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Abstract. The problem of jointly estimating the input forces and states of a structure from
a limited number of acceleration measurements is addressed. Utilizing a model-based joint
input-state estimation algorithm originally developed for optimal control problems, minimum-
variance unbiased estimates of the modal displacements and velocities of a structure as well
as the dynamic forces causing these responses, are obtained. The proposed algorithm requires
no prior information on the dynamic evolution of the input forces, is easy to implement, and
allows online application. Its accuracy and effectiveness are demonstrated using data from a
laboratory experiment on an instrumented steel beam and an in situ experiment on a footbridge.
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1 INTRODUCTION

In civil engineering state estimation refers to a model-based identification of quantities (e.g.
displacements) that allow a complete description of the state of a structure from vibration re-
sponse data. State estimators, among which the well-known Kalman filter and its variants, have
been proposed for structural systems behaving both linearly and nonlinearly. A small survey is
given by Ching et al. in [3]. The state estimates can be used for a variety of purposes including
the prediction of stresses and fatigue loading, real-time structural health monitoring, structural
control, the determination of response in critical joints,the verification of design calculations,
etc. Examples include the work by Papadimitriou et al. [11],in which the Kalman filter is
used as part of a methodology for estimating the damage accumulation in a structure due to
fatigue from output-only vibration measurements at a limited number of locations. Ching and
Beck [2] estimated the unknown states of a structure using a Kalman smoother in an application
concerning reliability estimation for serviceability limit states. Smyth and Wu [15] proposed a
multi-rate Kalman filter for the fusion of measured displacement and acceleration data sampled
at different rates. The filter is designed to circumvent problems related to the integration of ac-
celerometer or the differentiation of displacement data insituations where both these response
quantities are available for system monitoring or damage detection. Hernandez and Bernal
[9] designed a state estimator for structural dynamic systems based on the assumption that the
primary source of uncertainty in the predicted state derives from errors in the matrices of the
state-space model. Their estimator distinguishes itself from the related robust Kalman filter
(RKF) in that it is derived on deterministic grounds, assumes no process/measurement noise
and is significantly simpler to implement. It has been used aspart of an iterative scheme for
model updating in [7], and has been extended to nonlinear systems in [8], where it was used
to estimate the states in a damaged seven-story building from a limited number of acceleration
measurements.

In this contribution a joint input-state estimation algorithm is used to identify modal displace-
ments, velocities and input forces using data from a laboratory experiment on an instrumented
steel beam as well as an in situ experiment on a footbridge. The algorithm, developed by Gillijns
and De Moor [6], has the structure of a Kalman filter, except that the true value of the input is
replaced by an optimal estimate. It distinguishes itself from the state estimation methods men-
tioned above in that the excitation is assumed unknown, whilst there are also no assumptions
made about its dynamic evolution (e.g. broadband, so that itcan be modeled as a zero mean
stationary white process). When the positions of the applied forces are known, the algorithm
can be used to jointly estimate the states and input forces. Conversely, when the positions of the
applied forces are unknown, a set of equivalent forces is identified. In the latter case the points
of application of the forces are randomly chosen and equivalent forces, that would produce the
same measured response, are identified at all chosen locations. It is this latter case, correspond-
ing to pure state estimation in the absence of any a priori information regarding the positions or
frequency characteristics of the input forces, that will beconsidered in this paper.

2 MATHEMATICAL FORMULATION

2.1 Equations of motion

Consider the continuous-time governing equations of motion for a linear system discretized
in space:

Mü(t) + Cu̇(t) + Ku(t) = f(t) = Sp(t)p(t) (1)

2



Eliz-Mari Lourens, Geert Lombaert, Costas Papadimitriou and Guido De Roeck

whereu(t) ∈ R
nDOF is the vector of displacement,M, C andK ∈ R

nDOF×nDOF denote the
mass, damping and stiffness matrix, respectively, andf(t) is the excitation vector. The excitation
is factorized into an input force influence matrixSp(t) ∈ R

nDOF×np , and the vectorp(t) ∈
R

np representing thenp force time histories. Each column of the matrixSp gives the spatial
distribution of the load time history in the corresponding element of the vectorp. In the case of
a point load, the column ofSp has only a limited number of non-zero entries correspondingto
the distribution of the load over the degrees of freedom of the FE mesh. In the case of stochastic
loading e.g. due to wind, the columns of the matrixSp may result from the decomposition of
the load in uncorrelated contributions, e.g. by applying a Karhunen-Loève decomposition [5].
The undamped eigenvalue problem corresponding to (1) reads:

