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Abstract. The aim of this paper is to improve the wake oscillator concept for the modeling of 

vortex-induced vibration of an elastically mounted cylinder in a fluid flow. To this end an at-

tempt is made to introduce a coupling term in the wake oscillator model, that is based on a set 

of frequency dependent coefficients. Theoretically, it should be possible to determine these 

coefficients on the basis of so-called forced vibration measurements. In doing so a number of 

challenges are encountered. A consistent set of frequency dependent coefficients should con-

form to the forced vibration experiments at all amplitudes of cylinder motion and additionally 

it should satisfy the Kramers-Kronig relations. It has been found that it is not possible to find 

a set of frequency dependent coefficients with the wake oscillator model at hand that satisfies 

these requirements. The sensitivity of the frequency dependent coefficients to the presence of 

the dominant non-linearity in the wake oscillator at hand has been examined. On the basis of 

this analysis a new form for the wake oscillator model has been proposed. 

 



R.H.M. Ogink and A.V. Metrikine 

 2 

1 INTRODUCTION 

1.1 Vortex-induced vibration  

Flow over a bluff cylinder separates and vortices are formed in the wake behind the cylin-

der. The alternate shedding of these vortices results in an oscillating cross-flow force on the 

cylinder. The shedding frequency of the vortices follows the Strouhal relation and increases 

with increasing flow velocity. If the cylinder is mounted flexibly and the frequency of vortex 

shedding is close to the resonance frequency of the mounted system, the cylinder will start to 

vibrate in cross-flow direction. With an increase of the flow velocity the vortex shedding fre-

quency does no longer follow the Strouhal relation, but locks onto the resonance frequency of 

the cylinder, thereby causing violent vibration of the cylinder over a wide range of flow ve-

locities. This phenomenon is known as vortex-induced vibration (VIV). The occurrence of 

VIV can cause severe fatigue problems for long cylindrical structures that are exposed to air 

or water flow such as chimneys, railroad contact wires, the cables of stay bridges and free-

hanging offshore pipelines. Recent reviews on VIV have been given by Sarpkaya [1] and Wil-

liamson and Govardhan [2]. 

1.2 VIV experiments 

Vortex-induced vibration experiments on rigid, spring mounted cylinders can be divided 

into two groups, the so called free and forced vibration experiments. In a typical free vibration 

experiment a flexibly mounted rigid cylinder is placed in a wind tunnel or water channel. For 

a range of flow velocities V, the amplitude ŷ and the frequency fc = c/(2π) of cylinder motion 

are measured. Results of two free vibration experiments performed by Khalak and Williamson 

[3] are plotted in Figs. 1 and 2. In these figures the flow velocity has been made non-

dimensional by dividing it by the natural frequency of the spring mounted cylinder fn and by 

the cylinder diameter D, that is, Vn = V/fn/D. The frequency fn is given by: fn = (k/m), in 

which k is the spring stiffness of the mounted system and m the cylinder dry mass. 
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Figure 1: Amplitude and frequency of cylinder  

motion from the measurements of Khalak 

 et al. [3] for m* = 2.4. 

 

Figure 2: Amplitude and frequency of cylinder 

motion from the measurements of Khalak 

 et al. [3] for m* = 20.6. 
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The amplitude plot in Figs. 1 and 2 consists of three distinct branches, the initial, upper and 

lower branch, that have been marked IB, UB and LB, respectively. In the upper branch the 

frequency of vortex shedding fs is very close to the natural frequency of the mounted cylinder, 

resulting in the cylinder motion with the largest amplitude. The frequency of vortex shedding 

is given by the Strouhal relation fs = StV/D, in which St denotes the Strouhal number. The 

upper branch is found for fs  fn and since St  0.2, this takes place when Vn  1/St  5. In the 

lower branch the amplitude of cylinder motion is constant over a range of flow velocities. The 

vortex shedding frequency is locked-in with the frequency of cylinder motion. The width of 

the lock-in range is dependent on the mass ratio m*, see Figs. 1 and 2. For lower mass ratios 

the lock-in range is wider. The mass ratio is defined as the ratio of the cylinder mass and the 

mass of the displaced fluid: m* = 4m/(πD
2
L), in which  denotes the density of the fluid and 

L the length of the cylinder.  

Whereas in free vibration experiments, the coupled cylinder-fluid system sets its own fre-

quency and amplitude, in forced vibration experiments amplitude and frequency are forced 

onto the system. In these experiments a cylinder is placed in a flow while it is at the same 

time being forced to vibrate sinusoidally in cross-flow direction with an amplitude ŷ and a 

frequency fc = c/(2π). Typically the fluid force on the cylinder in cross-flow direction 
21

2

y y

y yF DV LC  and in in-line direction 21
2

y y

x xF DV LC  are measured. In our notation y

yC  and 

y

xC  denote the non-dimensional fluid forces. To prevent confusion the following notation will 

be used consistently: 

 A subscript ‘x’ or ‘y’ denotes the direction in which the fluid force is measured. 

