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Abstract. The problem of jointly estimating the input forces and states of a structure from

a limited number of acceleration measurements is addressed. Utilizing a model-based joint
input-state estimation algorithm originally developed for optimal control problems, minimum-
variance unbiased estimates of the modal displacements and velocities of a structure as well
as the dynamic forces causing these responses, are obtained. The proposed algorithm requires
no prior information on the dynamic evolution of the input forces, is easy to implement, and
allows online application. Its accuracy and effectiveness are demonstrated using data from a
laboratory experiment on an instrumented steel beam and an in situ experiment on a footbridge.
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1 INTRODUCTION

In civil engineering state estimation refers to a modeleldadentification of quantities (e.g.
displacements) that allow a complete description of theesiba structure from vibration re-
sponse data. State estimators, among which the well-knaim#h filter and its variants, have
been proposed for structural systems behaving both Iywaad nonlinearly. A small survey is
given by Ching et al. in[3]. The state estimates can be used ¥ariety of purposes including
the prediction of stresses and fatigue loading, real-tinectiral health monitoring, structural
control, the determination of response in critical joirikee verification of design calculations,
etc. Examples include the work by Papadimitriou et [all [1d]which the Kalman filter is
used as part of a methodology for estimating the damage adation in a structure due to
fatigue from output-only vibration measurements at a kaibumber of locations. Ching and
Beck [2] estimated the unknown states of a structure usingla&n smoother in an application
concerning reliability estimation for serviceability linstates. Smyth and Wu [15] proposed a
multi-rate Kalman filter for the fusion of measured displaeat and acceleration data sampled
at different rates. The filter is designed to circumvent fgots related to the integration of ac-
celerometer or the differentiation of displacement datsitimations where both these response
guantities are available for system monitoring or damageatien. Hernandez and Bernal
[9] designed a state estimator for structural dynamic systeased on the assumption that the
primary source of uncertainty in the predicted state derfvem errors in the matrices of the
state-space model. Their estimator distinguishes itsefthfthe related robust Kalman filter
(RKF) in that it is derived on deterministic grounds, asssme process/measurement noise
and is significantly simpler to implement. It has been usegaatof an iterative scheme for
model updating in([[7], and has been extended to nonlinedemssin [8], where it was used
to estimate the states in a damaged seven-story buildingdrbmited number of acceleration
measurements.

In this contribution a joint input-state estimation algbm is used to identify modal displace-
ments, velocities and input forces using data from a laboyaxperiment on an instrumented
steel beam as well as an in situ experiment on a footbridge algorithm, developed by Gillijns
and De Moorl[6], has the structure of a Kalman filter, excegpt the true value of the input is
replaced by an optimal estimate. It distinguishes itselfrfithe state estimation methods men-
tioned above in that the excitation is assumed unknown,sivthiere are also no assumptions
made about its dynamic evolution (e.g. broadband, so thatnitbe modeled as a zero mean
stationary white process). When the positions of the aggbeces are known, the algorithm
can be used to jointly estimate the states and input forcasveZsely, when the positions of the
applied forces are unknown, a set of equivalent forces istifiled. In the latter case the points
of application of the forces are randomly chosen and egemidbrces, that would produce the
same measured response, are identified at all chosen lgalias this latter case, correspond-
ing to pure state estimation in the absence of any a priasrimétion regarding the positions or
frequency characteristics of the input forces, that wiltbasidered in this paper.

2 MATHEMATICAL FORMULATION
2.1 Equations of motion

Consider the continuous-time governing equations of mdto a linear system discretized
in space:

Mii(t) + Cu(t) + Ku(t) = £(t) = S, (t)p(t) 1)

2



Eliz-Mari Lourens, Geert Lombaert, Costas Papadimitriodi @uido De Roeck

whereu(t) € R"or s the vector of displacemeniyl, C andK € R"por*"por denote the
mass, damping and stiffness matrix, respectively fétids the excitation vector. The excitation
is factorized into an input force influence mat@(¢) € R"°or*"», and the vectop(t) €
R™ representing the, force time histories. Each column of the mat8x gives the spatial
distribution of the load time history in the corresponditgneent of the vectop. In the case of

a point load, the column &, has only a limited number of non-zero entries correspontiing
the distribution of the load over the degrees of freedome®fE mesh. In the case of stochastic
loading e.g. due to wind, the columns of the maBixmay result from the decomposition of
the load in uncorrelated contributions, e.g. by applyingaathinen-Loéve decompositian [5].
The undamped eigenvalue problem correspondinigto (1) reads

