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Abstract. The present work is devoted to a theoretical analysis and numerical modeling of the 
phenomena of high-frequency wave propagation in honeycomb-type periodic media. A one-
dimensional periodic elastic rod model and a two-dimensional periodic elastic beam hexagonal 
model are considered. The Bloch wave direct and inverse transformations are applied to find 
general or particular solutions. By identifying eigenfrequencies and the corresponding eigen-
modes of the periodic systems, important information, such as the frequency bandgaps and the 
diffracted waves caused by the periodic cells, is obtained. The aims are to improve our under-
standing of how HF waves are transmitted and attenuated in the studied periodic media and to 
link the theoretical analyses to our numerical assessments.  
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1 INTRODUCTION 
Sandwich shells using honeycomb-type core are very useful composite materials to design 

lightweight but high-strength structures, especially in aerospace and aeronautics industries, 
for the honeycomb core provides an efficient solution to increase bending stiffness without 
significant increase in structural weight. When high-frequency (HF) flexural waves propagat-
ing in such sandwich shells, the involved wavelengths are of the same order of the character-
istic lengths of the honeycomb cells, or even shorter, the honeycomb cellular microstructure 
can interact with the waves and highly perturb the propagation phenomena, as they are gov-
erned by the geometry and the material properties of the cells. Indeed, due to the periodic 
geometric and material discontinuities within the cellular structure, waves can propagate 
completely or be attenuated even stopped, depending upon the involved frequencies and upon 
the spatial direction, so we observe the existence of passing and stop bands in frequency do-
main ([1]). As the classical homogenized models cannot take into account this kind of interac-
tion, they fail to correctly describe the transient flexural behaviors of the sandwich shells in 
HF ranges ([2]). Therefore, relevant analytical and numerical models should be established by 
understanding how HF waves propagate in a honeycomb thin layer and interact with its cellu-
lar structure.   

 
To simplify and optimize numerical models but still taking into account the detail 

characteristics of the cellular microstructure, the Bloch wave theory is more and more widely 
used now. The basic idea is to transform a non-periodic function defined in a periodic struc-
ture to a set of periodic functions having the same periodicity as the structure. Therefore the 
study of the original function in the whole structure can be replaced by considering the 
periodic functions in a unique cell. The theory was firstly applied in the quantum mechanics 
to solve the Schrödinger equation in periodic lattice of particles ([3]). Now it has been intro-
duced to the structural mechanics. In the literature, the dispersion equations relating the fre-
quency to the Bloch wave vector have been given for several types of honeycomb cells 
composed by beams and the effects of the cellular characteristics, for example the slenderness 
ratio and the internal angle, have been discussed in [4] and [5]. 

 
The honeycomb thin layer that we are interested is composed by thin-walled hexagonal 

regular cells, which give rise to an in-plane two-dimension periodic hexagonal cellular micro-
structure. Each hexagonal cell has two parallel sides whose thickness is doubled due to the 
manufacturing process, which forms ribbons with a semi-hexagonal profile and bonds them 
together in pairs to obtain hexagonal cells. These doubled thickness walls result in plane ani-
sotropic properties of the honeycomb thin layer. Our first research works presented herein 
consist in the development of theoretical and numerical modeling tools based on the Bloch 
wave theory and then in their validation by application to a one-dimensional (1D) periodic 
elastic rod model and a two-dimensional (2D) elastic beam hexagonal model, for which the 
previously mentioned double thickness aspect is considered. The Bloch wave modes inside 
one cell are considered and the dispersion equations are obtained.  

 
The paper is organized as follows: The section 2 introduces the direct and inverse Bloch 

wave transformations. The section 3 is devoted to the theoretical and numerical analyses of  
the wave propagation in a 1D periodic structure composed by elastic rods. The modeling of a 
more complex 2D periodic structure composed by elastic beams is then presented in the sec-
tion 4, before some concluding remarks in the section 5. 
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2 BLOCH WAVE THEORY 

Let us consider a periodic structure Ω of space dimension N, a primitive cell Q0 and a set 
of basis vector ei (i=1,...,N), called direct cell basis, are defined so that the entire structure Ω 
can be obtained by repeating the primitive cell along the direct cell basis. Dual to the primi-
tive cell Q0, a reciprocal cell 

 

Q0
*  and a reciprocal cell basis, 

    

 

e j
*, are defined, which satisfies 

the following relation: 

 

 

e i. e j
*

= !ij  (1) 

where 

 

!ij is the Kronecker delta. The reciprocal cell is also called the first Brillouin zone [6]. 
The areas of Q0 and 

