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Abstract. This paper gives a review of our recently proposed dual mortar approach combined
with a consistently linearized semi-smooth Newton method for 3D finite deformation contact
analysis. The mortar finite element method, which is applied as discretization scheme, ini-
tially yields a mixed formulation with the nodal Lagrange multiplier degrees of freedom as
additional primary unknowns. However, by using so-called dual shape functions for Lagrange
multiplier interpolation, the global linear system of equations to be solved within each Newton
step can be condensed and thus contains only displacement degrees of freedom. All possible
types of nonlinearities, including finite deformations, nonlinear material behavior and contact
itself (active set search) are handled within one single iterative solution scheme based on a
consistently linearized semi-smooth Newton method. The extension of the proposed framework
towards additional model complexities such as Coulomb friction and self contact is addressed
shortly. Moreover, an outlook towards multiphysics and multiscale simulations, coupling con-
tact analysis with other physical fields and taking into account effects on different length scales
is provided by exemplarily discussing the integration of mortar contact into a fixed-grid fluid-
structure interaction (FSI) framework based on the extended finite element method (XFEM).
Several numerical examples are presented to show the high quality of results obtained with the
proposed methods.
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1 INTRODUCTION

Computational contact dynamics in general, and mortar-based discretization for finite de-
formations in particular, have seen a great thrust of research over the last decade. We discuss
here the most important features of the recently proposed dual mortar finite element method
combined with a consistently linearized semi-smooth Newton scheme for contact constraint en-
forcement. The present contribution is thus a shortened version of our articles [1, 2, 3, 4] to
which we refer for full technical details, more profound discussion of the methods presented
and further numerical examples.

Many newly proposed contact discretizations are based on the mortar method which was
originally introduced in the context of domain decomposition [5]. Mortar contact formulations
have successfully been applied to the solution of finite deformation contact problems in [6, 7, 8].
However, the mentioned formulations all apply a regularization of contact constraints based on
the penalty method or an augmented Lagrangian type approach using the Uzawa algorithm.
A recent application based on direct Lagrange multiplier techniques with standard multiplier
spaces can be found in [9]. Yet, the dual Lagrange multiplier spaces proposed in [10, 11] seem
to have the highest potential for efficient algorithms as they allow for a static condensation of the
discrete Lagrange multiplier degrees of freedom. Thus, an undesirable increase in global system
size, usually typical of direct Lagrange multiplier techniques, is avoided. Mortar methods with
dual Lagrange multipliers have first been developed in the context of small deformation contact
problems [12], where also the idea of interpreting the active set search as a semi-smooth Newton
method (see e.g. [13, 14]) has been adapted. Some first steps towards a finite deformation
implementation have been made in [15, 16], however still with an incomplete linearization of
contact forces and constraints. In the authors’ previous work [1, 2, 3], the ideas of dual Lagrange
multipliers and a semi-smooth Newton approach for the active set search have been consistently
extended to fully nonlinear 3D frictional contact problems.

Advantageous properties of the devised algorithms comprise superior robustness as com-
pared with a traditional node-to-segment approach, the absence of any user-defined parameter
(e.g. penalty parameter), the integration of all types of nonlinearities (including finite defor-
mations, nonlinear material behavior and active set search) into one single iteration loop and
the possibility to condense the discrete Lagrange multipliers from the global system of equa-
tions, to name only a few. First-order and second-order finite element interpolation, frictional
sliding based on Coulomb’s law as well as self contact are considered for both 2D and 3D.
Some very challenging numerical examples are presented to illustrate the high quality of results
obtained with the proposed approach. The design of our algorithms is based on overlapping
domain decomposition, involving parallel contact search based on hierarchic binary tree struc-
tures and a novel dynamic load balancing strategy specifically developed for mortar coupling.
This assures full parallel scalability of all algorithmic components when solving large contact
dynamics problems with up to some million degrees of freedom.

