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Abstract. Different high-speed railway tracks have been analysed theoretically and experi-
mentally, a ballasted track at a surface line, a slab track in a tunnel, and a ballasted track on 
a concrete bridge. Vehicle, track and ground vibration as well as their interaction are consid-
ered in a combined finite-element boundary-element (FEBEM) approach. The layered soil is 
calculated in frequency wavenumber domain and the solution for fixed or moving point or 
track loads follow as wavenumber integrals. The comparison of the dynamic compliances of 
the different tracks leads to an improved understanding of the different track elements. Cer-
tain maxima have been observed for certain train speeds and certain eigenmodes of the 
bridge. These maxima correlate with some maxima of the ground vibrations. The bridge and 
the ground vibrations are discussed with the axle-sequence of the train. The ground vibra-
tions strongly depend on the regular and random inhomogeneity of the soil. The regular lay-
ering of the soil yields a cut-on and resonance phenomenon whereas the random 
inhomogeneity yields a scattering of the axle impulses which proved to be important for high-
speed trains. All theoretical results are compared with measurements at a high-speed line. 

Figure 1. Ballasted tracks on the soil and on a bridge, 
slab track in a tunnel  
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1 FINITE-ELEMENT BOUNDARY ELEMENT METHOD FOR THE DYNAMIC 
COMPLIANCE OF TRACKS ON LAYERED SOILS 

A 3-dimensional track model is combined with the boundary element formulation of the 
soil. That means, that the Greens’ functions of a homogeneous or layered soil are used to es-
tablish a fully coupling soil matrix which is added to the FEM matrix of the track.  

1.1 Green’s functions of the soil 
The soil is a homogeneous or horizontally layered elastic half-space, which is excited at its 

surface by dynamic forces F, and the displacements u have to be calculated for surface points, 
too. The relation between the displacements u and the force F can be described in cylindrical 
(transversal, radial and vertical) components as 
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The four functions fij(r,ω) of distance and circular frequency can be calculated by integration 
in wavenumber domain [1], for example as 
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for the simplest case of the vertical component. J0 is the Bessel function of the first kind and 
the vertical compliance Hzz in wavenumber domain k can be given explicitly for the homoge-
neous half-space 
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with the abbreviations (vS, vP the shear and compressional wave velocities) 
(4)PPSS v/kv/k ω=ω=  

or calculated by matrix methods for a layered soil [1, 2]. Similar formulas hold for the other 
components and the complete set of Green’s functions (1) is used in the present boundary 
element method of the soil. 

1.2 The stiffness matrix of the discretized soil 

First, the soil has to be defined by a set of m surface points with coordinates xα. A certain por-
tion Aα of the surface area belongs to each surface point. A force F at a point xα of the surface 
of the soil is considered. By using the Green’s functions (of the preceding section), the dis-
placements at all other points xβ are calculated 
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with  

xr = (xα-xβ)/r     yr = (yα-yβ)/r  

Equation (5) is the same as equation (1), but transformed into the cartesian coordinate system. 
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For the point of excitation xα itself, the Green’s function cannot be evaluated because the 
solution is singular at this point. This difficulty can be overcome by calculating the mean 
value over the corresponding surface area. This leads to the mean values of the scalar func-
tions fii(r) 
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where rα is the radius of area Aα. So the compliance relation at the excited point of the soil is  
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The flexibility matrix of the soil is assembled of all these 3x3 matrices fβα 

(8)
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with m the number of points, or in short form 

u = f F          (8’) 

The inversion of this equation 

F = f-1 u =: KS u        (9) 

gives the dynamic stiffness matrix KS = f-1 of the soil which is introduced in the finite element 
procedure for the structure [3]. 

1.3 Combined finite-element boundary-element method 
Now the coupling of both sub-systems, track and soil, is done by introducing the soil into the 
finite element code as a new type of element. The points of the soil define one special element 
of which the dynamic stiffness matrix KS is calculated by the boundary element method. The 
track structure is described by the conventional finite element method. Local stiffness matri-
ces as well as local mass matrices are assembled in a global stiffness matrix K0 and a global 
mass matrix M respectively. Combining these matrices, the frequency-dependent dynamic 
stiffness matrix KF(ω) of the track structure 

KF = K0 – ω2M        (10) 

is obtained. Then the coupling of the boundary element and finite element part of the system 
can be expressed in terms of global representations of the matrices and  

F = (KF(ω) + KS(ω)) u       (11) 

is the equation of the whole track-soil system, that has to be solved for given external forces F, 
for example the wheel-set forces. 
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2 CALCULATED COMPLIANCES OF BALLASTED AND SLAB TRACKS 

Three different tracks, a ballasted surface track, a ballast track on a bridge and a slab track 
in a tunnel are considered (Fig. 1). All tracks have the same UIC60 rails with bending stiff-
ness EIR = 6.4 106 Nm2 and mass per length m’ = 60 kg/m, and the same concrete sleepers 
with EIS = 5.2 106 Nm2 and m = 338 kg. For each track, the stiffness of the material under the 
track (the ballast or the subsoil of the slab) is varied. 