K® = M®Q?
where® € R"por*"por collects as columns the eigenvectdrs, and{2 is a diagonal matrix
containing the eigenfrequencies in rad/s. Introducing the coordinate transformatia(y) =
®z(t) and premultiplying byd? yields:
STMP5(t) + PTCPa(t) + P KPz(t) = TS, (t)p(t). (2)

These equations can be decoupled by using the orthogonafitjitions corresponding to a
set of mass-normalized eigenvecto#s' M® = I and®TK® = Q2 and assuming propor-
tional damping:

®'Co® =T

wherel is a diagonal matrix containing the ter§w;, and$ denotes a modal damping ratio.
The decoupled governing equations of motion in modal coarteis then become:

7(t) + Tz(t) + Q3%z(t) = 7S, (t)p(t). (3)

2.2 Continuous-time state-space model

By introducing the state vecta(t) € R"*", ng = 2npor:

o (1)

and utilizing the superficial identityIa — Mu = 0, the second-order equations of motion
(@) can be written as a first-order continuous-time statetou:

x(t) = Acx(t) + Bep(t) 4)
where the system matrices. € R™*" andB, € R™*"r are defined as:

0 I 0
Ac= | MK —M-'C }  Be= { M-S, } :

Consider next the measurement data ved{oy € R™¢, containing the:4 observed quanti-
ties expressed as a linear combination of the displacemelotity and acceleration vectors as
follows:

d(t) = S,u(t) + Syu(t) + Squ(t) (5)
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whereS,, S, andS; € R™*"por gre selection matrices for acceleration, velocity and dis-
placement, respectively, in which the locations of the mmessents and/or difference relations
can be specified. Using equatidn (1) and the definition of the yvector, equation|(5) can be
transformed into its state-space form:

d(t) = Gex(t) + Jep(t) (6)

with the output influence matri&g, € R™*™ and direct transmission matrik, € R™a*"»
defined as:

G.=[Si—S.M'K S, -S,M"'C], J. = [S.M'S,].

Equations[(#) and{6) together form the continuous-timestpace model for the full-order
system described by equatian (1). If a model reduction ifopmed, i.e. if the dynamics of the
system are represented by a reduced numpeof modal coordinates(t) € R™ asu(t) =
®,z(t), ®, € Rror== the state vector is transformed accordingly:

x=| T |0

The modal state vectd}(t) € R** now collects the modal coordinates:

and the expressions for the reduced-order continuoussirsEm matriced, € R2%m*2nm
B. € R?xme G, € R*?m gndJ, € R™*™ in the modal state-space model:

{(t) = Al +Bep(t) (7
d(t) = G(t) + Iep(t) (8)
can be shown to reduce to:
0
Ac = |: QQ - :| (9)
0
BC = |: (I)Tsp } (10)
G. = [Sq®—8S.2Q* S, — S, 2T | (11)
J. = [S.@@'S,]. (12)

2.3 Discrete-time state-space model

Using a sampling rate df/ At, the state-space model of equatidds (4) and (6) - or the modal
model of equation${7) andl(8) - can be discretized to yisldigcrete-time equivalent:

X1 = Ax; + Bpyg (13)
d, = Gx;,+Jpy (14)
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wherex; = x(kAt), d, = d(kAt), k=1,..., N and:
A=c* B=[A-TA'B,, G.=G, J.=1J.

3 JOINT INPUT-STATE ESTIMATION

In this section the joint input-state estimation algoritdaveloped by Gillijns and De Moor
for linear systems with direct feedthrough of the unknowpuinto the output [6] is presented.
Having direct feedthrough corresponds, from a structuyahdics point of view, to the situa-
tion where the measured quantities are accelerationshwgi@dmmonly the case. More details
on the derivation of this algorithm and a proof of optimalitya minimum-variance unbiased
sense, can be found inl [6].

The linear system under consideration is the discrete-stat-space system of equations
(@3) and[(14), supplemented with random variahlesand v, representing the stochastic sys-
tem and measurement noise, respectively:

Xpp1 = Axp + Bp, + wy (15)

The noise vectorav, € R™ andwv, € R" are assumed to be mutually uncorrelated,
zero-mean, white signals with known covariance matriQes= E{w,w/} > 0 andR =
E{v,v!} > 0. Results can easily be generalized to the case wher@ndv,, are correlated by
applying a preliminary transformation to the systém [1, Bgsults can also be generalized to
systems with both known and unknown inputs [6].

A state estimaté;,; is defined as an estimate ®f given{d, },_, and its error covariance
matrix Py, as E[(x; — Xx)(xx — Xx;)”]. An initial unbiased state estimate_; and its
covariance matri¥_; is assumed known. The initial state estim&afés assumed independent
of w;, andvy, for all k. Finally, it is assumed that the rank of the direct transmrssnatrix J
equals the number of applied forces and that the paifA, G) is observable. It can be proven
that the latter two assumptions are almost always valid wiealing with structural dynamic
systems.