Recently, the focus of our research in the field of computational contact dynamics has been
extended towards multiphysics and multiscale simulations, coupling contact analysis with sev-
eral other physical fields and taking into account effects on different length scales. Exemplarily,
the integration of dual mortar contact into a fixed-grid fluid-structure interaction (FSI) frame-
work based on the extended finite element method (XFEM) will be shortly addressed here. This
approach allows for computing macroscopic contact of arbitrarily deforming structures embed-
ded in a surrounding fluid. Again, we refer to a recent article [4] for the derivation and a more
profound discussion of the proposed fluid-structure-contact interaction method.
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Figure 1: Notation for the two body finite deformation contact problem in 3D.

The remainder of this contribution is organized as follows: Section 2 provides a rough
overview of the general continuum mechanics problem setup for 3D finite deformation contact.
The dual mortar finite element approach is described in Section 3. In Section 4, the semi-smooth
Newton type active set strategy and the resulting solution algorithm are outlined. Section 5 high-
lights some recent model extensions, including friction and fluid-structure-contact interaction.
Following this interlude, Section 6 demonstrates with several numerical examples the validity
of the proposed approach. Finally, we conclude the findings.

2 PROBLEM FORMULATION OF FINITE DEFORMATION CONTACT

The basic problem definition has been described in detail in [2]. Figure 1 shows the reference
and current configurations of two elastic bodies undergoing a finite deformation process and
introduces some notation. The surfaces ∂Ω(i)

t , i = 1,2 are divided into three disjoint boundary
sets, namely the common Dirichlet and Neumann boundaries γ(i)

u and γ(i)
σ as well as the potential

contact surfaces γ(i)
c . Although a mortar discretization will be applied later, we still retain the

customary nomenclature of slave and master contact surfaces.
Displacement vectors u(i) = x(i)−X(i) describe the motion of the deformable bodies from

reference configuration X(i) to current configuration x(i). Material nonlinearity is taken into
account by assuming a compressible Neo-Hookean material behavior based on the second Piola-
Kirchhoff stress tensor S and the Green-Lagrange strain tensor E = 1

2

(
FT F− I

)
, where F is

the deformation gradient. Based on these definitions, the well-known initial boundary value
problem (IBVP) of finite deformation elastodynamics can be formulated. This paper focuses on
contact interaction itself, which is typically described by a gap function g(X, t) in the current
configuration. The classical Karush-Kuhn-Tucker (KKT) conditions of normal contact and the
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frictionless sliding conditions then read as follows:

g(X, t)≥ 0 , pn ≤ 0 , pn g(X, t) = 0 , (1)

tξ
τ = tη

τ = 0 , (2)

where the normal and tangential components of the slave contact traction t(1)
c are denoted as

pn, tξ
τ and tη

τ . A corresponding formulation of Coulomb’s law for frictional contact is omitted
here, but can be found in our recent work [3]. For deriving a weak formulation the solution
space U (i) and the weighting space V (i) are defined by employing the usual Sobolev spaces
H1

(
Ω(i)

)
and by taking into acccount Dirichlet boundary conditions. The method of weighted

residuals then yields: Find u(i)
j ∈U (i) such that

δΠ(u,δu,λλλ ) = δΠint,ext (u,δu)+
∫

γ(1)
c

λλλ ·
(

δu(1)−δ û(2)
)

dγ = 0

∀ δu(i)
j ∈ V (i) , j = 1,2,3 , (3)

where the negative contact traction on the slave side of the interface has been replaced by a
Lagrange multiplier vector λλλ = −t(1)

c . By arbitrary choice, the Lagrange multipliers λ j ∈M ,
j = 1,2,3, have been introduced on the slave side, where M is defined as dual space of the trace
space W (1) of U (1) restricted to Γ(1)

c . Corresponding test functions δλ j serve as weighting
functions for the non-penetration constraint in (1):

∫

γ(1)
c

δλn g(X, t)dγ ≥ 0 ∀ δλn ∈M . (4)

The remaining contact conditions in (1) and (2) are then rewritten as

λn ≥ 0 , λn g(X, t) = 0 , λ ξ
τ = λ η

τ = 0 . (5)

Altogether, equations (3)–(5) establish a mixed variational formulation with the solution u(i)
j ∈

U (i) and λ j ∈ M . An overview of mortar finite element discretization using dual Lagrange
multipliers follows in the upcoming paragraph. Some of the contact constraints are still formu-
lated as inequality conditions, which necessitates the application of a suitable active set strategy.
The primal-dual active set strategy (PDASS) and our reformulation as a semi-smooth Newton
scheme including consistent linearization will be addressed in Section 4.