2.1 Ballasted track on a homogeneous soil  
The surface track consists of a 0.35 m ballast layer. The sub-soil has a shear wave velocity 

of vS = 300 m/s. The rail pads are rather stiff with kP = 300 kN/m. The ballast is varied as 
vS = 100, 150, 200, 300 m/s. 

The dynamic compliances of the rails are given as amplitude and phase in Figure 2. Although 
the ballast stiffness is varied by a factor of 9, the static compliance of the rail is in the narrow 
range of u/P = 1.8 to 3.2 10-9 m/N. That means 0.2 to 0.3 mm displacement under a 100 kN 
axle load. The stiff ballast yields an almost constant compliance and only a small phase delay 
of 20°. All softer ballast materials result in a stronger phase delay and a related amplitude re-
duction at a certain frequency which is lower for the softer ballast. The softest ballast has a 
strong phase and amplitude decay at about 60 Hz. The softest ballast with vS = 100 m/s has 
the strongest contrast with the underlying soil vS = 300 m/s and this results in moderate ampli-
fications of the track amplitudes. 

2.2 Ballasted track on a bridge (rigid base)  

The ballasted track is the same on the bridge as for the surface line. The bottom of the bal-
last layer is fixed. The same variation of the ballast stiffness is analysed in Figure 2b. The 
rigid base reduces the static compliances of the ballasted tracks to values between u/P = 1.4 to 
2.9 10-9 m/N. No radiation damping of the soil is present and only small phase values due to 
the material damping can be observed. Clear resonances occur for the softer ballast materials 
at f = 95 and 135 Hz for vS = 100 and 150 m/s. These resonance frequencies are lower than the 
layer frequencies f = vP/4d = 200/1.4 = 140 or 300/1.4 = 210 Hz due to the influence of the 
track mass. The phase decay at the resonance is stronger than for the surface line.  

2.3 Slab track in a tunnel (on a layer over bedrock)  

The slab track in the tunnel has a 0.6 m thick concrete plate which lies on a 1.5 m layer of 
softer soil material. The base is the tunnel floor which is assumed to be rigid. Medium soft 
rail pads of kP = 60 kN/m are used to compensate the stiff track plate. The compliance of the 
rail is ruled by these soft rail pads and is constant if the stiffness of the sub-soil is varied 
between vS = 100 and 300 m/s. Moreover it does not change its static value of u/P =             
3.7 10-9 m/N with increasing frequency (see Fig. 2d). The influence of the sub-soil can be 
clearly seen for the plate compliance under the axle load (Fig. 2c). The massive plate yields 
low resonance frequencies of f = 20, 30, 40 and 60 Hz with the compliances of the different 
sub-soils. These resonance frequencies are far below the layer resonances at f = 33, 50, 66 and 
100 Hz. The amplitudes of the plate are much smaller than those of the rail. It is 20 or 10 % 
for the soft sub-soils and even less for the stiff sub-soils. 

Figure 2d shows the rail compliances of the three tracks, surface track with soft ballast, 
bridge track with soft ballast, and tunnel track with a thick plate over a stiff sub-soil. The rail 
compliance of the tunnel is increasing at 150 Hz, the end of the frequency range. The reso-
nance of the rail on the soft rail pads is expected at 205 Hz. While the ballasted tracks show a  
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Figure 2: Compliances of different tracks, a) ballasted track on the soil, b) ballasted track on the bridge, c) slab 
track on a sub-soil layer (compliance of the plate) variation of the ballast or subsoil  100,  150,  200 
300 m/s in a, b, c. Comparison of the rail compliances (d)  for the ballasted track on the soil , the ballasted 

track on the bridge , and the slab track . 

a b

c d
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phase drop below 100 Hz, the rail of the tunnel track shows almost no phase delay. Such 
strong differences between rail and sleeper displacements are only found for the tunnel track. 
The sleeper to rail displacement ratio of the ballasted tracks is at 33 to 67 % for the bridge 
track line and at 50 to 77 % for the surface line. The differences increase with a stiffer ballast 
material, but also with a softer rail pad. 