 A circumflex ‘^’ denotes an amplitude or a processed coefficient. 

 A superscript ‘x’ or ‘y’ denotes the direction in which the cylinder is forced to vibrate 

in the forced vibration experiment. A superscript ‘0’ denotes a stationary cylinder. 

 A second subscript ‘0’, ‘1’,’2’, etc. denotes the harmonic component for which the 

Fourier coefficient of the forced vibration time series has been determined.  
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Figure 3: The cross-flow fluid force component 

in-phase with the cylinder acceleration from 

the measurements of Gopalkrishnan [4, 5]. 

 

Figure 4: The cross-flow fluid force component 

in-phase with the cylinder velocity from 

the measurements of Gopalkrishnan [4, 5]. 

 

In Fig. 3 and 4, some of the results of the forced vibration measurements of Gopalkrishnan 

are depicted. These results have been reported in his PhD thesis [4], as well as in [5]. Gopal-
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krishnan measured the fluid forces on a cylinder that was pulled through a water channel and 

at the same time was forced to vibrate in cross-flow direction. The motion of the cylinder is 

given by: 
 
 ˆ sin( )cy y t              (1) 

Among other results he reported in his thesis, for a range of forced amplitudes and forced fre-

quencies, the constant fluid force coefficient in x-direction 
0

ˆ y

xC  and the fluid force coefficient 

at the first harmonic in y-direction 
1

ˆ y

yC . He decomposed 
1

ˆ y

yC  in a part in-phase with the cylinder 

acceleration (or in anti-phase with the cylinder displacement):  
1

ˆ y

y aC , depicted in Fig. 3, and a 

part in phase with the cylinder velocity: 
1

ˆ y

y vC , depicted in Fig. 4. The flow velocity in Figs. 3 

and 4 is made non-dimensional by dividing it by the cylinder diameter and the frequency of 

forced vibration: Vc = V/fc/D. Approximating y

yC  with only the first Fourier component, re-

sults in: 
 

 
1 1 1

1 1

ˆ ˆ ˆsin( ) cos( )sin( ) sin( )cos( )

ˆ ˆ                                 sin( ) cos( )

y y y y

y y c y c y c

y y

y a c y v c

C C t C t C t

C t C t

     

 

   

 
         (2) 

1.3 Semi-empirical modeling of VIV  

For the description of VIV engineers rely mainly on semi-empirical models, as Computa-

tional Fluid Dynamics (CFD) codes are still computationally too expensive for the determina-

tion of fluid forces on long cylinders such as the vertical riser pipelines at sea, that are being 

used in the offshore oil industry. These risers can have unsupported lengths of up to 2000 me-

ters. 

The semi-empirical models can be divided into two types. The first type of semi-empirical 

modeling consists of applying the fluid forces measured in forced vibration experiments di-

rectly on the right-hand side of the structural equation of motion. As the force coefficient 
1

ˆ y

y vC  

is in phase with the cylinder velocity, it acts as an added damping force. So in this model cy-

linder motion is possible when  
1

ˆ 0y

y vC  . Since it is not known in advance with which ampli-

tude and frequency the cylinder will vibrate and hence which values of 
1

ˆ y

y aC  and 
1

ˆ y

y vC  from the 

measurements have to be taken, an iterative procedure is needed. The drawback of this me-

thod is that it relies on the assumption that there will be a dominant mode of vibration, as the 

measurements that are being used have been carried out at a single frequency of forced vibra-

tion. This assumption is questionable in the case of very long pipes, such as the deepwater 

risers mentioned before. These pipes have a dense spectrum of resonance frequencies and will 

vibrate in a combination of several modes together. The presence of a sheared incoming flow 

will increase the complexity of finding the dominant modes even further.  

The second type of semi-empirical model is the so-called oscillator model. In this type of 

model, the oscillating lift force is modeled by a non-linear oscillator equation, which contains 

a limit cycle, so that for a stationary cylinder an oscillating lift force is found. Oscillator equa-

tions that are commonly used are the Van der Pol equation and the Rayleigh equation. A Van 

der Pol equation that could be used is: 
 

  2 2 21
14

ˆ
y s y y y s y s

y y
C C C C C A B

D D
        ,        (3) 
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where 0

1
ˆ

yC  is the amplitude of the limit cycle of the unforced oscillator, which should be equal 

to the cross-flow fluid force coefficient at the first harmonic on a stationary cylinder, s = 2πfs 

is the vortex shedding frequency,  is a non-dimensional tuning parameter and overdots de-

note derivatives with respect to time t. The right-hand side of eq. (3) models the coupling be-

tween the structural displacement y and the fluid and contains the constant non-dimensional 

coupling coefficients A and B. 