3 DUAL MORTAR FINITE ELEMENT DISCRETIZATION

Spatial discretization of the contact terms requires a discretization of slave and master sur-
face, which is directly connected to the underlying structural discretization based on their trace
space relationship. We consider both first-order and second-order Lagrangian finite elements in
2D and 3D. A general definition of slave and master displacements then reads as follows:

d(1)h|
Γ(1)h

c
=

nsl

∑
k=1

N(1)
k (ξξξ (1))d(1)

k , d(2)h|
Γ(2)h

c
=

nm

∑
l=1

N(2)
l (ξξξ (2))d(2)

l . (6)

Spatially discretized quantities are labeled with a superscript h and the total number of slave
and master nodes is nsl and nm, respectively. Nodal displacements are given by d(1)

k , d(2)
l and
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shape functions N(1)
k , N(2)

l are defined with respect to the usual finite element parameter spaces
ξξξ (i). Lagrange multiplier interpolation is based on dual shape functions Φ j, as pioneered by
Wohlmuth [10]:

λλλ h =
nsl

∑
j=1

Φ j(ξξξ
(1))z j , (7)

with discrete nodal Lagrange multipliers z j. The construction of dual shape functions is based
on a biorthogonality relation as introduced in [10, 11, 12]:

∫

γ(1)h
c

Φ j(ξξξ
(1))N(1)

k (ξξξ (1))dγ = δ jk

∫

γ(1)h
c

N(1)
k (ξξξ (1))dγ , (8)

where δ jk is the Kronecker delta. This approach will later allow for static condensation of the
discrete multipliers z j. Note, that in the context of finite deformations dual shape functions
become deformation-dependent themselves. For an overview and exemplary local calculations
of element-specific dual shape functions in 2D and 3D contact analysis we refer to [1, 2, 15].
Nodal blocks of the two mortar integral matrices D ∈ R3nsl×3nsl and M ∈ R3nsl×3nm are then
defined as

D[ j,k] = D jk I3 = δ jk

∫

γ(1)h
c

N(1)
k dγ I3 , (9)

M[ j, l] = M jl I3 =
∫

γ(1)h
c

Φ jN
(2)
l dγ I3 , (10)

with j,k = 1, ...,nsl , l = 1, ...,nm and with the identity I3 ∈ R3×3. Owing to the biorthogonality
relation (8), D reduces to a diagonal matrix. This yields as algebraic notation of the discretized
contact virtual work

δΠh
c =

(
δd(1)

)T
DT z−

(
δd(2)

)T
MT z , (11)

where all discrete nodal values of Lagrange multipliers and nodal test function values are as-
sembled into global vectors z, δd(1) and δd(2), respectively. For the ease of notation, the set of
all finite element nodes is now split into three subsets: a subset S containing all nsl potential
slave side contact nodes, a subset M of all nm potential master side contact nodes and the set
of all remaining nodes N . The global displacement vector can be sorted accordingly, yielding
d = (dN ,dM ,dS )T . Then, the vector of discrete contact forces is

fc = [0 −M D]T z . (12)

The contact forces extend the fully discretized force residual resulting from standard finite ele-
ment discretization of internal and external virtual work in (3). This yields the total nonlinear
force residual

r := fint(d)− fext + fc(d,z) = 0 . (13)

A discrete version of the weak non-penetration condition is obtained by inserting the Lagrange
multiplier interpolation (7) into (4)