3 TRAIN INDUCED GROUND VIBRATION  

3.1 Calculation in wavenumber domain  

An alternative method to the FEBEM is the calculation of an infinite track in frequency-
wavenumber domain. This method yields the track behaviour and the ground vibration due to 
moving or fixed loads [4]. The dynamic stiffness of the soil under the track in frequency 
wavenumber domain is calculated as the wavenumber integral 
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The dynamic stiffness KS of the soil is combined with the stiffness KT  =EIk4-m’ω2 of the track 
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and these track-soil transfer functions are used to calculate the displacements of the track and 
the soil  
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Figure 3: a) Third-of-octave spectra of the irregularities of the ballasted track at six different places of the 3 km 
long testing section: b) calculated ground vibration at the layered site; 

at  2.5,  7.5,  12.5,  20,  30,  50 m distance from the track. 

a b
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Figure 4: Train induced ground vibration, a), b) passage of a locomotive with vT = 100 and 160 km/h, c), d) pas-
sage of a passenger car with vT = 100 and 160 km/h, measured at  2.5,  7.5,  12.5,  20,  30,  50 m, e), 

f) results at r = 5 and 30 m with train speeds vT =  160,  125,  100,  80,  63,  40 km/h. 

a b

c d

e f

r = 5 m r = 30 m 



Lutz Auersch 

 8

The spectrum of vibration amplitudes v(x,ω) at a fixed point for an excitation frequency ωE is 
calculated as [5] 
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The excitation of the ground vibration is a force spectrum F(ω) which is due to the irregu-
larities s of the track. The irregularity spectrum s(ω) of the ballasted track is shown in Figure 
3a for different places of the 3 km long test section. The soil consists of a layer with 
vS = 250 m/s and h = 10 m on a rock half-space of vS = 1000 m/s. The material damping of the 
soil is increasing from D = 1 % at 10 Hz to D = 10 % at 100 Hz, see [6] for more details. The 
calculated response of the soil is shown in Figure 3b for distances between 2.5 to 50 m. 

While the irregularities are decreasing with frequency, the resulting excitation forces are 
almost constant, and the ground vibration amplitudes are mainly increasing with frequency. 
There is a strong cut-off for the frequencies below 12.5 Hz, which is the resonance frequency 
of the soil layer. The increase of the amplitudes is very strong below the cut-off, and moderate 
above. Frequencies above 63 Hz are reduced considerably due to the strong material damping. 
The two cut-off phenomena yield a specific frequency range of the ground vibration between 
10 and 63 Hz which is due to the soil and not to the train excitation. All these theoretical 
characteristics are in good agreement with the experimental results in Figure 4c. 

3.2 Experimental observations 
The measured ground vibrations of different distances, different train speeds and different 

trains are shown on Figure 4, [7] where the spectra due to the locomotive display stronger and 
clearer characteristics than those of the passenger cars. A sharp resonance is observed for the 
layer frequency at 12.5 Hz in case of a train speed of 160 km/h. The same excitation fre-
quency would be at 8 Hz for the lower train speed of vT = 100 km/h, but no resonance is ob-
served. The frequency is in the cut-off region of the soil, and therefore only small 
amplifications can be seen in the near field which indicate some specific train excitation. The 
characteristics of the layered and strongly damped soil are so dominant that the spectra of the 
different train speeds (Fig. 4e and f) are very similar. At a near-field distance of 5 m, the char-
acteristic frequency range from 10 to 63 Hz has an almost constant level whereas the low fre-
quencies are more dominant in the far field at 30 m. An increase of the amplitudes with 
increasing train speed can be observed. Especially the increase for vT = 160 km/h due to the 
resonance at f = 12.5 Hz is very strong in the far field.  

4 TRAIN INDUCED BRIDGE VIBRATION  

4.1 Experimental observations 

Figure 5: 45 m long concrete bridge on elastic bearings 
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A 45 m long concrete bridge has been analysed and measured (Fig. 5), [7]. The cross sec-
tion can be seen on Figure 1. The bridge is simply supported on elastic bearings. The first four 
modes and eigenfrequencies are shown on Figure 6. The first bending mode fits perfectly the 
mode shape of a simply supported bridge. The first torsional mode has a contribution of the 
elastic bearings. During the passage of the test train, a clear excitation of the 7 Hz resonance 
has been observed for a train speed of vT = 100 km/h and of the 11 Hz resonance for 
vT = 160 km/h (see Figure 11 in Appendix A), [7]. These frequencies are close to those ob-
served on the soil. 

