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Abstract. For the purpose of energy dissipation steel structures exposed to seismic loading in-
tentionally experience inelastic material behavior. Experiments of mild construction steel have
shown that the behavior of structural steel is highly sensitive to loading velocity. Under cyclic
loading, the Bauschinger effect decreases the yield stress. In addition, the steel suffers from
material damage if the material is subjected to inelastic deformations.
Therefore, to evaluate the structural safety of steel structures in case of earthquakes, a more de-
tailed description of the material behavior is inevitable. The proposed material model describes
the evolution and distribution of inelastic strains and damage in steel structures under seismic
excitation by means of a set of internal variables. The model takes into account viscoplastic ma-
terial behavior, isotropic and kinematic hardening, ductile damage, and a nonlocal extension in
the form of an implicit gradient formulation to overcome the phenomenon of strain localization.
To determine the material model parameters, numerical results are compared with experiments
under static and dynamic loading. In order to indicate the influence of the description of the
material behavior on the respsonse of 3D structures subjected to seismic excitation different
approaches for the material are used.
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1 INTRODUCTION

Earthquakes are unpredictable disasters which can damage structures severely and therefore
endanger human safety. Thus, building codes in periled regions have to include methods to
verify this special loading. The European code EC 8 uses the linear response spectrum method
to specify static forces which act on the structure. The response spectrum is determined for
elastic material behavior and the verification does not differ from static load cases. Material-
dependent energy dissipation is taken into account by decreasing the response spectrum, and
therefore the load, by a factor. This is a simple practical approach which considers the material
behavior in a very general way depending on the method of construction.

Moreover the EC 8 also permits nonlinear time-history computations, but demands precise
material modelling to capture the energy dissipation. In order to predict the structural response
to seismic loading the inelastic material behavior, that accounts for the dissipation of energy,
needs to be described in detail. Along with inelastic deformations a deterioration of the material
can be observed, which is referred to as damage. It evolves from voids in the microstructure
and this microstructural damage, which is not visually detectable from the outside, can increase
over time and finally lead to macrocracks and failure [1, 2]. This paper focuses on a method
to predict even small damage with a high precision. For that purpose, a continuum damage
model is developed in the framework of thermodynamics taking into account the evolution
of the material behavior including phenomena like hardening, softening, and damage. Since
softening and damage are always accompanied by localization of deformation in small process
zones of undefined width, local damage models suffer from a dependency on the fineness of
finite-element discretization. As a remedy an implicit gradient enhanced formulation for a non-
local damage variable is introduced which includes an additional material-dependent parameter
to affect the size of the process zone.

Applying the proposed model to a FE analysis of a structure provides the distribution of
damage across the structure. Therefore, highly stressed regions can be identified, but it is not
possible to evaluate the damage state of the structure in general which encourages the formula-
tion of a scalar global damage index.

2 MATERIAL MODEL

For the designing of steel constructions linear elastic material behavior is generally consid-
ered. To increase the degree of utilization plastic material behavior can be taken into account
through a plain linear elastic ideal plastic stress-strain relationship.

For static loads these assumptions are conservative. To compute the response of a structure
excited by earthquakes this simplified description of the material behavior is insufficient.

2.1 Material behavior of mild construction steel

To reveal the material behavior of mild construction steel subjected to seismic loading, exper-
iments have been conducted at the Technische Universität Braunschweig [3]. Figure 1 depicts
the measured stress of a unaxial bar loaded by a strain record deduced from the north-south
component of the 1995 Kobe earthquake. The characteristic yield stress occurs only for the
first load path. Beginning with the first reverse loading hystereses develop which exhibit a
continuous transition between the linear elastic and the nonlinear inelastic range. The hystere-
sis shape shows that the initiation of plastic deformations occurs earlier after load reversals.
This phenomenon called Bauschinger effect can be taken into account by kinematic hardening.
Repeated cyclic straining with strain amplitudes > 6% leads to cyclic increase of the yield
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stress which can be described by isotropic hardening. Moreover, experiments have shown that
the cyclic deformation behavior of mild steel is closely related to the inelastic strain amplitude
history [4, 5]. In order to consider this fact, a strain memory surface is integrated into the model.