The filter is initialized using the initial state and its \amte,x,—; andPg_;; hereafter it
computes the force and state estimates recursively in gteps: the input estimation, the mea-
surement update, and the time update:

Input estimation:

Ry = GPup-1G"+R (17)
My = (JTR@J>1JTR[‘,§}1 (18)
Py = M (dim — GRpje-1)) (19)
Pops = (IRI) (20)
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Figure 1: The measurement setup

Measurement update:

Ly = P[k\k—uGTf{[;]l (21)
X = Xppge—1) + Loy (dig — GRppg—1) — IPpwiw) (22)
Pug = Pt — Loy (Ryg = IPpiupd”) Ly (23)
Pl = Poer = —LigIPpiijy (24)
Time update:
X1k = AR + BB (25)
P P AT
p _ A B o xp[kk]] { }+ 26
[k+1|k] [ } pr[k\k] Pp[k\k] BT Q ( )

Itis mentioned that wheB = J = 0, the Kalman filter is obtained. In the above, the system
matrices are for ease of notation not indexed. The algorithm however, also be applied to
time-variant systems by simply adding the appropriate quis, i.e. A, By, G, andJy.

4 EXPERIMENTAL RESULTS

In this section the effectiveness of the proposed algorighitustrated by means of a labora-
tory experiment on an instrumented steel beam as well asstuiaxperiment on a footbridge.

4.1 Laboratory experiment on a steel beam

A steel beam with an IPE100 cross section, a length of 3m, &tdgof 150x150x15 mm
welded to its ends, is suspended at both ends from a steed fraimg flexible springs to simulate
free-free boundary conditions. A series of acceleromegepdaced along the beam to record
its response to an impact force, applied with an instruntehégnmer. The aim here is to use a
subset of the measured accelerations to identify the rengagimeasured) accelerations.

Vertical accelerations on the top flange of the beam were mnedst 17 different cross sec-
tions using 19 accelerometers (PCB 338B35, sensitirity)0 mV /g). The force was applied
eccentrically with an impact hammer (PCB 086CO03, ntas36 kg) at one of the free-free beam
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Figure 2: Positions of the sensors and applied force.

ends. The measurement setup and positions of the sensapyaliet! force are shown in figures
@ and’2. The modal parameters of the beam were identified ineaa@pnal Modal Analysis
with eXogenous inputs (OMAX) test [13] for the frequencygan — 900 Hz. More details on
this test and its results can be found(inl[10]. The identifiediai parameters were used to tune
the Young’s modulus of the steel and the stiffness of thenggrin a FE model. A comparison
between the identified and computed eigenmodes is showbl&lia Except for the torsional
modes, whose contribution to the acceleration responssdemed is almost negligible, a good
correspondence is found between the measured and expalraigenfrequencies. All modes
are very lightly damped with damping ratios bel6vs % of critical.

FEM Experimental

fudi fudi gz MAC
No. [Hz [Hz [%] []

1 1780 1.771 0.36 0.99
2 2787 2701 0.19 1.00
3 3106 4.917 041 0.99
4 3156 3081 0.12 0.99
5 6151 60.90 0.05 1.00
6 7494 7120 0.32 0.98
7 136.0 128.1 0.15 0.99
8§ 1746 1739 0.04 1.00
9 2169 2005 0.12 0.98
10 319.1 2935 0.13 0.97
11 3419 3410 0.02 1.00
12 4433 402.6 0.11 0.98
13 589.8 5354 0.12 0.95
14 557.4 556.7 0.03 1.00

15 807.1 805.6 0.04 1.00

Table 1. Comparison between the undamped eigenfrequefigciesf the FE model of the
beam and those that were experimentally obtained. The iexpetal damping ratiog; and
MAC values between the measured mass-normalized modesshagehe ones obtained from
the FE model, are shown as well.

