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Abstract. We will present recent developments concerning the extensions of the ADER-
DG method to solve three dimensional dynamic rupture problems on unstructured tetrahedral
meshes. A remarkable feature of this method is the combination of the DG scheme and a time
integration method using Arbitrarily high-order DERivatives (ADER) to provide high accuracy
in space and time with the discretization on unstructured meshes. In the resulting discrete
velocity-stress formulation of the elastic wave equations variables are naturally discontinuous
at the interfaces between elements. The so-called Riemann problem can then be solved to obtain
well-defined values of the variables at the discontinuity itself. This is in particular valid for the
fault at which a given friction law has to be evaluated. Hence, the fault’s geometry is honored
by the computational mesh. This way, complex fault planes can be modeled adequately with
small elements while fast mesh coarsening is possible with increasing distance from the fault.
A further advantage of the scheme is that it avoids spurious high-frequency contributions in the
slip rate spectra and therefore does not require artificial Kelvin-Voigt damping or filtering of
synthetic seismograms.
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1 INTRODUCTION

Strong ground motion models for seismic hazard assessment are based on the understanding
of earthquake sources and seismic wave propagation. The state of the art is the combination of
earthquake dynamics together with wave propagation in a single simulation. Synergy effects
are for instance basin effects on wave propagation from finite-extent earthquake sources, high-
frequency source directivity in random media and in highly heterogeneous fault zones, and
rupture propagation of and seismic radiation from dynamic source models on non-planar faults
utilizing slip-weakening and rate-and-state friction models.

A variety of numerical methods have been used in the past to implement the dynamics of
earthquake rupture, such as finite differences (FD) [1, 2, 3], boundary integral (BI) [4, 5], finite
volume (FV) [6], or spectral element (SE) [7], to name only a few commonly used method-
ologies. All these techniques have certain advantages and drawbacks. The most accurate and
efficient method is the BI method, but it is in general not suited for handling heterogeneous
media and nonlinear materials. FD schemes provide flexibility in terms of the choice in the
friction law or in different material properties. However, it is difficult to apply them to non-
planar faults, and computational resource issues could occur when strong material contrasts are
included in the model, like sedimentary basins with extremely low wave velocities. FV meth-
ods are geometrically flexible but are only implemented as low-order accurate operators that
are very dispersive. This fact affects the wave form in the nearfield and in turn the rupture front
evolution. The SE method is both accurate and flexible and well suited for seismic wave prop-
agation, but is restricted to hexahedral element types. The generation of hexahedral meshes
for complicated geometries in three dimensions, such as faults with branching, and adapting
smoothly the element sizes to different material properties, are still very challenging tasks and
a major bottleneck.

J. de la Puente [8] presented recently an alternative for the dynamic rupture problem, based
upon a discontinuous Galerkin (DG) method combined with an arbitrary high-order derivatives
(ADER) time integration [9]. The DG method combines features from high-order FV and
finite element methods, where a polynomial basis is used inside each element to approximate
the physical variables of the elastic wave equations. This formulation enables the use of fully
unstructured meshes, i.e. triangles (2D) or tetrahedrons (3D), to better fit the constraints of
a given model and in particular the fault shape. Another feature of DG methods, inherited
from FV methods, is the concept of numerical fluxes at element interfaces. Between any two
elements the variables of the elastic wave equations are discontinuous. This is valid, as the
exact solution of the elastic wave equations at a discontinuity exists, and is obtained by the
solution of the well-known Riemann problem [10, 11]. At a fault the solution of the Riemann
problem has to be modified to take the frictional boundary conditions into consideration. The
numerical dispersion properties of a DG method and the high accuracy of the flux concept for
high-order formulations are the reasons why the solution of the ADER-DG method is relatively
smooth and free of spurious high-frequency oscillations compared to other methods. Therefore,
it does not require artificial Kelvin-Voigt damping or filtering of the seismograms. This is an
important feature, since the damping reduces the time step of a simulation and, thus, increases
the computational runtime significantly.

The extension of the scheme to three dimensional problems on tetrahedral meshes was pre-
sented by C. Pelties [12]. In this paper, we present recent developments.
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2 DYNAMICS OF FAULT RUPTURE

The kinematics of a sliding process can be described by the slip rate Δv = v+ − v−, where
v+,− are the velocities parallel to the fault, and the slip Δd, so that Δv = Δḋ. We denote � and
� the absolute shear and normal stresses on the fault, respectively.

Slip starts when the shear stress on the fault overcomes the fault strength. In the Coulomb
friction model adopted here the strength is proportional to the normal stress. During active
slip, the slip rate and the shear traction have opposite directions. These three phenomena are
accounted for in the following expressions:

∣� ∣ ≤ �f� ,
(∣� ∣ − �f�) Δv = 0 ,
Δv∣� ∣+ ∣Δv∣� = 0 ,

(1)

where �f is the friction coefficient. We adopt the linear slip weakening friction law [13]:

�f =

⎧⎨⎩ �s −
�s − �d
Dc

Δd if Δd < Dc ,

�d if Δd ≥ Dc .