When the model predictions are compared with free vibration experiments, it is found that 

the oscillator model can produce acceptable results for structures experiencing VIV in air, in 

which the mass ratio of the structure and the surrounding fluid is high. A major drawback of 

most of the existing oscillator models is however that they do not scale correctly with the 

mass ratio and the damping ratio of the structure and the surrounding fluid. This means that 

these models have to be tuned separately for every possible combination of mass and damping 

ratio. This severely limits the predictive capabilities of these models. Moreover, existing os-

cillator models are not capable of describing the amplitude branches as found in the free vi-

bration experiments at low mass ratios and hence underpredict the amplitude of the upper 

branch. Because of these shortcomings oscillator models are seldom used for engineering ap-

plications.    

Oscillator models do have the favorable characteristic that they do not require an assump-

tion of a dominant frequency. They consist of a system of coupled differential equations that 

can simply be solved in the time domain without any initial guess of frequency or amplitude. 

An oscillator model that can produce acceptable results over a range of mass and damping 

ratios on the basis of one set of tuning parameters, could therefore be useful as an engineering 

tool as it can deal with motion at multiple frequencies in a computationally inexpensive man-

ner. 

In [6], we have improved the existing oscillator model of Facchinetti et al. [7] by taking 

account of the relative velocity between cylinder and fluid. Subsequently, we tried to improve 

this model by making the coupling coefficients A and B frequency dependent by means of in-

troducing a convolution integral into the time-domain model. We strived to derive a model 

that scales correctly with mass ratio, can describe the results of the forced vibration measure-

ments and can describe the upper and lower branch of free vibration. We found, however, that 

with using a Van der Pol or Rayleigh equation and by trying to determine the frequency de-

pendencies of A and B on the basis of the forced vibration measurements of Gopalkrishnan, 

we could not find a set of consistent frequency dependencies that could be used to determine 

the convolution kernel that is needed. The frequency dependencies appeared to be very sensi-

tive to the non-linearities that are present in the model. 

1.4 Objective of this paper  

In this paper we will give a description of the challenges that are associated with the inclu-

sion of a frequency dependent coupling between wake and structural oscillator. Specifically, 

we will focus on the sensitivity of the frequency dependencies to the presence of the non-

linearity in the wake oscillator. On the basis of the results, we will make a first attempt at im-

proving the existing model. 

In Section 2, the wake oscillator model that will be used is discussed and the derivations 

that are needed, to include frequency dependent coupling coefficients in the wake oscillator, 

are given. In Section 3, the frequency dependent coefficients A and B are determined and the 

sensitivity of these coefficients to the presence of the non-linearity in the wake oscillator is 

investigated and on the basis of the results of this, in Section 4 a new wake oscillator model is 

proposed. The conclusions are presented in Section 5.  
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2 WAKE OSCILLATOR MODEL WITH FREQUENCY DEPENDENT COUPLING 

2.1 The wake oscillator model  

The wake oscillator model that will be used is based on the model of Facchinetti et al. [7]  

with the additional inclusion of the relative velocity between moving cylinder and fluid. De-

tails of the model are given in [6]. The structural equation of motion is given by:  
 
 ymy by ky F   ,            (4) 

in which b denotes the structural damping coefficient. The cross-flow fluid force Fy is as-

sumed to consist of a part due to vortex shedding FVY and a part due to potential added mass 

FAY:   
 

 
21

2y VY AY VY aF F F DV L C m y               (5) 

The potential added mass ma is given by: ma = ĈaπD
2
L /4, in which the potential added mass 

coefficient Ĉa has the value of 1.0. In [6] we have assumed that the non-dimensional cross-

flow vortex force CVY consists of a component CVD in-line with the relative velocity 
2 2U V y  between moving cylinder and incoming flow and a component  CVL perpendicular 

to this relative velocity:   
 

  
2

2
sin cosVY VD VL

U
C C C

V
             (6) 

The angle  is the angle between the direction of the relative velocity and the horizontal. See 

Fig.5. It is given by:   
 

 
  2 2

2 2

arctan , sin ,

cos

y V y U y V y

V U V V y

 



       

   
         (7) 
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To complete the model description, the vortex force components CVD and CVL have to be 

defined. In [6] we have made the assumption that CVD is constant and is equal to the mean 

drag force on a stationary cylinder and that CVL can be calculated with a Van der Pol equation:   
 