Figure 1: Hysteresis curves and development of stress of the Kobe earthquake obtained experimentally [3]

At he level of atoms inelastic deformations decrease the number of bonds which leads to
material deterioration with an impairment of the elementary area of resistance. This damage is,
in general, strongly anisotropic and can be observed as growing microvoids which eventually
results in macroscopic cracks. For a low alloy steel Figure 2 shows the microscopic debonding
of a notched specimen after cycling loading. The cross section is deteriorated although a macro-
crack cannot be located yet. The existence of damage in mild steel is investigated for example
in [7, 8].

r = 10 mm

Figure 2: Metallographic section of a notched specimen after cyclic loading according to [6]

For the description of damage evolution a model is proposed which bases on the isotropic
ductile damage model for monotonic loading presented in [9]. Modifications adjust the model
to micromechanical observations under cyclic straining. The initiation of ductile damage is
difficult to specify. Experiments have shown that nucleation of cavities does not occur below a
certain amount of plastic strain. However, it is hard to determine this threshold so that a large
variety of different proposals is available in literature. This work uses a threshold based on the
equivalent plastic strain in order to capture the characteristics of mild construction steel. Since
mild construction steel S 355 does not show pronounced damage in the form of a continuous
reduction of the modulus of elasticity for cyclic loading with small strain amplitudes [10], the
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model prohibits damage evolution below a certain amount of plastic strain. But ductile damage
due to irregular large cyclic straining ist captured. The chosen criterion enables ductile damage
evolution under large strains and thus provides a precise method in order to describe damage
evolution under seismic loading.

2.2 Material equations

The mathematical description of the material behavior is achieved by a set of ordinary differ-
ential equations of first order with respect to time. The current state of the material is described
by internal variables and related evolution equations, which can be derived from thermodynam-
ics. The material equations contain isotropic nonlocal damage D̄.

Assuming small strains, the total strain rate can be split up additively in an elastic and an
inelastic part

ε̇ = ε̇el + ε̇in. (1)

The elastic strain rate is based on Hooke’s law and contains an isotropic degradation of the mod-
ulus of elasticity by the damage variable D̄ following the principle of energy equivalence [11].
Considering the influence of damage on stiffness under alternating tension and compression,
it is assumed according to Lemaitre [12] that some but not every crack closes under compres-
sion so that the stiffness of the material under compression lies between the undamaged and
the damaged stiffness. In order to define the compressive stiffness of damaged material a crack
closure parameter h is introduced. Thus, effective stress and strain are defined differently for
tension (+) and compression (-):

σ̃+ =
1

1−D
· σ+ , ε̃+ = (1−D) · ε+ (2)

σ̃− =
1

1−Dh
· σ− , ε̃− = (1−Dh) · ε−. (3)

For h = 0 the initial stiffness of the material is recovered and a value of h = 1 assumes that
the stiffness under tension is on par with the stiffness under compression. Lemaitre proposes to
use a value of h = 0.2. Figure 3 shows the characteristic development of the stiffness for cyclic
loading if damage evolution for positive stress states is assumed.
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Figure 3: Stiffness under tenion and compression

The inelastic viscoplastic deformations are obtained following the approach by Chaboche
and Rousselier [1, 2]. The over-stress σex, that determines the onset of viscoplastic deformation,
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corresponds to the yield function and results from a modified criterion based on Gurson [13]
and Tvergaard and Needleman [14] with the first (J1(σeff ) = 1

3
tr(σ − X)) and the second

(J2(σdeff ) = 1
2
tr((σ −X)d · (σ −X)d)) invariant of the effective stress tensor σeff = σ −X

and the effective stress deviator σdeff = (σ −X)d, respectively

σex = σeq − σF −K =
1

1− D̄

√
3J2(σdeff ) + D̄J1(σeff )2 − σF −K. (4)

The yield function considers isotropic hardeningK and kinematic hardening X which appropri-
ately describe inelastic behavior according to Chaboche and Rousselier in case of undamaged
material by the v. Mises yield criterion.