 

Q0
*verify the following equation: 

 

 

volume(Q0)volume(Q0
*
) = 1 (2) 

For any non periodic function V(x) defined on Ω, the Bloch wave theory states that, for 
each wave vector k restricted in the first Brillouin zone 

 

Q0
* , the Bloch transformation VB(x,k) 

of V(x) is a periodic function having the same periodicity as the periodic structure, which is 
also called Bloch wave function: 

 

 

B
V (x,k) = V x +ni! ie i( ) ik.(x+ni! i e i )e

n"  (3) 

Then, V(x) can be recovered by the following inverse Bloch transformation: 

 

 

V x( ) =
1

0
*

volume(Q )

B
V (x,k) ! ik.x

e dk
Q0

*"  (4) 

By virtue of the Bloch wave transformation, the propagation phenomena of HF elastic 
waves, transmission, reflection, conversion and attenuation, through the periodic microstruc-
ture can be understood by investigating the Bloch wave modes within the primitive cell, 
which allows to save lots of the efforts when doing analysis and simulation. 

3 WAVE PROPAGATION IN 1D ELASTIC ROD MODEL 
The first periodic structure considered herein is a 1D elastic rod model, which is a topol-

ogy of a primitive cell composed by two rigidly jointed elastic rods respectively of lengths l1 
and l2, therefore the period of the 1D medium is λ = l1 + l2 (Figure 1).  

 -l1 l2 0 

=l1+ l2 
 Primitive cell 

  
Figure 1: 1D elastic rod model 

The equilibrium eigen equation of the i-th rod (i=1, 2) reads as: 

 

 

d

dx
E
i

dU x( )

dx

! 

" 
# 

$ 

% 
& = '(

i
)2
U x( )  (5) 
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where (Ei, ρ i) denote the Young’s Modulus and the density, ω the eigenfrequency and U(x) 
the corresponding eigenmode. By applying Bloch wave transformation to (5), the following 
Bloch eigen equation is obtained: 

 

 

Ei
!2 UB x,  k( )

!x2
" 2ikEi

!UB x,  k( )

!x
" Eik

2
U
B
x,  k( ) = "#i$

2
U
B
x,  k( )  (6) 

with   

 

k ! Q0
*

= [0,2" / #[  the Bloch wave vector. Given k, the goal is to find the eigenvalue 

 

!  
and the corresponding Bloch eigenmode UB(x, k) of the eigen problem (6). It is straightfor-
ward that the general solution of (6) has the following analytical form: 

 

 

Ui
B
(x, k) = aie

i k+
!
ci

" 

# 
$ 

% 

& 
' x

+ bie
i k(

!
ci

" 

# 
$ 

% 

& 
' x

 (7) 

where, for the i-th rod, ci = 

 

E
i
!
i
 is the wave velocity and (ai, bi) are four constants to be 

determined.  

3.1 Dispersion equation 
To calculate the four constants (ai, bi), (i=1, 2), we consider the following the interface 

conditions between the two rods inside the primitive cell and the periodic conditions on its 
extremities: 

 

 

U
B
(0

!
) = U

B
(0

+
), N

B
(0

!
) = N

B
(0

+
)

U
B
(!l1) = U

B
(l2),  N

B
(!l1) = N

B
(l2)

 (8) 

where NB = 

 

dU
B
dx ! ikU

B denotes the 1D Bloch axial force vector. Substituting the general 
solution form (7) to these conditions (8), a system of four linear equations is obtained. To en-
sure that system admits nontrivial solutions, its determinant must vanish, which finally gives a 
relation between k and ω, called dispersion equation.  

 
For our 1D rod model, the following analytical dispersion equation can be obtained: 

 

 

cos(!k) = cos "T1( )cos "T2( ) # (
Z1

2Z2
+
Z2

2Z1
)sin "T1( )sin "T2( ) (9) 

where Zi = ρici denotes the characteristic acoustic impedance and     

 

Ti = li / ci the time for wave 
to propagate through the whole i-th rod. Using (9), for each given frequency ω, a Bloch wave 
vector k = kr+ i kim can be found and result in the following Bloch eigenmode in the i-th rod:  

 

 

Ui
B
(x,k) = aie

i k r +
!
ci

" 

# 
$ 

% 

& 
' x

e
(k imx + bie

i k r (
!
ci

" 

# 
$ 

% 

& 
' x

e
(k imx  (10) 

Therefore, when k is real (kim = 0), the Bloch wave mode 

 

U
i

B  is a propagating mode, which is 
transmitted to the adjacent cells with the same amplitude and there is no energy losing when 
propagating through the periodic medium. Otherwise, when k is complex or pure imaginary 
(kim ≠ 0), 

 

U
i

B  is an evanescent Bloch wave mode, it vanishes rapidly when propagating to the 
adjacent cells and the pure energy exchanging between periodic cells is equal to zero ([1]).  