∫

γ(1)
c

δλn gdγ ≈
nsl

∑
j=1

(δ zn) j

∫

γ(1)h
c

Φ j ĝdγ :=
nsl

∑
j=1

(δ zn) j g̃ j ≥ 0 . (14)
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Here, ĝ is the discrete version of the gap function, and for each slave node j ∈ S a discrete
normal weighted gap g̃ j has been introduced. Discretization of the remaining contact conditions
yields as discrete formulation of the KKT conditions and the frictionless sliding conditions:

g̃ j ≥ 0 , (zn) j ≥ 0 , (zn) j g̃ j = 0 , (15)

(zξ
τ ) j = (zη

τ ) j = 0 . (16)

It is worth mentioning that although a mortar discretization has been employed, the weighted
constraints at discrete nodal points are enforced independently.

4 SOLUTION ALGORITHM

In our recent papers [1, 2, 3] the active set search has been successfully applied as a semi-
smooth Newton method to both 2D and 3D finite deformation contact analysis. The main
advantage of this new approach is the fact that all sources of nonlinearities, i.e. finite deforma-
tions, nonlinear material behavior and contact itself, can be efficiently treated within one single
iterative scheme. The basic idea is a simple reformulation of the discrete KKT conditions in
(15) within a so-called nonlinear complementarity function C j for each slave node j ∈S :

C j
(
z j,d

)
= (zn) j−max

(
0,(zn) j− cng̃ j

)
= 0 , cn > 0 . (17)

It can be easily shown that (17) is equivalent to the set of KKT conditions and that this equiv-
alence holds for arbitrary positive values of the purely algorithmic complementarity parameter
cn. While C j is a continuous function, it is non-smooth and has no uniquely defined derivative
at positions (zn) j− cng̃ j = 0. Yet, it is well-known from mathematical literature on constrained
optimization [14] and from applications in small deformation contact analysis [12] that the
max-function is semi-smooth and therefore a Newton method can still be applied. Deriving a
consistent Newton method for the iterative solution of the nonlinear contact problem under con-
sideration relies on the full linearization of all deformation-dependent quantities, such as nodal
normal and tangential vectors or mortar integral matrices. This linearization process has been
presented in great detail for both 2D and 3D case in [1, 2]. The resulting algorithm to be solved
within one time increment is summarized next. All types of nonlinearities including the search
for the correct active set are resolved within one Newton iteration, with the active and incative
sets A and I being updated after each semi-smooth Newton step:

Algorithm 1

1. Set i = 0 and initialize the solution (d0,z0).

2. Initialization: A0∪I0 = S and A0∩I0 = /0.

3. Find the primal-dual pair (∆di,zi+1) by solving

∆r|i =−r|i , (18)
z j|i+1 = 0 ∀ j ∈Ii , (19)
∆g̃ j|i =−g̃ j|i ∀ j ∈Ai , (20)

∆τττξ/η
j · z j|i + τττξ/η

j · z j|i+1 = 0 ∀ j ∈Ai . (21)

4. Update di+1 = di +∆di.
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5. Set Ai+1 and Ii+1 to

Ai+1 :=
{

j ∈S |(zn) j|i+1− cng̃ j|i+1 > 0
}

,

Ii+1 :=
{

j ∈S |(zn) j|i+1− cng̃ j|i+1 ≤ 0
}

. (22)

6. If Ai+1 = Ai, Ii+1 = Ii and ‖rtot‖ ≤ εr, then stop,
else set i := i+1 and go to step (3).

Here, εr represents an absolute Newton convergence tolerance for the L2-norm of the total
residual vector rtot , which comprises the force residual r and the residual of the contact con-
straints (19)–(21). Numerous tests reveal that even for large step sizes and fine contacting
meshes the correct active set is found after a few Newton steps. Once the sets remain constant,
quadratic convergence is obtained due to the underlying consistent linearization. Owing to the
dual Lagrange multiplier shape functions, the mortar matrix D becomes diagonal, which makes
its inversion trivial. Thus, the discrete multiplier values are eliminated by condensation and
the resulting linear system of equations is not of saddle point type anymore but contains only
displacement degrees of freedom. Here, we restrict the presentation to a schematic form

Ldd|i ∆di =−r̃tot |i , (23)

which illustrates the modified residual vector r̃tot emanating from rtot by condensation of the
discrete Lagrange multiplier degrees of freedom. Similarly, we obtain a modified effective
tangent stiffness matrix Ldd including contact stiffness and condensed constraint terms.