Figure 4: Yield surface

Figure 4 depicts the v. Mises yield cylinder for undamaged material and the contraction of
the yield surface combined with a formation of caps at the ends of the yield cylinder due to
damage. In case of damage, the yield function employs volumetric inelastic deformations and
permits coupling of viscoplasticity and damage.

The initiation of damage is determined by a damage threshold surface which is defined via
the equivalent positive plastic strain

εineq =

√
2

3
(〈εin11〉2 + 〈εin22〉2 + 〈εin33〉2 + 2〈εin12〉2 + 2〈εin13〉2 + 2〈εin23〉2) (5)

where the McAuley brackets omit negative strains and thus prohibit damage evolution under
compression. The equivalent strain has to exceed the scalar damage threshold strain parameter
εinD for damage evolution

εineq − εinD ≤ 0 −→ Ḋ = 0

> 0 −→ Ḋ (6)

While Pirondi and Bonora [15] propose that the damage threshold strain decreases under com-
pression due to the presence of broken inclusions, the damage threshold strain here is assumed
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to be constant.

In order to consider different damage evolution under tension and compression, the evolution
of local ductile damage

Ḋ = (c1 + c2e
−c3 1

(1−D̄)
p+

)
1

(1− D̄)
ṗ+ + c4(c5 − D̄)

〈
tr

(
∂σex
∂σ

ṗ+

)〉
(7)

depends on a newly defined variable p+ called active accumulated plastic strain based on [15]:

ṗ+ = ṗ

〈
J1

|J1|

〉
= ε̇0

〈
σex
σp

〉n〈
J1

|J1|

〉
. (8)

Thus, the evolution of ductile damage is enabled only if the first invariant of the stress tensor is
positive. The two terms of the damage evolution equation (7) consider transient and saturation
behavior in damage evolution as well as damage due to volumetric yielding and depend on the
damage parameters c1 - c5.

The memory of the strain loading history is considered by a strain memory surfaceM , which
depends on two variables β and q where β describes the displacement of the surface and q
specifies its amplitude. Within this work, a maximum strain amplitude memory [4] is defined
in the three-dimensional space as

M =
2

3
(εin − β)(εin − β)− q2 ≤ 0 (9)

with

β̇ = 0.5H(M) ε̇in, (10)
q̇ = 0.5H(M) nF nM ṗ, (11)

whereH(M) is the Heaviside function withH(M) = 1 ifM ≥ 0 andH(M) = 0 ifM < 0, nF
is the normal to the yield surface, and nM is the normal to the strain memory surface. A plastic
strain state outside the current strain memory surface leads to the growth and adjustment of the
variables β and q, while β and q remain constant for plastic strain states inside the memory
surface. Thus, the inelastic strain amplitude variable q will not decrease and always remembers
the maximum strain reached so far during loading.

Considering the influence of the strain memory surface on isotropic hardening, the saturation
value of isotropic hardeningQ becomes a function of the amplitude of the strain memory surface
q. Within this work, the evolution rule of the saturation value of isotropic hardening Q is
assumed to be linear.

As shown in Figure 5 the numerical results according to the proposed model match the
measured stress, comparing Figure 1, very well. Solely the observed yield plateau cannot be
described with the given model.

2.3 Non-local extension

The dissipation of energy concentrates on small areas of the structure called process zones.
With the grave decrease of stiffness when reaching inelastic material behavior this causes high
strain gradients. If the size of the process zone is not defined in a finite element computation the
results of local damage models depend on the fineness of discretization. Reducing the element
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Figure 5: Hysteresis curves and development of stress of the Kobe earthquake obtained by numerical simulation

size leads to a decreasing process zone and less energy dissipated. It is obvious that for an
evanescent volume and therefore inelastic material behavior without dissipation the description
is physically incorrect and an extension to provide accurate results is needed. Mathematically,
the problem becomes ill-posed since the differential equations lose their elliptic form and the
acoustic tensor of the tangential stiffness tensor becomes singular [12, 16].