KΦ = MΦΩ2

whereΦ ∈ R
nDOF×nDOF collects as columns the eigenvectorsΦj , andΩ is a diagonal matrix

containing the eigenfrequenciesωj in rad/s. Introducing the coordinate transformationu(t) =
Φz(t) and premultiplying byΦT yields:

ΦTMΦz̈(t) + ΦTCΦż(t) + ΦTKΦz(t) = ΦTSp(t)p(t). (2)

These equations can be decoupled by using the orthogonalityconditions corresponding to a
set of mass-normalized eigenvectors,ΦTMΦ = I andΦTKΦ = Ω2, and assuming propor-
tional damping:

ΦTCΦ = Γ

whereΓ is a diagonal matrix containing the terms2ξjωj, andξ denotes a modal damping ratio.
The decoupled governing equations of motion in modal coordinates then become:

z̈(t) + Γż(t) + Ω2z(t) = ΦTSp(t)p(t). (3)

2.2 Continuous-time state-space model

By introducing the state vectorx(t) ∈ R
ns×ns, ns = 2nDOF:

x(t) =

(

u(t)
u̇(t)

)

and utilizing the superficial identityMu̇ − Mu̇ = 0, the second-order equations of motion
(1) can be written as a first-order continuous-time state equation:

ẋ(t) = Acx(t) + Bcp(t) (4)

where the system matricesAc ∈ R
ns×ns andBc ∈ R

ns×np are defined as:

Ac =

[

0 I

−M−1K −M−1C

]

, Bc =

[

0

M−1Sp

]

.

Consider next the measurement data vectord(t) ∈ R
nd , containing thend observed quanti-

ties expressed as a linear combination of the displacement,velocity and acceleration vectors as
follows:

d(t) = Saü(t) + Svu̇(t) + Sdu(t) (5)
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whereSa, Sv andSd ∈ R
nd×nDOF are selection matrices for acceleration, velocity and dis-

placement, respectively, in which the locations of the measurements and/or difference relations
can be specified. Using equation (1) and the definition of the state vector, equation (5) can be
transformed into its state-space form:

d(t) = Gcx(t) + Jcp(t) (6)

with the output influence matrixGc ∈ R
nd×ns and direct transmission matrixJc ∈ R

nd×np

defined as:

Gc =
[

Sd − SaM
−1K Sv − SaM

−1C
]

, Jc =
[

SaM
−1Sp

]

.

Equations (4) and (6) together form the continuous-time state-space model for the full-order
system described by equation (1). If a model reduction is performed, i.e. if the dynamics of the
system are represented by a reduced numbernm of modal coordinatesz(t) ∈ R

nm asu(t) =
Φrz(t), Φr ∈ R

nDOF×nm, the state vector is transformed accordingly:

x(t) =

[

Φr 0

0 Φr

]

ζ(t).

The modal state vectorζ(t) ∈ R
2nm now collects the modal coordinates:

ζ(t) =

(

z(t)
ż(t)

)

and the expressions for the reduced-order continuous-timesystem matricesAc ∈ R
2nm×2nm,

Bc ∈ R
2nm×np , Gc ∈ R

nd×2nm andJc ∈ R
nd×np in the modal state-space model:

ζ̇(t) = Acζ + Bcp(t) (7)

d(t) = Gcζ(t) + Jcp(t) (8)

can be shown to reduce to:

Ac =

[

0 I

−Ω2 −Γ

]

(9)

Bc =

[

0

ΦTSp

]

(10)

Gc =
[

SdΦ − SaΦΩ2 SvΦ − SaΦΓ
]

(11)

Jc =
[

SaΦΦTSp

]

. (12)

2.3 Discrete-time state-space model

Using a sampling rate of1/∆t, the state-space model of equations (4) and (6) - or the modal
model of equations (7) and (8) - can be discretized to yield its discrete-time equivalent:

xk+1 = Axk + Bpk (13)

dk = Gxk + Jpk (14)
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wherexk = x(k∆t), dk = d(k∆t), k = 1, . . . , N and:

A = eAc∆t, B = [A − I]A−1
c Bc, Gc = G, Jc = J.