The 15 modes from the FE model, consisting of 3 rigid body, bdioeg and 7 torsional
modes, are used to construct a reduced-order modal state-spodel of the beam. Originally
sampled at 10 kHz, all data used in the inverse calculatinsesampled at a lower rate in order
to include only frequencies within the range of the iderdifleodes. Using a decimation factor
of 5, the data is low-pass filtered using a Chebychev Typeerfdt 800Hz and subsequently
resampled at 2 kHz.
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Of the 19 measured accelerations, 10 are used to identifjmddal states and input forces,
from which the acceleration (or displacement, strain,)eé¢.any other point in the structure
can be calculated ab= Gx -+ Jp. Itis assumed that no a priori information on the positions
of the forces is available and a set of equivalent forces ssaraed to act at all measurement
locations used for the identification, i.e. at positiensas, a4, ag, ag, a1, a5, a7, a;g and
ayg. The accelerations identified at the remaining locatioescampared to the measured data
during a period of 1 s. The covariance matri€@sR andP, _; are assigned values df ',
le~! and1e71° on the diagonal, respectively. In accordance with what tiegyesent, these
values are chosen so as to have the order of the square rdbtsdigonal elements & and
Q corresponding to a small percentage of the highest peak®imeasured response and the
states (displacements/velocities), respectively. Thallsralues inP,_, indicate a low level of
uncertainty regarding the initial state estimate. It is tieered that the results are, however, not
strongly influenced by these values and similar results btaired for a large range @, R
andPg_;.
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Figure 3: a) Complete and b) detail of the measured (blacHf)identified (grey) time history
of the acceleration at sensor.
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Figure 4: Frequency spectrum of the measured (black) andifigel (grey) acceleration at
Sensof;.

Figured B td B show the results obtained when the beam iseelxgith the hammer dt =
+0.15s. Measured accelerations are plotted against those idzhtdr three randomly chosen
locations, namelyi;, a13 anda,s. The accelerations are compared in the time as well as in the
frequency domain, and a detail of the acceleration tim@hjstt the time of impact is presented
as well. A good reconstruction is obtained at all 3 locations
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Figure 6: Frequency spectrum of the measured (black) andifigel (grey) acceleration at
Sensom;s.
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Figure 7: a) Complete and b) detail of the measured (blacHf)identified (grey) time history

of the acceleration at sensoy.

4.2 |InsSitu experiment on afootbridge

Analogous to the previous test case, a subset of the acieteraneasured during an in situ
test on a footbridge is used to identify modal states and af ®efuivalent forces. The identified
modal states and forces are subsequently used to calch&atetelerations at the remaining
measured positions and a comparison is made. The foothdegécted in figur€l9, is located
in Wetteren (Belgium), and has been used as an in situ testaa®perational Modal Analysis
(OMA) [12] and previously mentioned OMAX techniques. It isteel bridge that crosses the
E40 highway between Brussels and Ghent at Wetteren, witlo ahd long bow-string span
of 30.33m and 75.23m, respectively.

For the OMAX tests, measurements have been performed imbnainber of 72 channels

9
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Figure 8: Frequency spectrum of the measured (black) andiigel (grey) acceleration at
Senso .

Figure 9: The footbridge in Wetteren, Belgium.

during different setups. The locations of the sensors avevshn figure[ 10. The data used in

the current example was obtained during excitation of thager by means of a drop weight

system. The drop weight was applied at point 34, in the \@rtizection, and during the setup

accelerations were measured in 16 channels. In the foltpvéirof the measured accelerations
will be used to identify the modal states and to reconstiueticcelerations at the 8 remaining
locations. Equivalent loads are assumed to act in the direcand at the locations of the 8

measured accelerations. The actual load on the structuseste of the drop weight as well as

a high level of ambient excitation due to traffic undernehthliridge and wind.

Of the 16 measured accelerations, 4 vertical and 4 latecalex@tions were identified as
optimal for the identification. These are the vertical aeraions in points 2, 3, 24 and 34 on
the bridge deck, the lateral accelerations on the bridgk depoints 14 and 19, and the lateral
accelerations of the bow at points 45 and 48. With the optinatcelerations as input, the
proposed algorithm is used to identify 7 ‘unmeasured’ eaftaccelerations at points 8, 12, 14,
25, 30, 36 and 41 on the bridge deck, and the lateral acceleraitpoint 12 on the bow.

The system matrices are constructed from an updated fieiteszit (FE) model of the bridge.
In the FE model, developed using the FE program ANSYS, tligbrieck is modeled using the
ANSYS shell element SHELL63. The longitudinal and transaébeams of the bridge deck, as
well as the bows, connections of the bows, and supports, adeled using the beam element
BEAM188. A 3D truss element, LINKS, is used to model the captaking into account the
effective stiffness.¢ of the cable based on the tensile cable force. The model hatsleof

10
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Figure 10: Positions of the sensors.

16007 nodes and 2210 elements. The first 4 modes calculatedhei model are shown in
figure[11.

Figure 11: Results from the FE modal analysis for the first 4l@so Top: transversal displace-
ments, middle: vertical displacements, bottom: displaa@mector sum.