 
The frequency ranges that give real values of k is called passing band and the others stop 

band. The figure 2 gives the frequency bandgap of the 1D model: The red curves plot the two 
real solutions of k and so indicate the passing bands, while the blue curves present the stop 
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bands, by plotting the imaginary part kim of the two complex solutions of k: 

 

j!

"
+ i kim , (j=0,1). 

We remark that the location and the width of the stop bands mainly depend on the ratio be-
tween the two characteristic acoustic impedances Z1/Z2 ([7]). 

 

 

 

 

 

 
 

Figure 2: Dispersion relation of eigenfrequency on k, Z1/ Z2 = 

 

5  

3.2 Diffracted wave analysis 

Now, we consider an incident plane wave 

 

u0(x,  t) = e
i(k 0x!" 0t) and investigate how its 

propagation through the 1D periodic structure that is perturbed by the periodic cells. To do 
this, the wave solution u(x, t) is decomposed into two parts: 

 

 

u(x,  t) = e
ik 0x + ud(x)[ ]e! i" 0t  (11) 

where (k0, ω0) are the wave vector and the angular frequency of  the incident wave. We are 
interested in finding   

 

ud(x) , the diffracted wave caused by the periodicity of the cells, which 
indicate us in fact what’s the difference between the wave motion in a periodic medium and in 
a homogenous medium.  

 
By substituting the equation (11) in the equilibrium eigenequation (5), we get: 

 

  

 

d

dx
Ei
dud(x)

dx

! 

" 
# 

$ 

% 
& 

+
d

dx
Ei
du0(x)

dx

! 

" 
# 

$ 

% 
& 

+ 'i(0
2
u0(x)

) 
* 
+ 

, 
- 
. 

fe

1 2 4 4 4 4 4 3 4 4 4 4 4 

= /'i(0
2
ud(x) (12) 

where the second term of the left member is considered as an external loading fe due to the 
incident wave. By expanding ud (x) as a linear combination of eigenmode U(x): 

 

 

ud(x) = !nUn(x)n"  (13) 

the Bloch diffracted wave 

 

u
d

B  reads as: 

 

 

ud
B
(x, k) = !n(k)Un

B
(x,  k)

n"  (14) 

where UB(x, k) is the Bloch eigenmode and   

 

!n(k)  the Bloch coefficient.  
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Since we have already calculated UB(x, k), we look for 

 

!n(k) now. Applying the Bloch 
wave transformation to the equation (12) to get Bloch equilibrium eigenequation and substi-
tuting the equation (14) into it, we get: 

 

 

!i("
2 # "0

2
)$n(k)Un

B
x,  k( )

n% = fe
B
(x,  k)  (15) 

where 

 

f
e

B  is the Bloch external loading that can be expanded using the same Bloch modes 
UB(x, k): 

 

 

fe
B
(x, k) = Fn(k)Un

B
(x,  k)

n!  (16) 

Therefore αk can be obtained in the following way:  

 

 

!n(k) =
Fn(k)

"i(#
2 $ #0

2
)

 (17) 

Subsequently the 

 

u
d

B  is got using (14) and finally ud
 is obtained using the inverse Bloch trans-

formation (4). 
 
The figure 3 illustrates the ratio of amplitude between u0 and ud with two incident waves 

with having respectively two different frequencies f0=2.5 kHz and f0=10 kHz, whose corre-
sponding wave lengths in the first rod, λ0, are respectively 0.3 and 0.075 times of the period. 
We observe an important amplification of wave propagation phenomena due to diffracted 
wave caused by the periodicity of the cells and the amplification level is not affected a lot by 
the frequency of the incident wave.  

 
 

 

 

 

 

 

 

Figure 3: Diffracted wave inside the primitive cell. 