 
0

0
ˆ

VD xC C              (8) 

  2 0 2 21
14

ˆ( ) cosVL s VL y VL s VL s

A B
C C C C C y y

D D
    

 
        

 
      (9) 

The right-hand side of eq. (9) contains an acceleration coupling Ay  and a velocity coupling 

By . Facchinetti et al. [7] have compared the differences on the free vibration modeling of us-

ing acceleration, velocity and displacement couplings and found that an acceleration coupling 

gave the best results. We have included the velocity coupling in eq. (9) for completeness, so 

that we have a coupling term Ay  in (anti-)phase with the cylinder motion and a coupling term  

By  out-of-phase with the cylinder motion. 

The constant coupling coefficients A and B will be made frequency dependent in Section 3. 

To this end we have pretuned the model to the free vibration measurements of Khalak et al. 

There are two ways to pretune the model. The first is to tune the model to the upper branch of 

free vibration and hope that by including the frequency dependencies the lower branch of free 

vibration can be described as well and the second way is to tune the model to the lower 

branch and hope that by including the frequency dependencies the upper branch can be de-

scribed as well. We will call the first option Case U and the second one Case L. The values 

for the force coefficients 0

0
ˆ

xC  and 0

1
ˆ

yC  and the Strouhal number have been taken from the mea-

surements of Gopalkrishnan.  

To pretune the model, the coupled system consisting of the wake and structural oscillators, 

given by eq. (4) and (9) has been solved in the time domain with a fifth order Runge-Kutta 

routine. The initial conditions that have been used are  (0) (0) (0) 0VLy y C     and  

(0) 0.01VLC  . After a few periods of calculation the steady state is reached and the amplitude 

of cylinder motion has been determined by searching for the maximum recurring displace-

ment and the frequency of cylinder motion has been determined by searching for the highest 

peak in the Fourier spectrum of the cylinder displacement. The results of the pretuning are 

presented in Figs. 6 and 7. In these figures solid lines depict results for increasing flow veloci-

ty and dashed lines results for decreasing flow velocity. The tuning parameters for the two 

cases are:   
 
   Case U:      Case L: 

   0

0
ˆ 1.1856xC        0

0
ˆ 1.1856xC    

   0

1
ˆ 0.3842yC        0

1
ˆ 0.3842yC   

   St 0.1932       St 0.1932      (10) 

   
0

1
ˆ

4.0 0.7684
2

yC
A         

0

1
ˆ

12.0 2.3052
2

yC
A     

   0B         0B   

   

2

0

1

2
0.05 1.3549

ˆ
yC


 

   
 
 

    

2
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1

2
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ˆ
yC


 
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Figure 6: Pretuning of the wake oscillator model 

to the measurements of Khalak et al. [3] 

for m* = 2.4. 

 

Figure 7: Pretuning of the wake oscillator model 

to the measurements of Khalak et al. [3] 

for m* = 20.6. 

2.2 Derivation of frequency dependent coupling  

We strive to improve the wake oscillator presented in Section 2.1, by making the coupling 

coefficients functions of the cylinder frequency of vibration. These frequency dependent coef-

ficients will be denoted by A  and B  for the moment. They will be determined over a range of 

cylinder frequencies on the basis of the forced vibration experiment of Gopalkrishnan, as will 

be explained in Section 3.1. The problem that is then encountered, is that if the coupled sys-

tem consisting of the structural and wake oscillator is solved in the time domain, it is not 

known which values of the frequency dependent coefficients should be used, as the frequency 

of cylinder motion is not known in advance. The coupling term on the right-hand side of eq. 

(9) should therefore be replaced by a convolution integral. It is thus needed to derive the rela-

tion between the frequency dependent coefficients and the kernel of the convolution integral. 

To simplify the derivations, non-dimensional time  = st and non-dimensional cylinder fre-

quency c = c/s are introduced. Substituting non-dimensional time into eq. (9) and dividing 

by s
2
 results in:   

 

  
2 2

2 0 21
142 2

ˆ( ) cosVL VL
VL y VL

d C dC A d y B dy
C C C

d d D d D d
 

   

 
        

 
    (11) 

Our goal is to replace the term 
2

2

( ) ( )c cA Bd y dy

D d D d 

 
    in eq. (11) with the convolution  

1

0

( )
( )

D

dy
K d

d




  


 , in which K( ) denotes the convolution kernel. The lower limit of integra-

tion starts at 0  , as the cylinder cannot force the fluid, before it is moving itself. For large  
these two term should give the same results. This can be expressed as:   
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2

1

2

0

1 1

0 0

( ) ( ) ( )
lim ( )