In order to determine the size of the process zone and to regularize the solution, the models
need to be extended by a material-dependent internal length scale. An overview of the state
of the art for different non-local extensions may be found in [17, 18]. Peerlings et al. [19]
and Engelen et al. [20] show the derivation of models with gradients of internal variables from
nonlocal integral models and differentiate between explicit and implicit gradient models.

This work examines the use of non-local implicit gradient models in 3D-FE structural anal-
ysis. By means of an additional gradient equation, non-local substitutes of the local variables
can be obtained. Following the derivation of Engelen [20] and using gradients of the damage
variables, the non-local damage variable D̄ can be determined by the gradient equation

D̄ − l2c∇2D̄ = D (12)

with the local damage variable D for which its evolution equation is given with Eq. 7, the
material-specific internal length lc and the boundary condition∇D̄ = 0.

3 STRUCTURAL ANALYSIS

The structural response to seismic excitation is described by equation of motion

Mü + Bu̇ + Ku = Müg (13)

with the measured ground acceleration vector üg. Damping is considered through a numerical
approach using the velocity-dependent term Bu̇ as well as energy dissipation through inelastic
straining and damage evolution. The stiffness of the structure, represented by K, depends on
the development of hardening, softening and damage.

3.1 Discretization

Stress-deformation analysis of structures implies the solution of the underlying initial bound-
ary value problem of the body Ω. With the principle of virtual work the weak form of the
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equation of motion can be obtained∫
Ω

δu · ρüdΩ +

∫
Ω

δu · fdΩ +

∫
Ω

δε : σdΩ =∫
Ω

δu · pdΩ +

∫
∂Ω

δu · t̄d∂Ω +

∫
Ω

δu · ρügdΩ (14)

with virtual displacement vector δu and virtual Almansi strain tensor δε, density ρ, acceleration
vector ü, damping force f , Cauchy stress tensor σ, volume load vector p, surface load vector
t̄. Assuming linear kinematics ε = ∇u and Rayleigh damping fc = cu̇, Equation (14) is
discretized in space with the finite-element method, while the Newmark method is used for the
discretization in time.
The material behavior is connected to the equation of motion via Cauchy stresses σ which are
coupled with Almansi strains ε and internal variables V

σ = σ(ε,V) = σ(ε, r,α, D) (15)

where the latter characterize the state of the material (hardening, softening, damage). The ma-
terial equations, see Section 2.2, are discretized in time using the implicit Euler approach.

Equation (12) can be assumed to be time-independent since the spatial propagation of the
nonlocal damage variable D̄ is very fast compared to the evolution of the other variables. The
weak form of the additional partial differential equation for the non-local damage field D̄ results
from weighted residua∫

Ω

(
δȲ
(
D̄ −D

)
−∇δȲ l2c ∇D̄

)
dΩ− l2c

∫
∂Ω

δȲ t̄D̄ d∂Ω = 0 (16)

with the virtual nonlocal energy release rate δȲ and Neumann boundary condition t̄D̄−n∇D̄ =
0, which prohibits a damage flux through the boundary of the domain. Here, t̄D̄ is forced to zero.
The gradient equation is discretized in space by the finite-element method.
Structural analysis is performed using triquadratic twentyseven-node brick elements for the
spatial discretization of the field of displacement and the field of damage. The discretization in
time uses linear approximations for the material variables while the approximations for the un-
knowns of the equation of motion depend on the choice of the Newmark integration parameters
α and β (see for example [21]). Here, the Newmark integration parameters are set to α = 1

2
and

β = 1
4

which leads to the approach of constant mean acceleration. If damping is considered via
Rayleigh damping the parameters cα = 0.01 and cβ = 0.001 are employed.