Figure 6: The first four eigenmodes of the concrete railway bridge a) first bending mode, b) first torsional mode, 
c) second bending mode, d) second torsional mode. 

4.2 Modal excitation of railway bridges by sequence of axle loads 

To examine the effect of passing trains, first a single axle passage over the bridge is con-
sidered. (The moving load concept is used here which is conservative compared to the more 
detailed train-bridge interaction, see for example [8]). 

The excitation of mode j with circular eigenfrequency ωj and normalized eigenform vj(x) 
can be determined from the Fourier transformed differential equation of this mode 

)()i2( 222 ω=ω−ω+ω jjjjj FuDm       (16) 
where 

{ })((t)vFFT)( j tvxFF Tj ==ω       (17) 
is the transformed modal force component. The static load FS yields 

{ } )()(FFT)( ω===ω jSTjSj VFtvxvFF      (18) 
and a harmonic dynamic load FD of frequency ωj yields 

(0))( jDjj VFF ≈ω .        (19) 
Figure 8 shows the forces of the first and second mode as time histories and spectra. The 

low frequencies have always high amplitudes which are related to the slow impulse of the to-
tal passage of the static force. These frequencies are much lower than the resonance frequen-
cies of the bridge. A resonance due to the bridge passage impulse is only possible for the 
high-speed passage over a short bridge. 

The higher frequencies are due to the irregularities when the static load is entering and 
leaving the bridge. The simply supported bridge yields a sudden bend at the beginning of the 
bridge. If the bridge is on an elastic support, as in the present situation, there is an additional 
step. Both cases, the simply supported bridge on a rigid or elastic support are shown in Figure 

a) 3.7 Hz b) 7 Hz

c) 11 Hz d) 12.7 Hz
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8. The additional step of 15 % of the maximum displacement for the elastic support yields 
high-frequency amplitudes which are up to five times higher than for the bridge on rigid sup-
port. There is a strong variation with frequency due to the constructive or destructive superpo-
sition of the entering and leaving of the bridge. As the resonance curve has some bandwidth, a 
smoothed curve of the modal force Fj(ω) is better suited to discuss possible resonances. 

Another excitation of the bridge is due to the irregularities s of the track. The measured ir-
regularities of the ballasted track on the bridge are shown in Figure 7a. From the irregularities 
at the resonance frequencies 7 and 11 Hz, s = 2 and 1 mm, dynamic forces of approximately 
F7 = F11 = 1 kN are deduced. Their effects on the modes of the bridge are shown in Figure 8c 
and d. The amplitudes of the modal forces are almost the same as the amplitudes due to the 
entering and leaving of the simply supported bridge (Fig. 8a and 8b). 

Figure 7: a) Irregularities of the track  on the soil,  on the bridge,  in the tunnel (slab track),                       
b) vibration spectra of the bridge track during the passage of the passenger car with 

vT =  160,  125,  100,  80,  63 km/h. 

So far, no reason for the different excitation of different modes could be found. It should 
be due to the specific axle sequence of the train which is shown on Figure 9 for the two inter-
esting train speeds and on Figure 7b in a third-of-octave version for all train speeds. A maxi-
mum is found at 7 Hz for 100 km/h and at 11 Hz for 160 km/h close to the excited 
eigenfrequencies. Each maximum is the highest peak in a wider frequency band with several 
peaks. At the same time there are minima and a range of reduced amplitudes around 7 Hz for 
the train speed of 160 km/h and around 11 Hz for 100 km/h. Moreover, these minima are also 
found for a single car or a single locomotive (Fig. 9c-d). So it is concluded, that the axle se-
quence is important for the excitation of the eigenfrequencies of the bridge. The axle sequence 
yields maxima and minima which are suitable to the experimental observation, and the can-
cellation due to the sequence of the axles seems to be more important [9]. Isolated peaks of 
the axle sequence spectrum are only found for specific, very regular trains [10]. 

The axles-sequence spectra discussed here are in relation to the signatures of trains in the 
UIC rules [11] which are expressed as the axle loads as a function of the wave length. But the 
axle sequence spectra also include higher frequencies which are important for the train-bridge 
situation discussed here. 

a

b
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Figure 8: Modal forces as time history and spectra, due to the passage of a static load, a) first and b) second 

mode, and due to harmonic loads of f = c) 7 Hz for the fist mode and d) 11 Hz for the second mode, all results 
are given for rigid and elastic support. 

a

b

c

d
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Figure 9: Axles sequence of the test train with vT = a) 100 and b) 160 km/h, time histories and spectra, 

c) and d) of the locomotive with 100 and  160 km/h respectively. 

a

b

c

d
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5 CONCLUSIONS  

• The calculated compliances of different ballasted and slab tracks on layered soils show 
some typical characteristics, resonances, amplitude and phase delays, rail to sleeper am-
plitude ratios, which can also be found in the measurements. 