( ) ( )
( ) ( )

c c

D

D D

A Bd y dy dy
K d

D d D d d

dy dy
K d K d

d d






  
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  
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 



 

 
    


  



 

   (12) 

Substitution of the expression ˆ sin( )cy y    results in the following relations: 
 

 
0

( ) ( )sin( ) ( )c c c cA K d A  


               (13) 

 
0

( ) ( )cos( ) ( )c c cB K d B  


             (14) 

Eq. (13) and (14) show that, since A(c) and B(c) are the inverse sin- and cos-transform of 

the same kernel K( ), these functions are not independent functions, but are in fact related to 

each other. This relation is known as the Kramers-Kronig relation. It can be expressed as fol-

lows, where attention has been paid to correctly include the boundaries at 0  and  : 
 

 
 

2 2

0

( ) ( )( ) ( ) 1 2
lim

B BA A
d







    
   

           (15) 

 
2

2 2

0

( ) ( )
2

( ) (0)

A A

B B d



 

      
        (16)

More details on the relations between A(c) and B(c) are given in [6]. 

3 DETERMINATION OF THE FREQUENCY DEPENDENT COEFFICIENTS A() 

AND B() 

3.1 Method of determining the frequency dependent coefficients A(c) and B(c) 

It will be tried to determine the frequency dependent coefficients ( )cA   and ( )cB   on the 

basis of the forced vibration measurements of Gopalkrishnan. To this end, the forced vibration 

experiments need to be modeled with the wake oscillator model presented in Section 2. The 

forced vibration cross-flow fluid force y

yC can be expressed as:   
 

 
21

2

y a
y VY AY VY

m
C C C C y

DV L
    ,        (17) 

in which CVY is again given by eq. (6) :   
 

  
2

2
sin cosVY VD VL

U
C C C

V
             (6) 

By assuming a forced vibration in the form of: ˆ sin( )cy y   , the forced vibration coefficients 

1
ˆ y

y aC and 
1

ˆ y

y vC can be calculated with:   
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 

 

0

0

0

0

1

3 2 2

2ˆ sin

2 ˆ ˆsin 2 St /

c

c

y y

y a y c

c

VY c a c

c

C C d

C d C y D









 

  





  

   





      (18) 

    
0 0

0 0

1

2 2ˆ cos cos ,
c c

y y

y v y c VY c

c c

C C d C d

 

 

   

 

             (19) 

in which 22 s
c

c c




 


is the non-dimensional period of forced vibration. The value of 

the component of the vortex fluid force in the direction of the relative velocity is again given 

by: 0

0
ˆ

VD xC C . The component of the vortex fluid force perpendicular to the relative velocity 

will now be calculated with:   
 

  
2

2 0 21
142

ˆ ˆˆ( ) sin( ) cos( ) cosVL VL
VL y VL c c c c

d C dC y y
C C C A B

d d D D
   

 

 
         

 
  (20) 

It is now possible to model the forced vibration with the help of eq. (6), (18), (19) and (20). 

By changing A and B in this model an error function will be minimized that characterizes the 

discrepancy between the model predictions and the measurements of Gopalkrishnan. The eq-

uations have been solved numerically in a similar manner as described in Section 2.1 with the 

value for  and the initial values for A and B equal to the values given by (10).  Then, the fluid 

force coefficients 
1

ˆ y

y aC and 
1

ˆ y

y vC have been calculated. When these values are known, the error 

can be determined as follows:   
 

    
2 2

1 ;model 1 ;measured 1 ;model 1 ;measured
ˆ ˆ ˆ ˆy y y y

y a y a y v y verror C C C C         (21) 

Subsequently, the error is minimized with a one-dimensional procedure that brackets the min-

imum and then performs a golden section search to find this minimum. This procedure is ex-

plained in detail by Press et al. in [8]. The procedure starts with changing A and keeping B 

constant and when under these conditions a minimum has been found, A is kept constant and 

B is changed. This is repeated over and over again until the error given by (21) is smaller than 

a preset value. Starting at Vc = 3 (with c = 1/St/Vc) and ŷ /D = 0.2, the error is minimized 

until it is smaller than 10
-6

. Then at the same amplitude the reduced velocity Vc is increased 

with dVc = 0.1 and the calculations are repeated until the whole frequency range at this ampli-

tude is covered, each time using the final A and B at the previous frequency as the initial val-

ues for the iterative procedure at the next frequency. In this manner the frequency dependent 

parameters A(c) and B(c) have been determined for the amplitudes of forced motion in the 

range of ŷ /D = 0.2 to 1.2 with a step size of ˆd y  = 0.1D.  