3.2 Global damage index

In order to characterize the damage state of the whole structure a global damage index has
to be defined. There exists a large variety of different damage indices from literature and they
all agree in having a range between 0 and 1, where 0 corresponds to the undamaged state and 1
to the state of failure [22]. Global damage indices for steel structures are for example proposed
by [23, 24, 25], but not all rest on the transformation of damage variables into one global index.
Colombo [26], for example, develops an index that takes into account the maximum attained
deformation and the energy dissipation in ductile and brittle elements. Ghobarah et al. [27]
propose an index which depends on the initial and final stiffness of the structure before and
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after the earthquake obtained by push-over analysis. However, if the global damage measure
is calculated directly, the local damage distribution remains unknown. In this contribution the
indicator for global damage, in the following abbreviated as GDI , is based on the eigenvalue
decomposition [

Kt − λ2
t,iK0

]
vt,i = 0 (17)

where λt,i are the eigenvalues, vt,i are the eigenvectors, K0 is the initial stiffness matrix and
Kt is the current stiffness matrix due to hardening, softening and damage. Further information
concerning this index can be found in [28].

3.3 Seismic excitation of cantilever

In the following the influence on results of structural analysis of different levels of precision
concerning the material model is presented for a cantilever consisting of an IPE 80 profile.
Moreover the global damage index is evaluated for this structure.

With a height of 5 m and an additional mass of 380 kg assigned to the top the investigated
cantilever has an eigenfrequency of 0.55 Hz. The structure is subjected to the north-south
component of the Kobe earthquake from 1995 acting in the direction of the strong profile axis,
see Figure 6.
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Figure 6: Cantilever and acceleration record of the north-south component of the Kobe earthquake (1995)

In a first analysis elastic material behavior is assumed and damping is neglected. Figure 7(a)
depicts the displacement at the top of the cantilever over time. The maximum value of displace-
ment is 69 cm. It is obvious that the vibration mainly consists of the first eigenfrequency. The
missing of any damping leads to an increasing displacement even when the amplitudes of the
ground acceleration decrease.

For a more detailed simulation the material model is extended by viscoplastic material be-
havior including isotropic and kinematic hardening. The earthquake causes inelastic cyclic
straining in the bottom part of the cantilever. The hystereses in the material behavior lead to
dissipation of energy and the top displacement is reduced compared to the elastic behavior. The
maximum deflection is 42 cm. Considering the frequencies involved in the vibrations, depicted
in the frequency spectra in Figure 7(b), it can be noticed that the amplitude decreases. Further-
more no shift of the involved frequencies can be observed although damping is included by the
material model.
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Figure 7: Displacement of the cantilever top and frequency spectra for elastic, viscoplastic and damaged material

Finally the complete proposed model is applied to compute the response of the cantilever,
also considering Rayleigh damping. With about 44 cm the displacement is slightly larger than
for the viscoplastic material which is caused by the softening. Because of large inelatic strain
material damage evolutes at the base of the cantilever. As an example Figure 8(b) shows the
distribution of damage throughout the base of a strongly damaged HEA 180 cantilever. It can
be seen that damage occurs in the flanges which are subjected to high alternating tension and
compression. Evidently the shear bands accumulate damage and weaken the structure. To
evaluate the damage state of the cantilever the global damage index is computed for every
timestep, see Figure 8(a). The highest rise of the index corresponds to the largest displacement.
With falling intensity of the ground acceleration the damage only increases slightly due to the
inelastic deformations remaining below a threshold or only occuring in small exposed regions.
The decreasing top displacement is mainly caused by the included numerical damping. The
structure shows a slight permanent deformation of 3 cm, since the free vibration does not occur
around its zero position.

The deteriorated material at the cantilever base reduces the stiffness of the structure and leads
to a shift of the eigenfrequencies which can be seen in the frequency spectrum, see Figure 7(b).
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Figure 8: Damage evolution of the cantilever

4 CONCLUSIONS

Nonlinear time-history computations of structures subjected to earthquakes are possible if
material models are used which are able to describe the viscoplastic material behavior. Further-
more the material deterioration has to be taken into account since the softening of the material
leads to a shift of the eigenfrequencies and therefore to a different response to the stochastic
acceleration.
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