The FE model is updated using a set of experimental modahpeass obtained during
an OMAX test [14] in which the actuator was a pneumatic aréfimuscle (PAM) developed
by the Acoustics and Vibration Research Group of the Vrijeversiteit Brussel([4]. Tablg]2
presents a comparison between the eigenfrequencies optlagad FE model and those that
were identified experimentally. The experimental dampetgps as well as the MAC values
between the mass-normalized mode shapes and the onesodldtaim the FE model are shown
in the table. The 22 eigenmodes of the FE model, in conjunetith the corresponding iden-
tified modal damping ratios, are used to construct a redocger modal state-space model of
the structure. As before, all data used in the inverse catiouls are resampled at a lower rate.
Using a decimation factor of 23, the data is low-pass filtergidg a Chebychev Type I filter at
17.39 Hz and subsequently resampled at 43.48 Hz. A periodpirBwhich the impact from
the drop-weight is applied at= 2.3 s, is analysed.

As in the previous examples equivalent forces are assumact @t all measurement loca-
tions. The covariance matric€} R andP_; are assigned values d§~'°, 1e~* andle~'% on
the diagonal, respectively. In figures| 121g 15, 4 of the 8tified accelerations are compared
to those measured. The results are for the vertical actielesaat points 12, 25 and 41 (figures
12 to[14), and the lateral acceleration at point 12 (figuie 15)

The identified accelerations are of lesser quality thanghonghe laboratory experiment,
which can partly be explained by the fact that the updated B&aiof the footbridge represents
the structure considerably less accurately than the oreting@e laboratory experiment (cfr.

11
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FEM Experimental FEM Experimental

Judi  Jusi &  MAC Judi Judi & MAC
No. [Hz7 [Hz [%] [-] No. [Hz [Ho [%] []
1 0739 0693 105 092 12 8599 8307 1.18 0.79
2 1739 1669 0.23 0.87 13 10.395 9.967 1.10 0.65
3 2363 2195 050 0.98 14 11.397 10475 0.64 0.76
4 3250 3.731 055 0.71 15 11.864 11.214 0.78 0.85
5 3.833 3.838 049 0.80 16 11.625 11.821 1.68 0.79
6 4.897 4480 0.76 0.84 17 13.147 12.728 0.35 0.70
7 5370 5.154 044 0.86 18 13.255 12.863 0.72 0.89
8 6.377 6.117 0.27 0.88 19 14.479 13530 0.72 0.62
9 6.662 6.321 050 0.92 20 15.312 14.810 0.41 0.80
10 6.991 6.605 058 0.88 21 16.648 16.502 0.53 0.82
11 8.028 7.488 0.70 0.82 22 18.358 17.833 0.28 0.88

Table 2: Comparison between the undamped eigenfrequefigiesf the updated FE model
and those that were experimentally obtained in an OMAX testgithe PAM. The experimental
damping ratiog; and MAC values between the measured mass-normalized mageshnd
the ones obtained from the FE model, are shown as well.
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Figure 12: a) Time history and b) frequency spectrum of thasueed (black) and identified
(grey) vertical acceleration at point 12.
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(grey) vertical acceleration at point 25.

MAC values in table§]l and 2). Also, the number of sensors isssthall compared to the
geometrical and modal complexity of the footbridge. Takingse circumstances into account
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Figure 14: a) Time history and b) frequency spectrum of thasueed (black) and identified
(grey) vertical acceleration at point 41.
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Figure 15: a) Time history and b) frequency spectrum of thasueed (black) and identified
(grey) lateral acceleration at point 12.

the identification is in fact very reasonable, especialtysthin the vertical direction. Moreover,
the accuracy of the identification is similar for both the @b part of the acceleration from

t = 0—2.3 s, where the vibrations are caused by low amplitude traffidépand the remaining

stronger intensity part of the acceleration caused by tbp dreight. The identification of the

lateral acceleration is considerably less good betweendbenance frequencies (cfr. figure
[18b), but the dominant frequency components are still veldhtified. It can be concluded

that the proposed algorithm performs well even when a sgifiamount of modeling error is

present.

5 CONCLUSIONS

An existing model-based joint input-state estimation gthm requiring no prior informa-
tion on the dynamic evolution of the input forces, was useedstiimate the state of a structure
from a limited number of acceleration measurements. Theri#éhgn’s accuracy and applica-
bility were tested using data from a laboratory experimantan instrumented steel beam as
well as an in situ experiment on a footbridge. It is conclutteat the algorithm is capable of
accurately estimating the state of a structure from a lidhitember of noise-contaminated ac-
celeration measurements, also when a relatively high l&vwelodeling error is present and no
prior information on the positions or nature of the inputcks is available.
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