3.2 Challenges  involved in determining the coefficients A(c) and B(c) 

It is instructive at this point to state explicitly what the difficulties are in trying to deter-

mine the frequency dependent coefficients on the basis of the forced vibration experiments. 

Firstly, the frequency dependent coefficients will be determined for a number of amplitudes 

of forced vibration. But when modeling the free vibration with the wake oscillator containing 

the convolution integral, one kernel K based on only one set of frequency dependent curves 

A(c) and B(c) should be able to describe the fluid force behavior for all amplitudes of cy-
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linder motion. This implies that for all amplitudes of forced vibration the same set of curves 

for A(c) and B(c) should be found.  

Secondly, it has been shown in Section 2.2 that A(c) and B(c) are related through the 

Kramers-Kronig relations. It is not possible to determine A(c) and B(c) on the basis of the 

forced vibration measurements over the entire frequency range from zero to infinity, as the 

measurements have obviously been  performed over a finite frequency range. For a set of fre-

quency dependent coefficient A(c) and B(c) that is self-consistent, it should however be 

possible to extend these coefficient over the entire frequency range, such that the Kramers-

Kronig relations are satisfied. 

If we fail to find one set of coefficients A(c) and B(c) that are valid over a range of 

forced vibration amplitudes, or if the set of coefficients cannot be extended over the entire 

frequency range to satisfy the Kramers-Kronig relation, this will be an indication that the 

wake oscillator model does not contain the correct non-linearities. 

3.3 Results of determining the coefficients A(c) and B(c) on the basis of forced vi-

bration measurements 

The frequency dependent curves that have been found for A(c) and B(c) with the me-

thod described in Section 3.1 are depicted in Fig. 8 and 9 for Case U and in Fig. 10 and 11 for 

Case L. It is clear from these figures that in both cases different curves for A and B are found 

at different amplitudes of forcing, implying that with the current model the results of Gopal-

krishnan cannot be reproduced with a single set of frequency dependent parameters. It appears 

that the wake oscillator as tuned in Case U gives better results than as tuned in Case L, since 

in Fig. 8 and 9 the spread in the curves of A(c) and B(c) for different amplitudes is one or-

der of magnitude smaller than in Fig. 10 and 11.  

In [6], we have attempted to reduce the spread in the curves of A(c) and B(c) at different 

amplitudes of forcing in a number of ways. This included redefining the error function that 

has been used in the determination procedure, retuning the model by changing the parameter 

values given by eq. (10) and by replacing the Van der Pol-type non-linearity in eq. (20) with a 

Rayleigh-type non-linearity. None of these approaches reduced the spread in the curves of 

A(c) and B(c) to a significant degree. 

Subsequently in [6], we have described a method based on complex curve fitting with a 

complex polynomial that should be able to, starting with a set of frequency dependent curves 

that are known over only a limited range of the frequency spectrum, expand this set over the 

entire spectrum such that the Kramers-Kronig relations are satisfied and the inverse transform 

of the coefficients A(c) and B(c) can be taken to determine the convolution kernel K( ). 

We found that with this method we were not able to extend the curves for the amplitudes 

higher than 0.6D over the entire spectrum and therefore we were not able to determine a con-

volution kernel on the basis of these curves. For the curves plotted in Figs. 8, 9, 10 and 11 at 

amplitudes of 0.6D and lower, we were able to extend the curves over the entire spectrum, 

but this could only be done with a low order polynomial and therefore a poor fit to the curves 

used. After determining the convolution kernel K( ) on the basis of one of these fits, the free 

vibration was modeled with inclusion of the convolution coupling. The results were very  

poor. See Fig. 10 in [6]. 

We therefore came to the conclusion that the wake oscillator model given by eq. (4), (6) 

and (9), with or without the convolution coupling, does not contain the correct non-linearities 

in either the damping term in eq. (9), the coupling term in eq. (9) or both. We also noted that 

the wake oscillator could possibly be improvement by adding an additional oscillator, so that 

the fluid force is modeled with a combination of two wake oscillators. 
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Figure 8: Curves found through a minimization 

procedure for the coefficient A for Case U. 

 

Figure 9: Curves found through a minimization 

procedure for the coefficient B for Case U. 
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Figure 10: Curves found through a minimization 

procedure for the coefficient A for Case L. 

 

Figure 11: Curves found through a minimization 

procedure for the coefficient B for Case L. 