3 JOINT INPUT-STATE ESTIMATION

In this section the joint input-state estimation algorithmdeveloped by Gillijns and De Moor
for linear systems with direct feedthrough of the unknown input to the output [6] is presented.
Having direct feedthrough corresponds, from a structural dynamics point of view, to the situa-
tion where the measured quantities are accelerations, which is commonly the case. More details
on the derivation of this algorithm and a proof of optimality, in a minimum-variance unbiased
sense, can be found in [6].

The linear system under consideration is the discrete-timestate-space system of equations
(13) and (14), supplemented with random variableswk andvk representing the stochastic sys-
tem and measurement noise, respectively:

xk+1 = Axk + Bpk + wk (15)

dk = Gxk + Jpk + vk. (16)

The noise vectorswk ∈ R
ns and vk ∈ R

nd are assumed to be mutually uncorrelated,
zero-mean, white signals with known covariance matricesQ = E{wkw

T
l } ≥ 0 andR =

E{vkv
T
l } > 0. Results can easily be generalized to the case wherewk andvk are correlated by

applying a preliminary transformation to the system [1, 6].Results can also be generalized to
systems with both known and unknown inputs [6].

A state estimatêxk|l is defined as an estimate ofxk given{dn}
l
n=0 and its error covariance

matrix Pk|l asE[(xk − x̂k|l)(xk − x̂k|l)
T ]. An initial unbiased state estimatêx0|−1 and its

covariance matrixP0|−1 is assumed known. The initial state estimatex̂0 is assumed independent
of wk andvk for all k. Finally, it is assumed that the rank of the direct transmission matrixJ

equals the number of applied forcesnp, and that the pair(A,G) is observable. It can be proven
that the latter two assumptions are almost always valid whendealing with structural dynamic
systems.

The filter is initialized using the initial state and its variance,x̂0|−1 andP0|−1; hereafter it
computes the force and state estimates recursively in threesteps: the input estimation, the mea-
surement update, and the time update:

Input estimation:

R̃[k] = GP[k|k−1]G
T + R (17)

M[k] =
(

JTR̃−1
[k] J

)−1

JTR̃−1
[k] (18)

p̂[k|k] = M[k]

(

d[k] −Gx̂[k|k−1]

)

(19)

Pp[k|k] =
(

JTR̃−1
[k] J

)−1

(20)
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Figure 1: The measurement setup

Measurement update:

L[k] = P[k|k−1]G
TR̃−1

[k] (21)

x̂[k|k] = x̂[k|k−1] + L[k]

(

d[k] − Gx̂[k|k−1] − Jp[k|k]

)

(22)

P[k|k] = P[k|k−1] − L[k]

(

R̃[k] − JPp[k|k]J
T
)

LT
[k] (23)

Pxp[k|k] = PT
px[k|k] = −L[k]JPp[k|k] (24)

Time update:

x[k+1|k] = Ax̂[k|k] + Bp̂[k|k] (25)

P[k+1|k] =
[

A B
]

[

P[k|k] Pxp[k|k]

Ppx[k|k] Pp[k|k]

] [

AT

BT

]

+ Q (26)

It is mentioned that whenB = J = 0, the Kalman filter is obtained. In the above, the system
matrices are for ease of notation not indexed. The algorithmcan, however, also be applied to
time-variant systems by simply adding the appropriate subscripts, i.e.Ak, Bk, Gk andJk.

4 EXPERIMENTAL RESULTS

In this section the effectiveness of the proposed algorithmis illustrated by means of a labora-
tory experiment on an instrumented steel beam as well as an insitu experiment on a footbridge.

4.1 Laboratory experiment on a steel beam

A steel beam with an IPE100 cross section, a length of 3m, and plates of 150x150x15 mm
welded to its ends, is suspended at both ends from a steel frame using flexible springs to simulate
free-free boundary conditions. A series of accelerometersis placed along the beam to record
its response to an impact force, applied with an instrumented hammer. The aim here is to use a
subset of the measured accelerations to identify the remaining (measured) accelerations.