5 RECENT EXTENSIONS OF THE PROPOSED METHODS

In this section, some recent extensions of the methods described above are outlined. This
includes efficient parallel implementation, the treatment of self contact and Coulomb friction
as well as the consistent integration of mortar contact into an XFEM based fixed-grid fluid-
structure interaction framework.

5.1 Efficient parallel implementation and self contact

The solution of finite deformation contact problems is difficult to be managed due to the
strong nonlinearities involved. A brute force approach for contact search may add another very
time-consuming part, which is why efficient parallel search algorithms are needed. Here, we
employ a recently developed approach [17] based on so-called discretized-orientation-polytopes
(k-DOPs) as bounding volumes. Compared to the common axis-aligned bounding boxes, the
k-DOPs allow for a much tighter and thus more efficient geometrical representation of the con-
tact surfaces. Slave and master contact surface are organized within hierarchical binary tree
structures so that very fast search and tree update procedures can be applied. The approach
given in [17] for the single-processor case has been extended to fit into a parallel finite element
simulation framework based on overlapping domain decomposition. An extension to self con-
tact is presented in [18] and has also been included into our simulation framework. The search
algorithm again is based on a bounding volume hierarchy organized as a binary tree. It is how-
ever crucial for self contact simulations to set up the bounding volume hierarchy in a bottom-up
way based on mesh connectivity (e.g. using a dual graph). Moreover, a curvature criterion may
be used to accelerate the searching procedure. Finally, dynamic assignment of slave and master
sub-surfaces, which are unknown a priori for self contact problems, becomes necessary.
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In addition, we make use of a novel strategy for dynamic load balancing specifically de-
veloped for mortar-based interface coupling. Within each time step the evaluation of contact
integrals is adaptively distributed among all processors, so that an optimal balance of processor
workload is obtained. Parallel (self) contact search and dynamic load balancing together assure
the parallel scalability of all presented algorithmic components even when solving large contact
dynamics problems with up to some million degrees of freedom.

5.2 Treatment of friction

An extension of the described mortar contact algorithms to the 2D frictional case has recently
been proposed [3]. All steps outlined in Sections 2-4 remain conceptually unchanged. Only the
frictionless sliding conditions introduced in (2) are replaced by frictional sliding conditions, e.g.
using Coulomb’s law. Based on an objective formulation of friction kinematic variables [8] the
additional constraints again are recast into non-smooth nonlinear complementarity functions, as
presented for the non-penetration constraint in (17). By applying full linearization, the frictional
constraints are consistently integrated into the semi-smooth Newton scheme. All nonlinearities,
now additionally including friction (i.e. search for the current stick and slip regions), are again
treated within one single iterative scheme. For further details and numerical examples, the
interested reader is referred to [3].

5.3 Fluid-structure-contact interaction

Finite deformation contact of flexible solids embedded in fluid flows occurs in a wide range
of engineering scenarios. We recently proposed a novel three-dimensional finite element ap-
proach in order to tackle this problem class [4]. The method consists of the dual mortar con-
tact formulation presented above, which is algorithmically integrated into an extended finite
element method (XFEM) fluid-structure interaction approach [19, 20]. The combined fluid-
structure-contact interaction method (FSCI) allows to compute contact of arbitrarily moving
and deforming structures embedded in an arbitrary flow field. In [4], the fluid is described
by instationary incompressible Navier-Stokes equations. An interface handling algorithm [21]
is applied to obtain an exact fluid-structure interface representation, which permits to capture
flow patterns around contacting structures very accurately as well as to simulate dry contact
between structures. No restrictions arise for the structural and the contact formulation. A lin-
earized monolithic system of equations can be derived, which contains the fluid formulation,
the structural formulation, the contact formulation as well as the coupling conditions at the
fluid-structure interface. This linearized system may then be solved either by partitioned or by
monolithic fluid-structure coupling algorithms.