3.4 Effect of removing the non-linearity in the damping term of the wake oscillator 

It is remarkable that the spread in the curves for the frequency dependent coefficient at dif-

ferent amplitudes of forced vibration is an order of magnitude smaller for Case U compared to 

Case L. For Case U, the parameter , given by eq. (10), that multiplies the Van der Pol-type 

non-linearity in eq. (20) is on order of magnitude smaller compared to Case L. It seems, there-

fore, that the Van der Pol-type non-linearity in eq. (20) has a large influence on the spread of 

the frequency dependent curves found at different amplitudes of forced vibration. To explore 

whether this is indeed the case, the minimization procedure from Section 3.1 is repeated and 

the frequency dependent coefficients are determined anew, but in this case the non-linearity in 

the damping term in eq. (20) is replaced by a linear damping term:   
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2

2

ˆ ˆ
2 sin( ) cos( ) cosVL VL

VL c c c c

d C dC y y
C A B

d d D D
   

 

 
         

 
    (22) 

We are fully aware that it is not possible to model the free vibration with eq. (22), as this equ-

ation does not contain a limit cycle and therefore cannot model the energy input from the fluid 

into the structural system at low amplitudes of motion, but we only wish to investigate the ef-

fects of the presence/non-presence of this non-linear damping term on the spread of the fre-

quency dependent coefficient at different amplitudes of forced vibration. 

The frequency dependent curves that have been found for A(c) and B(c) with the help of 

eq. (22) are depicted in Fig. 12 to 17 for three different values of the non-dimensional damp-

ing ratio , namely  = 0.5,  = 0.3 and  = 0.1. It is immediately clear from Fig. 12 to 17, that 

the spread in the curves for A(c) and B(c) at different amplitudes of forced vibration is of 

the same order of magnitude as has been found for Case U in Section 3.3. For decreasing 

damping ratio ,  the spread in the curves reduces unmistakably. Only the curves for the high-

est amplitude of forced vibration ŷ /D = 1.2 does not collapse onto the other curves. But addi-

tional non-linearities in the coupled structure-fluid system that are not modeled with the 

equations used, will certainly be present in reality. These additional non-linearities will be 

most visible at the higher amplitudes of cylinder motion. 

The fact that a much better correspondence of the frequency dependent curves at different 

amplitudes of forced vibration is found when the non-linearity in the damping term in the os-

cillator that describes CVL is removed, leads to the conclusion that this non-linearity should 

most likely not be included at this place. The behavior of the oscillator that describes CVL ap-

pears to be linear at low amplitudes of vibration. This means that the negative damping term 

that models the energy input from the fluid into the structural system should be placed at a 

different position in the coupled fluid-structure system. 

4  A FIRST ATTEMPT AT A NEW WAKE MODEL CONTAINING MULTIPLE 

OSCILLATORS  

Based on the findings of the previous section, a first attempt is made to develop a wake os-

cillator model in which the oscillator that describes CVL is linear in first order approximation 

at low amplitudes of cylinder motion. We do not wish to derive a full model at this point that 

is able to describe both the free and forced vibration. It is only our objective here to investi-

gate whether focusing our attention into this direction could be worthwhile. We start with the 

same basic equations as before and return to the usage of dimensional time t. The equations 

for the structural oscillator and the cross-flow fluid force do not change and are given by:   
 

 
21

2
( )a VYm m y by ky DV L C             (23) 

  
2

2
sin cosVY VD VL

U
C C C

V
             (6) 

It will still be assumed that: 0

0
ˆ

VD xC C . For the force component CVL the following equation is 

proposed of which the left-hand side is linear as discussed in Section 3.4:   
 

 
2 22 cosL L L

VL L s VL s VL L s s s

A B G
C C C P q y y y

D D D
      

 
           

 
,   (24) 
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Figure 12: Curves found for the coefficient A 

for the linear case with  = 0.5. 

 

Figure 13: Curves found for the coefficient B 

for the linear case with  = 0.5. 
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Figure 14: Curves found for the coefficient A 

for the linear case with  = 0.3. 

 

Figure 15: Curves found for the coefficient B 

for the linear case with  = 0.3. 
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Figure 16: Curves found for the coefficient A 

for the linear case with  = 0.1. 

 

Figure 17: Curves found for the coefficient B 

for the linear case with  = 0.1. 
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in which AL, BL, GL and PL are constant non-dimensional coupling coefficients and L is the 

non-dimensional damping ratio. The non-linear damping term that is present in eq. (9) and that 

models the limit cycle of the cross-flow fluid force and hence the energy input from the fluid 

into the structural system, has been removed from eq. (24). Therefore a second oscillator is 

needed that reintroduces the limit cycle and thereby acts as forcing on eq. (24).  The following 

form for this second oscillator is proposed:   
 

 
2 2 2( 1) cos

Q Q Q

Q s s s s

A B G
q q q q y y y

D D D
     

 
           

 
,    (25) 

in which q is a wake variable that will be left undefined.  AQ, BQ, and GQ are constant non-

dimensional coupling coefficients and Q is a non-dimensional tuning parameter. To ensure 

that the cross-flow fluid force on a stationary cylinder as predicted by eq. (6) , (24) and (25) is 

equal to 0

1
ˆ

yC , PL should be equal to: 0 0

1 1
ˆ ˆ2 / 2L L y L yP C C   .  