4 WAVE PROPAGATION IN 2D ELASTIC BEAM MODEL  
The second periodic structure considered here is a 2D elastic beam model (Figure 4). It is 

a topology of a primitive cell composed by three rigidly jointed elastic beams ([8]) with the 
same length s. The Lamé constants and the density of the beams are ( λ, µ, ρ). The thickness 
of beam (1) is twice of the thickness of the other two beams (2) and (3) (see Figure 4). Each 
beam is firstly considered in its local basis (s, n), in which the unit vector s is parallel to the 
beam’s axis and the unit vector n is perpendicular to the beam’s axis. Then the entire model is 
considered in a global basis (x, y). 

x(s) 
 

ud/ u0 
 

 λ=l1+l2 
 

Z1/ Z2=

 

2 , T1/ T2=

 

2 l1/ l2 
f0=2500Hz, λ0/λ=0.3 
f0=10000Hz, λ0/λ=0.075 

l1 l2 
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Figure 4: 2D elastic periodic structure composed by beams 

4.1 Dispersion relation 
The well-known Timoshenko kinetics for thick beams is used, so the displacement u(s, t) 

in each beam reads as: 

 

 

u(s,t) = u01(s)s + u02(s)n + t u13(s)s  (18) 

where u01(s) and u02(s) are the displacement fields of the middle line in direction s and n and 
u13(s) is the rotation of the fibers.  

 
For each beam, the Bloch equilibrium eigenequations of the 2D model are: 

 

 

d
2
U01
B

ds
2

! 2i k. s( )
dU01

B

ds
! k. s( )2U01

B
= !

"#2

$ + 2µ
U01
B

d
2
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B

ds
2

! 2i k. s( )
dU02

B

ds
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B
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dU13

B

ds
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µ
U02
B
,  (m = 0,  1)

d
2
U13
B

ds
2

! 2i k. s( )
dU13

B

ds
! k. s( )2 +

12µ

($ + 2µ)Hm
2
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& 
' 

( 

) 
* U13

B !
12µ

($ + 2µ)Hm
2

dU02
B

ds
= !

"#2

$ + 2µ
U13
B

 (19) 

with (

 

U
01

B , 

 

U
02

B ,

 

U
13

B ) the Bloch eigenmode and 

 

k !Q0
*  the Bloch wave vector. In this 2D 

model, the first Brillouin zone 

 

Q0
*  is also a hexagonal cell. Similar to the analysis we did for 

the 1D model, giving k, we look for the eigenvalues and the corresponding Bloch eigenmodes 
of the equation (19).  

 
According to the interface conditions between the beams inside the primitive cell and the 

periodic conditions on their extremities as following: 

 

 

U01
B(1)

+U02
B(1)

= U01
B(2)

+U02
B(2)

= U01
B(3)

+U02
B(3)

U13
B(1)

= U13
B(2)

= U13
B(3)

                                                     

N
B(1)

+Q
B(1)

+N
B(2)

+Q
B(2)

+N
B(3)

+Q
B(3)

= 0

M
B(1)

= M
B(2)

= M
B(3)

              

 (20) 

where NB is the Bloch axial force vector, QB is the Bloch transverse shear force vector and 
MB is the Bloch bending moment, we get a system of 18 linear equations. Let the determinant 

Primitive cell 

s 

(0, 0) 

s 

n 

(2) (3) 

(1) 

y 

x 
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of the system equal to zero, we can get finally the dispersion equations between k and ω. Un-
fortunately, in the 2D model, we are not able to explicit the dispersion equation and we can 
only plot the dispersion surface numerically (Figure 5). We find that the ratio of H0/H1 largely 
affects the width of the stop bands and the bandgap will move to HF range if we shorter the 
lengths of the beams. 

 
  (s-1) 
 

 ky (m-1) 
 

 kx (m-1) 
 

H0/H1=2 
 

  
Figure 5: Dispersion surface of eigenfrequency upon Bloch wave vector. 

5 CONCLUSIONS  
The classical homogenized models fail to correctly describe the HF transient flexural be-

havior of the honeycomb-type sandwich shells. It is necessary to look into the effects coming 
from the periodic microstructure of the honeycomb thin layer. The Bloch wave theory has 
been adopted in order to take into account the characteristics of the honeycomb cells while 
optimizing numerical models and saving calculation costs.  

Theoretical analyzing and numerical modeling tools base on the Bloch wave theory and 
the FE method has been developed. They are at first applied to a 1D periodic structure com-
posed by elastic rods and validated. By considering only the primitive cell, the dispersion 
equation is obtained, which allows identifying the passing and stopping bands of frequency. 
With an incident plane wave, the diffracted wave due to the periodicity of the cells is calcu-
lated and amplification phenomena are observed independently from the frequency of the in-
cident wave.  

Then, a 2D periodic hexagonal regular structure composed by elastic beams is investi-
gated. The first result of eigenfrequency bandgap is obtained. 

Our current research work is to apply our theoretical and numerical tools to the honey-
comb-type thin layer composed of periodic thin-walled hexagonal regular cells. 
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