6 NUMERICAL EXAMPLES

We present three numerical examples to illustrate the capabilities of the proposed approach.
All simulations are based on a parallel implementation of the contact and FSCI algorithms
described above in our in-house multiphysics research code BACI [22]. A compressible Neo-
Hookean constitutive law determined by Young’s modulus E and Poisson’s ratio ν is employed
for all structures. Convergence of a Newton iterative scheme is measured in terms of the total
residual norm with a relative convergence tolerance of 10−12. The complementarity parameter
described in Section 4 is set to cn = 1, which guarantees for all problem setups considered that
the correct active set is found within only a few semi-smooth Newton steps.
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Figure 2: Two torus impact – displacement magnitude at characteristic stages of deformation: (a) t = 3; (b) t = 5;
(c) t = 7; (d) t = 7.5; (e) t = 8; (f) t = 10.

6.1 Two torus impact

In this example, a finite deformation impact problem of two toruses (E = 2250, ν = 0.3)
is investigated. Both geometry and loading conditions are based on a quite similar analysis
presented in [17] to evaluate contact search strategies. The finite element mesh consists of 1600
8-node hexahedral elements in total. The major and minor radius of the two hollow toruses
is 76 and 24, repectively and the wall thickness is 4.5. The upper torus is rotated around the
vertical axis by 45 degrees. We apply transient structural dynamics here using a Generalized-α
time integration scheme [23] with the density of the contacting bodies chosen as ρ = 0.1.

During a total of 200 time steps (step size ∆t = 0.05) the lower torus is first accelerated to-
wards the upper torus and then a very general oblique impact situation with large structural de-
formations occurs. In addition to that, the proposed method needs to resolve continuous changes
of the active contact set due to the large amount of (frictionless) sliding. Figure 2 shows six
characteristic deformed configurations associated with the simulation stages described above.

Table 1 illustrates convergence of the presented fully linearized semi-smooth Newton scheme
in terms of the total residual norm for two representative time steps both including large defor-
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Newton step (a) t = 4.5 (b) t = 5.5
1 1.09e+06 (*) 1.04e+06 (*)
2 2.16e+04 (*) 3.60e+04 (*)
3 4.05e+00 1.38e+01 (*)
4 1.53e−04 2.11e−03
5 2.46e−08 2.77e−08

(*) = change in active contact set
Table 1: Convergence behavior of the proposed semi-smooth Newton scheme in terms of the total residual norm
for two representative time steps ∆t = 0.05 starting from (a) t = 4.5 and (b) t = 5.5.

Figure 3: Two torus impact – exemplary visualization of the deformed lower torus and of the computed contact
traction results at (a) t = 5.5 and (b) t = 5.55.

mations and considerable changes of the active contact set. The results demonstrate that the
semi-smooth Newton method features excellent convergence in this example. The integration
of all types of nonlinearities into a semi-smooth Newton scheme avoids tremendous computa-
tional cost as compared with a fixed-point type approach for the active set (see e.g. [9, 16]).
Moreover, it is obvious that consistent linearization of all nonlinear quantities, including contact
forces, normal and tangential vectors, is crucial to avoid deterioration of convergence.

To illustrate the strong nonlinearities involved in this problem setup even more clearly, Figure
3 shows the deformed lower torus at the beginning and at the end of the time step analyzed in
column (b) of Table 1 (i.e. at t = 5.5 and at t = 5.55). The normal contact traction distribution,
represented by the nodal Lagrange multiplier solution, is visualized with arrows and confirms
that despite significant changes of the contact region, all nonlinearities are resolved efficiently
and without deterioration of convergence within one single semi-smooth Newton iteration.