(2)

With increasing slip Δd the friction coefficient �f drops from the static value �s to the
dynamic �d over the critical slip distance Dc, as shown in Fig. 1. Although we chose a simple
friction law for demonstration reasons, the ADER-DG method is able to support any friction
law.

v

v
fault between

two elements

−

+

Figure 1: The left sketch gives an idea about how a fault increment is respected by the mesh. The different sides
are indicated by plus and minus. On the right we plot �f vs. Δd for the linear slip weakening friction law.

3 FAULT DYNAMICS WITHIN THE DISCONTINUOUS GALERKIN FRAMEWORK

In contrast to other dynamic rupture implementations, like traction-at-split-node which is
popular for FD methods, J. de la Puente [8] followed a new approach employing the concept
of fluxes. In this section, we will explain the basic ideas behind this and show the extension to
three-dimensional problems.
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3.1 Elastic wave equations in velocity-stress formulation

Omitting external sources (e.g. moments or body forces), the three-dimensional elasticity
for an isotropic medium are written in velocity-stress form as the linear hyperbolic system

∂
∂t
�xx − (�+ 2�) ∂

∂x
u− � ∂

∂y
v − � ∂

∂z
w = 0 ,

∂
∂t
�yy − � ∂

∂x
u− (�+ 2�) ∂

∂y
v − � ∂

∂z
w = 0 ,

∂
∂t
�zz − � ∂

∂x
u− � ∂

∂y
v − (�+ 2�) ∂

∂z
w = 0 ,

∂
∂t
�xy − �( ∂

∂x
v + ∂

∂y
u) = 0 ,

∂
∂t
�yz − �( ∂

∂z
v + ∂

∂y
w) = 0 ,

∂
∂t
�xz − �( ∂

∂z
u+ ∂

∂x
w) = 0 ,

� ∂
∂t
u− ∂

∂x
�xx − ∂

∂y
�xy − ∂

∂z
�xz = 0 ,

� ∂
∂t
v − ∂

∂x
�xy − ∂

∂y
�yy − ∂

∂z
�yz = 0 ,

� ∂
∂t
w − ∂

∂x
�xz − ∂

∂y
�yz − ∂

∂z
�zz = 0 ,

(3)

where � is the first Lamé constant and � is the shear modulus. � indicates the density. The
normal stress components are given by �xx, �yy, and �zz, and the shear stresses are �xy, �yz,
and �xz. The components of the particle velocities in the x-, y-, and z-directions are denoted
by u, v and w, respectively. These nine equations are sufficient to describe the complete wave
field developing with time as described in detail in Dumbser et al. [14].

The physical variables Q = (�xx, �yy, �zz, �xy, �yz, �xz, u, v, w)T are approximated in the
DG approach within a tetrahedral element T (m) by high-order polynomials

Qm
p (x, y, z, t) = Q̂m

pl(t)Φl(x, y, z) , (4)

where Φl are orthogonal basis functions. Therefore, the physical variables are expressed within
the DG scheme by a linear combination of these basis functions and time-dependent degrees of
freedom Q̂m

pl(t). The index p is associated with the unknowns in the vector Q and l indicates
the l-th basis function.

3.2 Riemann problem

As mentioned above, between any two elements the variables of the elastic wave equations
are in general discontinuous. This kind of problem, a discontinuous initial condition together
with a partial differential equation, is called the Riemann problem. The solution of the Riemann
problem at an element interface is the Godunov state and can be written in terms of explicit
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values as [8, 10, 11]

�Gxx = (�+
xx + �−

xx)/2 + cp�

2
(u− − u+) ,

�Gyy = �+
yy + (�Gxx − �+

xx)(1−
2c2s
c2p

) ,

�Gzz = �+
zz + (�Gxx − �+

xx)(1−
2c2s
c2p

) ,

�Gxy = (�+
xy + �−

xy)/2 + �
2cs

(v− − v+) ,

�Gyz = �+
yz ,

�Gxz = (�+
xz + �−

xz)/2 + �
2cs

(w− − w+) ,

uG = u+ + 1
cp�

(�Gxx − �+
xx) ,

vG = (v+ + v−)/2 + cs
2�

(�−
xy − �+

xy) ,

wG = (w+ + w−)/2 + cs
2�

(�−
xz − �+

xz) .

(5)

We assume that the fault is located exactly in the XZ-plane and ruptures purely in the Y-
direction. Hence, we have to impose the shear stress �xy according to the friction law Eq. 2 and
obtain the new traction value �̃xy, which in the case of rupture is different from �Gxy. In turn, this
provides boundary conditions for the fault parallel-velocities. Multiplying the fourth equation
of Eq. 5 by cS/� and subtracting the eighth equation leads to

ṽ+ = v+ +
cs
�

(
�̃xy − �+

xy

)
and ṽ− = v− − cs

�

(
�̃xy − �−

xy

)
, (6)

when we substitute �Gxy with its imposed value �̃xy. ṽ− is obtained by summing the equations
instead of subtracting them.