Vertical accelerations on the top flange of the beam were measured at 17 different cross sec-
tions using 19 accelerometers (PCB 338B35, sensitivity± 100 mV/g). The force was applied
eccentrically with an impact hammer (PCB 086C03, mass0.136 kg) at one of the free-free beam
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Figure 2: Positions of the sensors and applied force.

ends. The measurement setup and positions of the sensors andapplied force are shown in figures
1 and 2. The modal parameters of the beam were identified in a Operational Modal Analysis
with eXogenous inputs (OMAX) test [13] for the frequency range0− 900 Hz. More details on
this test and its results can be found in [10]. The identified modal parameters were used to tune
the Young’s modulus of the steel and the stiffness of the springs in a FE model. A comparison
between the identified and computed eigenmodes is shown in table 1. Except for the torsional
modes, whose contribution to the acceleration response considered is almost negligible, a good
correspondence is found between the measured and experimental eigenfrequencies. All modes
are very lightly damped with damping ratios below0.5 % of critical.

FEM Experimental
fudi fudi ξi MAC

No. [Hz] [Hz] [%] [−]

1 1.780 1.771 0.36 0.99
2 2.787 2.701 0.19 1.00
3 3.106 4.917 0.41 0.99
4 31.56 30.81 0.12 0.99
5 61.51 60.90 0.05 1.00
6 74.94 71.20 0.32 0.98
7 136.0 128.1 0.15 0.99
8 174.6 173.9 0.04 1.00
9 216.9 200.5 0.12 0.98
10 319.1 293.5 0.13 0.97
11 341.9 341.0 0.02 1.00
12 443.3 402.6 0.11 0.98
13 589.8 535.4 0.12 0.95
14 557.4 556.7 0.03 1.00
15 807.1 805.6 0.04 1.00

Table 1: Comparison between the undamped eigenfrequenciesfudi of the FE model of the
beam and those that were experimentally obtained. The experimental damping ratiosξi and
MAC values between the measured mass-normalized mode shapes and the ones obtained from
the FE model, are shown as well.

The 15 modes from the FE model, consisting of 3 rigid body, 5 bending and 7 torsional
modes, are used to construct a reduced-order modal state-space model of the beam. Originally
sampled at 10 kHz, all data used in the inverse calculations are resampled at a lower rate in order
to include only frequencies within the range of the identified modes. Using a decimation factor
of 5, the data is low-pass filtered using a Chebychev Type I filter at 800Hz and subsequently
resampled at 2 kHz.
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Of the 19 measured accelerations, 10 are used to identify themodal states and input forces,
from which the acceleration (or displacement, strain, etc.) at any other point in the structure
can be calculated aŝd = Gx̂ + Jp̂. It is assumed that no a priori information on the positions
of the forces is available and a set of equivalent forces are assumed to act at all measurement
locations used for the identification, i.e. at positionsa1, a3, a4, a6, a9, a11, a15, a17, a18 and
a19. The accelerations identified at the remaining locations are compared to the measured data
during a period of 1 s. The covariance matricesQ, R andP0|−1 are assigned values of1e−10,
1e−1 and1e−10 on the diagonal, respectively. In accordance with what theyrepresent, these
values are chosen so as to have the order of the square roots ofthe diagonal elements ofR and
Q corresponding to a small percentage of the highest peaks in the measured response and the
states (displacements/velocities), respectively. The small values inP0|−1 indicate a low level of
uncertainty regarding the initial state estimate. It is mentioned that the results are, however, not
strongly influenced by these values and similar results are obtained for a large range ofQ, R

andP0|−1.
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Figure 3: a) Complete and b) detail of the measured (black) and identified (grey) time history
of the acceleration at sensora7.
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Figure 4: Frequency spectrum of the measured (black) and identified (grey) acceleration at
sensora7.

Figures 3 to 8 show the results obtained when the beam is excited with the hammer att =
±0.15s. Measured accelerations are plotted against those identified for three randomly chosen
locations, namelya7, a13 anda16. The accelerations are compared in the time as well as in the
frequency domain, and a detail of the acceleration time history at the time of impact is presented
as well. A good reconstruction is obtained at all 3 locations.
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Figure 5: a) Complete and b) detail of the measured (black) and identified (grey) time history
of the acceleration at sensora13.