6.2 Hollow sphere pushed through elastic tube

In this example, a hollow sphere (E = 500, ν = 0.3) is pushed through a tube (E = 1000,
ν = 0.3). Geometrical setup and finite element mesh based on 8-node hexahedral elements are
depicted in Figure 4. Due to the application of a load-controlled scheme in combination with
the frictionless sliding case considered, the deformation cannot be resolved by a quasistatic
simulation. Thus, again transient structural dynamics is applied using Generalized-α time inte-
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Figure 4: Sphere pushed through tube – geometry and finite element mesh.

Step (a) during inflation (b) during pushing
1 3.08e+00 (*) 3.39e+01 (*)
2 1.10e+00 4.80e+00 (*)
3 6.82e−03 3.35e−02 (*)
4 6.74e−08 5.62e−06
5 5.04e−11 4.87e−11

(*) = change in active contact set
Table 2: Convergence behavior of the proposed semi-smooth Newton scheme in terms of the total residual norm
for two representative time steps during (a) inflation (steps 1–20) and (b) pushing (steps 21–40).

gration with the density of the contacting bodies chosen as ρ = 7.8 ·10−6. During a total of 40
time steps, we first inflate the hollow sphere by internal pressure (steps 1–20) and then push it
along the axial direction of the tube (steps 21–40). Figure 5 shows two deformed configurations
associated with the two stages described above.

Table 2 illustrates convergence in terms of the total residual norm for two representative time
steps during inflation of the hollow sphere and during pushing. Again, for this transient contact
simulation of two elastic bodies, the presented algorithm is capable of efficiently solving all
types of nonlinearities including active set search within one semi-smooth Newton scheme.

Figure 5: Sphere pushed through tube – characteristic stages of deformation.
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Figure 6: 3D torus contacting a stiff wall – (a) finite element mesh, (b) stream lines through the inner hole of
the torus before contact (c)–(e) fluid velocity and structural movement are visualized for several time steps of the
dynamic fluid-structure-contact interaction process.

6.3 Fluid-structure-contact interaction: elastic torus

The third test case illustrates a three-dimensional fluid-structure-contact interaction example.
An elastic torus (E = 4000, ν = 0.4) rotated around a horizontal axis by an angle of 65 degrees
is placed in a 3D channel as depicted in Figure 6. A parabolic inflow profile is imposed at
the top boundary of the channel and zero traction Neumann boundaries allow outflow on the
left and right side near the bottom. All other channel boundaries are no-slip boundaries. Both
the structural and the fluid mesh consist of 8-node hexahedral elements, with state-of-the-art
stabilization techniques being used in the fluid elements. The velocity field around the moving
torus is depicted in Figure 6. Stream lines illustrate the 3D fluid flow through the inner hole of
the torus before contacting with the wall. At first, the torus is moving towards the wall due to
the interaction with the fluid stresses. The exact interface representation allows to resolve flow
patterns around the torus very close to contact and to simulate dry contact. After some time,
the torus touches the wall and its further movement and deformation is influenced by the fluid
at the fluid-structure interface and by contact forces at the contact interface.
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7 CONCLUSIONS

The dual mortar method recently proposed by the authors for 3D finite deformation contact
analysis has been reviewed and some important extensions have been highlighted. Consistent
linearization of contact forces and constraints together with an interpretation of the active set
search as a semi-smooth Newton scheme yields a very efficient solution algorithm. The accu-
racy of the presented method and its superior numerical robustness and efficiency have been
demonstrated with several examples including finite deformations.

The integration of dual mortar contact into a fixed-grid fluid-structure interaction (FSI)
framework based on the extended finite element method (XFEM) has been addressed shortly.
This can be seen as a first step towards multiphysics and multiscale simulations, which cou-
ple contact analysis with several other physical fields and take into account effects on different
length scales. Future work in this field will also focus on modeling finite deformation contact
between slender beams and coupled thermomechanical contact, with applications ranging from
Brownian dynamics of polymers in fiber networks to heat conduction and mechanical dissipa-
tion due to frictional sliding in turbine blade-to-disc joints.
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