

bζ  m  

A 15 0.02 0.12 8 
A 30 0.02 0.012 8 
C 30 0.02 0.012 8 
C 30 0.01 0.18 8 
C 30 0.01 0.18 13 
and rigidity RC  (x) is also shown. Their relative distance is  for the first 
 1.  for the last two storeys. The total mass of the base-isolated building is 
 and the lateral stiffness of the BIS is 

2.31 m
82 m

g (b)
latK =  10,370 kN m , so that the nomi-

isolation period is isoT =  (b)
tot lat2 M Kπ  2.05 s= . 

alysis  

igating the accuracy of the proposed two-stage transformation of coordinates  
entional modal analysis, exact ( îT =  ˆ2 iπ ω ) and approximate ( iT  = 2 iπ ω ) 

tion for the first 8 modes of the undamped structure have been evaluated by us-
problem of Eq. (13) and the reduced one of Eq. (10), respectively. As shown in 
d approximate values are in excellent agreement, in so confirming the validity 
-stage modal analysis for base-isolated buildings, which in turn is adopted for 
C rule.  

nalyses  

f analysis have been applied and compared, namely: i) Response Spectrum 
 as formulated in EC8 [27]; ii) Monte Carlo Simulation (MCS), with 400 sam-
ly generated time histories of ground acceleration consistent with the response 
rect application of the random vibration theory with a consistent PSD function 
rams; iv) proposed Damping-Adjusted Combination (DAC) rule; v) simplified 
AC rule under White Noise input (DAC-WN), as presented in Section 6. For 
e angle of attack gα =  90   has been used. °
the performances of the proposed approach in different design situations, five 
 analysed, which differ in seismic input and/or damping properties and/or num-
odes. As summarized in Table II, two different soil conditions have been con-

nd types A (rocks) and C (deep deposits of dense sands or stiff clay) as defined 
ng with two durations of the stationary part of the accelerogram, i.e. gT =   
ets of viscous damping ratios have been used for superstructure and BIS, i.e. 

15 s

0.12}  and s{ 0.01,ζ = b 0.18}= ζ = ; either m =  8 or 13 modes of vibration 
ed for the superstructure. 
 the profiles of inter-storey drifts along the epicentral direction of the ground 
ive design situations summarized in Table IV and for angle of attack gα =  , 
kest direction of the 3D frame. In the pictures, the mean value of the MCS with 

 shown with a solid black line, and the corresponding interval of confidence 
standard deviation) is delimited by a pair of dashed thin lines; the prediction of 
ation theory is shown with a dashed gray line, while the values consistent with 

90°
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Figure 3. Profiles of superstructure’s interstorey drifts for the five cases of Table IV when the
agle of attack of the ground motion is gα =  90°  (weakest superstructure’s direction). 

RSM as formulated in EC8 are those with dot-dashed thin lines; DAC and DAC-WN results are 
reported with circles and crosses, respectively. 
The inspection of these graphs reveals that: 

• The proposed DAC and DAC-WN rules are always in good agreement with the results 
of MCS and random vibration theory. 

• The results of the RSM (EC8) very often show large inaccuracies, falling most of the 
times outside the interval of confidence of the MCS. 

• The larger is the stationary duration of the accelerogram, the smaller is the interval of 
confidence of the MCS (comparison of cases (1) and (2)), i.e. the more deterministic is 
the mean value of the generated response spectra. 
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• The predictions of the RSM (EC8) are less accurate when the viscous damping ratios 
sζ  and bζ  become smaller for superstructure and larger for BIS, respectively (com-

parison of cases (3) and (4)), i.e. when the discrepancy increases with respect to the 
reference value 0ζ =  0. .(3)).  05

• The results’ trend is not significantly affected by soil type (comparison of cases (2) and 
(3)) and number of modes retained in the analysis (comparison of cases (4) and (5)). 

 

8 CONCLUSIONS  

The two main sources of inaccuracy of the classical Response Spectrum Method (RSM) in the 
practical analysis and design of base-isolated buildings have been pointed out. First, the use of 
elastic response spectra for different values of the viscous damping ratio, although the seismic 
action is defined for just a single reference value; second, the use of combination rules not fully 
adequate for non-conventional structures. This is confirmed by the numerical results included in 
this paper, where the inaccuracy of the conventional RSM with DCF (Damping Correction Fac-
tor) and CQC (Complete Quadratic Combination) rule can be as large as 27% , which is unac-
ceptable from an engineering point of view.  
Aimed at overcoming these shortcomings, an improved RSM has been presented and validated. 
The proposed technique consists of a two-stage transformation of coordinates  in parallel with a 
novel Damping-Adjusted Combination (DAC) rule. The following features have been embed-
ded in the formulation: first, light computational effort, since the calculation of the exact com-
plex-valued eigenproperties of base-isolated buildings is avoided; second, accurate 
representation of the damping for both superstructure and Base Isolation System (BIS); third, 
ease of use, requiring a single response spectrum for the reference value of the viscous damping 
ratio, i.e. the only spectrum which defines the seismic action. Numerical investigations for a re-
alistic structure confirm the improved accuracy of the proposed method, leading toward more 
economical and/or dependable design of base-isolated buildings. The closed-form expressions 
derived under the white noise assumption for the ground acceleration allow reducing the com-
putation burden in the proposed DAC rule, and hence they are particularly suitable for practical 
applications. 
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