0 100 200 300 400 500 600 700 800 900
10

−6

10
−4

10
−2

10
0

10
2

Frequency [Hz]

[m
/s

2 /H
z]

Figure 6: Frequency spectrum of the measured (black) and identified (grey) acceleration at
sensora13.

(a)
0 0.2 0.4 0.6 0.8

−20

−10

0

10

20

Time [s]

A
cc

el
er

at
io

n 
[m

/s
2 ]

(b)
0.15 0.16 0.17 0.18

−20

−10

0

10

20

Time [s]

A
cc

el
er

at
io

n 
[m

/s
2 ]

Figure 7: a) Complete and b) detail of the measured (black) and identified (grey) time history
of the acceleration at sensora16.

4.2 In situ experiment on a footbridge

Analogous to the previous test case, a subset of the accelerations measured during an in situ
test on a footbridge is used to identify modal states and a setof equivalent forces. The identified
modal states and forces are subsequently used to calculate the accelerations at the remaining
measured positions and a comparison is made. The footbridge, depicted in figure 9, is located
in Wetteren (Belgium), and has been used as an in situ test case for Operational Modal Analysis
(OMA) [12] and previously mentioned OMAX techniques. It is asteel bridge that crosses the
E40 highway between Brussels and Ghent at Wetteren, with a short and long bow-string span
of 30.33m and 75.23m, respectively.

For the OMAX tests, measurements have been performed in a total number of 72 channels
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Figure 8: Frequency spectrum of the measured (black) and identified (grey) acceleration at
sensora16.

Figure 9: The footbridge in Wetteren, Belgium.

during different setups. The locations of the sensors are shown in figure 10. The data used in
the current example was obtained during excitation of the bridge by means of a drop weight
system. The drop weight was applied at point 34, in the vertical direction, and during the setup
accelerations were measured in 16 channels. In the following, 8 of the measured accelerations
will be used to identify the modal states and to reconstruct the accelerations at the 8 remaining
locations. Equivalent loads are assumed to act in the directions and at the locations of the 8
measured accelerations. The actual load on the structure consists of the drop weight as well as
a high level of ambient excitation due to traffic underneath the bridge and wind.

Of the 16 measured accelerations, 4 vertical and 4 lateral accelerations were identified as
optimal for the identification. These are the vertical accelerations in points 2, 3, 24 and 34 on
the bridge deck, the lateral accelerations on the bridge deck at points 14 and 19, and the lateral
accelerations of the bow at points 45 and 48. With the optimal8 accelerations as input, the
proposed algorithm is used to identify 7 ‘unmeasured’ vertical accelerations at points 8, 12, 14,
25, 30, 36 and 41 on the bridge deck, and the lateral acceleration at point 12 on the bow.

The system matrices are constructed from an updated finite element (FE) model of the bridge.
In the FE model, developed using the FE program ANSYS, the bridge deck is modeled using the
ANSYS shell element SHELL63. The longitudinal and transversal beams of the bridge deck, as
well as the bows, connections of the bows, and supports, are modeled using the beam element
BEAM188. A 3D truss element, LINK8, is used to model the cables, taking into account the
effective stiffnessEeff of the cable based on the tensile cable force. The model has a total of
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Figure 10: Positions of the sensors.

16007 nodes and 2210 elements. The first 4 modes calculated with the model are shown in
figure 11.
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Figure 11: Results from the FE modal analysis for the first 4 modes. Top: transversal displace-
ments, middle: vertical displacements, bottom: displacement vector sum.

The FE model is updated using a set of experimental modal parameters obtained during
an OMAX test [14] in which the actuator was a pneumatic artificial muscle (PAM) developed
by the Acoustics and Vibration Research Group of the Vrije Universiteit Brussel [4]. Table 2
presents a comparison between the eigenfrequencies of the updated FE model and those that
were identified experimentally. The experimental damping ratios as well as the MAC values
between the mass-normalized mode shapes and the ones obtained from the FE model are shown
in the table. The 22 eigenmodes of the FE model, in conjunction with the corresponding iden-
tified modal damping ratios, are used to construct a reduced-order modal state-space model of
the structure. As before, all data used in the inverse calculations are resampled at a lower rate.
Using a decimation factor of 23, the data is low-pass filteredusing a Chebychev Type I filter at
17.39 Hz and subsequently resampled at 43.48 Hz. A period of 9s, in which the impact from
the drop-weight is applied att = 2.3 s, is analysed.