These expressions are crucial for the understanding of fault dynamics using fluxes, as they
state that an imposed traction instantly and locally generates an imposed velocity parallel to the
fault. By subtracting them, the slip rate is obtained:

Δṽ =
2cs
�

(
�̃xy − �Gxy

)
. (7)

This way, the analytical form of the fault tractions is captured.

4 VERIFICATION

For most of the dynamic rupture problems there does not exist an analytical reference solu-
tion for comparison. Therefore, the Southern California Earthquake Center (SCEC) created the
Dynamic Earthquake Rupture Code Verification Exercise, where different codes and method-
ologies are compared [15]. Here, we verify our method with the Test Problem Version 3 (TPV3).

4.1 The SCEC test case

The TPV3 uses the slip-weakening friction law in Eq. 2 and rupture on a stress-homogeneous
vertical strike-slip fault set in a homogeneous full-space. The initial shear and normal stresses
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are assigned to be homogeneous for the 30 km long by 15 km deep fault as shown in Fig. 2, with
the exception of the nucleation zone that has higher initial shear stresses. The parameters can be
found in Table 1. Rupture is not allowed beyond the fault boundaries. This fault is embedded
in a large computational domain of 72 km width in each spatial dimension to avoid spurious
reflections from non-perfectly absorbing boundaries.

PI

PA

30km

15km

nucleation patch

Figure 2: Sketch of the SCEC test case with the nucleation zone (grey shaded). The fault is surrounded by a box
with an edge length of 72 km. The black triangles indicate the in-plane receiver (PI) and the anti-plane receiver
(PA).

Parameter Nucleation Zone Outside Nucleation Zone
Initial shear traction (MPa) 81.6 70.0
Initial normal stress (MPa) 120.0 120.0
Static friction coefficient 0.677 0.677

Dynamic friction coefficient 0.525 0.525
Critical slip distance (m) 0.4 0.4

Table 1: Parameters describing the fault for the SCEC test case.

4.2 Results

In Fig. 3 we compare our solution (red line) with the solution of Day et al. [2] (black line)
which was well validated during the SCEC exercises. Day et al. used a FD staggered-grid split
node method of accuracy order 2 with a 50 m grid interval (DFM0.05). The solution produced
with our DG scheme is of accuracy order 3 (ADER-DGO3) and uses a triangular mesh with
an edge length of 300 m to discretize the fault, but we allow for tetrahedrons with 600 m edge
length around the fault in a small box of 10 km thickness. This box is embedded in the domain
of 72 km side length where we let the element edge length of the tetrahedrons quickly increase
from 600 m to 3000 m to reduce the computational effort. No artificial reflexions possibly
caused by the mesh coarsening are observed.

The ADER-DG solution is in excellent agreement with the solution produced by DFM0.05.
This includes the arrival time of the stopping face and the stress relaxation. Furthermore, in
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Fig. 4 we see that the spectral behavior of the ADER-DG slip rate solution shows the theoret-
ically expected frequency decay [16]. No spurious high-frequency oscillations are produced.
Therefore, no artificial Kelvin-Voigt damping has to be applied which would further reduce the
time step size and increase the computational effort.
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Figure 3: DFM0.05 (black line) indicates the FD staggered-grid split node method with 50 m grid interval of Day
et al. [2]. This solution is in well agreement with the solution produced by our ADER-DGO3 scheme (red line)
and a mesh spacing of 300 m at the fault. Shown is the shear stress and the slip rate. PI and PA denote the in-
plane and the anti-plane receiver as shown in Fig. 2. In the bottom row we additionally plot the solution obtained
with a 200 m fault discretization DGO3-h200 (blue dashed line) also with order 3 to demonstrate the trend of a
convergence towards the DFM0.05 solution with increasing mesh refinement.
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Figure 4: Spectrum of the slip rate obtained from receiver PA. The ADER-DGO3 solution does not show spurious
high-frequency oscillations and, furthermore, it follows the frequency decay as theoretically expected.

5 CONCLUSIONS

We showed the successful adaption of 3D fault dynamics in the ADER-DG scheme under
linear slip weakening friction. Accuracy was verified by employing the SCEC benchmark TPV3
for spontaneous rupture. Due to the properties of the Riemann problem in terms of the smooth-
ness of the solution, the slip rate spectra remains free of spurious high-frequency oscillations.
Furthermore, our implementation of the fault dynamics employing fluxes should allow for fault
branching and surface rupture with little additional effort.

We conclude that the combination of meshing flexibility and high-order accuracy of the
ADER-DG method will make it a very useful tool to study earthquake dynamics on complex
fault systems. Future steps in the development could be the incorporation of bimaterial fault
interfaces and more complex friction laws like rate- and state-dependent friction.
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