The coupled system consisting of eq. (6), (23), (24) and (25) has been solved in the time 

domain and it has been tried to find values for the tuning coefficients AL, BL, GL, L, AQ, BQ, 

GQ and Q, such that results of the model would compare favorably with the free vibration 

measurements of Khalak et al. It has however been found that for the free vibration modeling 

this system of equations always overpredicted the amplitude of  free vibration. This is likely 

caused by the removal of the Van der Pol-type nonlinearity from eq. (24). The presence of 

this term resulted in a strong damping at higher amplitudes of cylinder motion and it limited 

thereby the amplitude of cylinder motion that could be attained. This can be corrected by let-

ting go of the assumption that: 0

0
ˆ

VD xC C  and introducing an additional oscillator equation to 

describe CVD. The presence of this additional oscillator will limit the amplitude of the cylinder 

motion. A suitable form for this oscillator is given by:   
 

 2 0 2

0
ˆ4 4 ( ) sinD D D

VD D s VD s VD x D s s s

A B G
C C C C P q q y y y

D D D
      

 
             

 
,   (26) 

in which AD, BD, GD and PD are constant non-dimensional coupling coefficients and D is the 

non-dimensional damping ratio. The inclusion of eq. (26) into the model has the added advan-

tage that it creates the possibility to also model the oscillating components of the drag force, 

which are known to oscillate at even multiples of the Strouhal frequency [1, 2]. To ensure that 

the oscillating component of the in-line fluid force on a stationary cylinder as predicted by the 

present system of equations is equal to the force component 0

2
ˆ

xC  from the measurements of 

Gopalkrishnan, PD should be equal to: 0 0

2 2
ˆ ˆ16 / 4 4D D x D xP C C       .  

Again, it has been tried to tune the system of equations, now given by eq. (6), (23), (24), 

(25) and (26) to the free vibration experiments of  Khalak et al. The results of this attempt are 

depicted in Fig. 18 and 19. The following values for the tuning parameters have been used: 
 

 St = 0.1932, 0

0
ˆ 1.1856xC  , 0

1
ˆ 0.3842yC  , 0

2
ˆ 0.0215xC   , 

 AQ =  1.10,    BQ = -0.50,   GQ =   0.0,      Q  = 0.10, 

 AL =  0.70,     BL =  0.00,   GL  = -1.15,     L  = 0.30, 

 AD = -8.00,    BD =-8.00,    GD =  5.00,     D  = 0.30 
 

It can be seen in Figs. 18 and 19 that the first results of the new wake model consisting of 

multiple oscillators seem to be very promising. It appears that with the help of multiple wake 

oscillators it is possible to describe the upper and lower branch of free vibration. 
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Figure 18: Comparison of the amplitude and 

frequency of oscillation of the multiple oscillator 

model with the measurements of Khalak et al. [3] 

for m* = 2.4. 

 

Figure 19: Comparison of the amplitude and 

frequency of oscillation of the multiple oscillator 

model with the measurements of Khalak et al. [3] 

for m* = 20.6. 

5 CONCLUSIONS 

Starting with a wake oscillator model that has been developed earlier in [6] and [7] for the 

description of vortex-induced vibration, an attempt has been made to improve this model by 

making the coupling term between the structural and fluid oscillator frequency dependent. A 

set of consistent frequency dependent coupling coefficients is valid at all amplitudes of cy-

linder motion and satisfies the Kramers-Kronig relations. The frequency dependent coeffi-

cients have been determined on the basis of the results of a forced vibration experiment.  

As reported earlier in [6], the sets of frequency dependent coefficients found at different 

amplitudes of forced cylinder motion do not correspond with each other and therefore fail the 

requirements mentioned above.  

In this paper the influence of the presence of the dominant non-linearity in the wake oscil-

lator on the discrepancy between the various sets of frequency dependent coefficients found at 

different amplitudes of cylinder motion has been examined. It has been found that removal of 

the dominant non-linearity reduced the discrepancy between the sets of frequency dependent 

coefficient.  

Based on this result a new model is proposed consisting of linear oscillators for the com-

ponents of the fluid forces due to vortex shedding. These oscillators are forced by the cylinder 

motion and a wake variable q, which is described by a Van der Pol equation. Preliminary re-

sults of this model seem to be promising.  
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