As in the previous examples equivalent forces are assumed toact at all measurement loca-
tions. The covariance matricesQ, R andP0|−1 are assigned values of1e−10, 1e−1 and1e−10 on
the diagonal, respectively. In figures 12 to 15, 4 of the 8 identified accelerations are compared
to those measured. The results are for the vertical accelerations at points 12, 25 and 41 (figures
12 to 14), and the lateral acceleration at point 12 (figure 15).

The identified accelerations are of lesser quality than those in the laboratory experiment,
which can partly be explained by the fact that the updated FE model of the footbridge represents
the structure considerably less accurately than the one used in the laboratory experiment (cfr.
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FEM Experimental FEM Experimental
fudi fudi ξi MAC fudi fudi ξi MAC

No. [Hz] [Hz] [%] [−] No. [Hz] [Hz] [%] [−]

1 0.739 0.693 1.05 0.92 12 8.599 8.307 1.18 0.79
2 1.739 1.669 0.23 0.87 13 10.395 9.967 1.10 0.65
3 2.363 2.195 0.50 0.98 14 11.397 10.475 0.64 0.76
4 3.250 3.731 0.55 0.71 15 11.864 11.214 0.78 0.85
5 3.833 3.838 0.49 0.80 16 11.625 11.821 1.68 0.79
6 4.897 4.480 0.76 0.84 17 13.147 12.728 0.35 0.70
7 5.370 5.154 0.44 0.86 18 13.255 12.863 0.72 0.89
8 6.377 6.117 0.27 0.88 19 14.479 13.530 0.72 0.62
9 6.662 6.321 0.50 0.92 20 15.312 14.810 0.41 0.80
10 6.991 6.605 0.58 0.88 21 16.648 16.502 0.53 0.82
11 8.028 7.488 0.70 0.82 22 18.358 17.833 0.28 0.88

Table 2: Comparison between the undamped eigenfrequenciesfudi of the updated FE model
and those that were experimentally obtained in an OMAX test using the PAM. The experimental
damping ratiosξi and MAC values between the measured mass-normalized mode shapes and
the ones obtained from the FE model, are shown as well.
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Figure 12: a) Time history and b) frequency spectrum of the measured (black) and identified
(grey) vertical acceleration at point 12.
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Figure 13: a) Time history and b) frequency spectrum of the measured (black) and identified
(grey) vertical acceleration at point 25.

MAC values in tables 1 and 2). Also, the number of sensors usedis small compared to the
geometrical and modal complexity of the footbridge. Takingthese circumstances into account
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Figure 14: a) Time history and b) frequency spectrum of the measured (black) and identified
(grey) vertical acceleration at point 41.
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Figure 15: a) Time history and b) frequency spectrum of the measured (black) and identified
(grey) lateral acceleration at point 12.

the identification is in fact very reasonable, especially those in the vertical direction. Moreover,
the accuracy of the identification is similar for both the ambient part of the acceleration from
t = 0−2.3 s, where the vibrations are caused by low amplitude traffic loads, and the remaining
stronger intensity part of the acceleration caused by the drop weight. The identification of the
lateral acceleration is considerably less good between theresonance frequencies (cfr. figure
15b), but the dominant frequency components are still well identified. It can be concluded
that the proposed algorithm performs well even when a significant amount of modeling error is
present.

5 CONCLUSIONS

An existing model-based joint input-state estimation algorithm requiring no prior informa-
tion on the dynamic evolution of the input forces, was used toestimate the state of a structure
from a limited number of acceleration measurements. The algorithm’s accuracy and applica-
bility were tested using data from a laboratory experiment on an instrumented steel beam as
well as an in situ experiment on a footbridge. It is concludedthat the algorithm is capable of
accurately estimating the state of a structure from a limited number of noise-contaminated ac-
celeration measurements, also when a relatively high levelof modeling error is present and no
prior information on the positions or nature of the input forces is available.
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