• Dominant frequencies, which have been measured on the ground, are close to the reso-
nance frequencies of the bridge that are excited by trains of the same speed.  

• The excitation of the modes of the bridge can be due to the passing over the bridge, the 
entering and leaving of the bridge or the random irregularities of the track. 

• All these excitations are modified by the axle sequence of the whole train. In the present 
case the axle sequence spectrum has a maximum at the excited eigenfrequency and a 
minimum at the other eigenfrequency of the bridge. 

• The maximum of the axle sequence spectrum also excites the layer resonance of the soil 
for a train speed of 160 km/h whereas the same excitation is in the cut-off region of the 
soil for a train speed of 100 km/h. 
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APPENDIX A - MEASURED COMPLIANCES OF THE DIFFERENT TRACKS 

The compliances of the different tracks of the surface, bridge and tunnel line have been 
measured by impulse tests and are shown on Figure 10 for a wide frequency range. The slab 
track in the tunnel has a high compliance up to 200 Hz (Fig. 10c) whereas the ballasted tracks 
drop down below 100 Hz (Figs. 10a and b). The bridge and tunnel track show a resonance, the 
ballasted track on the soil has no resonance amplification. The slab track in the tunnel has two 
resonances, the strongest at 205 Hz is due to the rail mass on the rail pad stiffness, and the 
minor resonance at about 100 Hz is due to the plate mass on the sub-soil stiffness. The dis-
placements of the rail on the medium soft rail pad are ten times higher than those of the plate 
(Fig. 10c). The sleeper to rail amplitude ratios of the ballasted tracks are at about 70 %. All 
these details are in agreement with the theoretical results. 

The experimental results can be used to choose the ballast and sub-soil parameters. The 
low–frequency decay of the ballasted tracks means a low stiffness of the ballast during the 
impulse tests. A higher stiffness of the ballast is expected under train loading. The sub-soil 
stiffness in the tunnel is stiff, but a thinner layer or a thinner plate could also explain the high 
plate-subsoil resonance frequency. 

APPENDIX B – MEASURED TRAIN PASSAGE OVER THE DIFFERENT TRACKS 
The behaviour of the different tracks under train passages is shown in Figure 11. The time his-
tories on the left show the displacements of the rail and the sleeper which are calculated from 
the measured velocities [3]. The third of octave spectra on the right are for the original veloc-
ity measurements and compare several rail, sleeper and environmental measuring points. The 
displacements under a 100 kN axle load is about 0.3 mm for the ballasted track. The dis-
placement of the slab track with softer rail pads are somewhat higher, but the displacements 
of the plate are considerably smaller as can be observed at the time histories and the spectra.  

APPENDIX C – MEASURED TRAIN PASSAGE OVER THE BRIDGE 
Figure 12 shows the time histories of two train passages over the bridge. One passage is with 
a train speed of vT = 100 km/h, the other with vT = 160 km/h. The time segment, when the 
middle of the train passes the bridge, is selected. A clear resonance is observed for both pas-
sages. For the lower train speed, all measuring points on the bridge are in phase, so it is a first 
symmetric mode of the bridge. For the higher train speed the north and south end of the 
bridge are in anti-phase and the middle of the bridge has the lowest amplitude. That means 
that a second antimetric mode is excited by the train at 160 km/h. The eigenfrequencies which 
are clearly dominating for each train passage are also different, f = 7 Hz for vT = 100 km/h and 
f = 11 Hz for vT = 160 km/h. 
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Figure 10: Compliances of the rail ( ) and sleeper ( ) of the different tracks, a) on the soil, b) on the bridge, c) 
in the tunnel, d) comparison of the rail compliance for the ballasted track  on the soil,  on the bridge, and  

the slab track in the tunnel. 
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Figure 12: Time histories of the passage of the train with vT = 100 km/h (left) and 160 km/h (right) at x = a) 7.5, 
b) 15, c) 22.5, d) 30, e) 37.5 m 

Figure 11 (previous page): Passage of the train over the different tracks surface line (top), bridge (middle) and 
tunnel (bottom), time histories of the displacements of the rail (a, c, e) and the sleeper (b, d, f), third-of octave 

spectra of the rail ( , ), the sleeper ( , ) and the soil, bridge or plate ( ). 
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