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Abstract. In the current presentation, we suggest a very simple and effective post-processing
procedure to increase the order of accuracy in time for numerical results obtained at time inte-
gration of linear elastodynamics problems by the trapezoidal rule. This technique is based on
a new exact, closed-form, a-priori error estimator for time integration of linear elastodynamics
equations by the trapezoidal rule with non-uniform time increments. Based on this error esti-
mator, we suggest a new post-processing procedure (containing additional time integration of
elastodynamics equations by the trapezoidal rule with few time increments) that systematically
improves the order of accuracy of numerical results, with the increase in the number of addi-
tional time increments used for post-processing. For example, the use of just one additional
time increment for post-processing after time integration with any number of uniform time in-
crements, renders the order of accuracy of numerical results equal to 10/3 = 3.3333. Numerical
examples of the application of the new techniques to a system with a single degree of freedom
and to a multi-degree system confirm the corresponding increase in the order of convergence
of numerical results after post-processing. Because the same trapezoidal rule is used for basic
computations and post-processing, the new technique retains all of the properties of the trape-
zoidal rule, requires no writing of a new computer program for its implementation, and can be
easily used with any current commercial and research codes for elastodynamics.

1



A. Idesman

1 INTRODUCTION

The application of finite elements in space to linear elastodynamics problems leads to a
system of ordinary differential equations in time

MMM ÜUU + CCC U̇UU + KKKUUU = RRR , (1)

where MMM , CCC, KKK are the mass, damping, and stiffness matrices, respectively, UUU is the vector of
the nodal displacement, RRR is the vector of the nodal load. Eq. (1) can be also obtained by the
application of other discretization methods in space such as the spectral element method, the
boundary element method, the smoothed particle hydrodynamics (SPH) method and others. For
long-term time integration of semi-discrete elastodynamics equations (1), higher-order accurate
methods in time are more computationally effective compared with second order methods. For
example, high accuracy in time can be obtained from the unified set of a single step method
[1] by the use of higher-order interpolation polynomials in time. However, these methods
are not unconditionally stable for elastodynamics. Recently, new high-order accurate meth-
ods with a step-by-step time integration scheme have been developed for elastodynamics (see
[2, 3, 4, 5, 6, 7, 8, 9, 10] and many others). Most of them are based on semi-discrete equa-
tions (1) with the polynomial time approximations of unknown functions. The polynomial
coefficients are derived with the use of different approaches such as time-continuous Galerkin
(TCG) and time-discontinuous Galerkin (TDG) methods, weighted residual methods, colloca-
tion methods and others. The ultimate goal in the development of high-order accurate implicit
methods is to construct an unconditionally stable method with controllable numerical dissipa-
tion that is much more computationally effective than known second-order methods. Because
many high-order accurate methods require the solution of a large system of equations (much
larger than a system of equations for second-order methods), the development of effective iter-
ative predictor/multi-corrector solvers is an important component of a high-order method. For
example, the predictor/multi-corrector solver suggested in [10] for modified Nørsett methods
requires one additional iteration at each time step in order to improve the order of accuracy by
one. Many different iterative solvers were developed for the TDG method with linear time ap-
proximations of displacements and velocities that correspond to the third order of accuracy (see
[2, 3, 8, 9] and others). By the use of three different time increments for each time step, a very
effective formulation of fourth-order time-integration methods is obtained from second-order
methods in [11]. However, the authors of [11] could not extend their approach to higher orders
of accuracy.

To summarize, the development of a computationally effective high-order accurate time-
integration method for elastodynamics is still a challenging problem in computational mechan-
ics.

In this paper, we will use a new post-processing procedure (containing additional time inte-
gration of elastodynamics equations by the trapezoidal rule with few time increments) that sys-
tematically improves the order of accuracy of numerical results, with the increase in the number
of additional time increments used for post-processing (see our paper [12]). We should men-
tion that the trapezoidal rule does not include numerical dissipation. However, as was shown
in our papers [13, 14, 15, 16], numerical dissipation is not required for long-term integration
with the new solution strategy suggested in [13, 14, 16]. It was also shown in [13, 14, 16] that
the trapezoidal rule is the best time-integration method (the fastest and most accurate method)
for long-term integration of elastodynamics problems (including wave propagation and impact
problems) among all implicit second-order time-integration methods.
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2 SUMMARY OF THE NUMERICAL TECHNIQUE

In our paper [12], we have developed a new numerical time-integration technique for the
increase in the order of accuracy at the integration by the trapezoidal rule. This technique
is based on a new exact, closed-form, a-priori error estimator for time integration of linear
elastodynamics equations by the trapezoidal rule with non-uniform time increments. Based on
this error estimator, we developed a new post-processing procedure that systematically improves
the order of accuracy of numerical results, with the increase in the number of additional time
increments used for post-processing. The suggested procedure includes time integration at basic
computations by the trapezoidal rule with uniform time increments and time integration at post-
processing by the trapezoidal rule with few time increments. The sizes of time increments at
post-processing (positive and negative time increments are used) are calculated from the new
a-priori error estimator and depend on the size and the total number of time increments used at
basic computations. For example, the use of just one, three or five additional time increments
for post-processing after time integration with any number of uniform time increments at basic
computations, renders the order of accuracy of numerical results equal to 10/3, 14/3 and 6,
respectively. The sizes of time increments for post-processing should be calculated as follows:
∆t = − 3

√
m∆t̄ for one time increment; ∆t = α1∆t̄, ∆t = α1∆t̄ and ∆t = α2∆t̄ for three time

increments (α1 and α2 should be taken from Table 1); ∆t = α1∆t̄, ∆t = α1∆t̄, ∆t = α2∆t̄,
∆t = α2∆t̄ and ∆t = α3∆t̄ for five time increments (α1, α2 and α3 should be taken from Table
2) where m and ∆t̄ are the number of uniform time increments and the size of time increments
at basic computations by the trapezoidal rule.

Table 1. Coefficients α1 and α2 for post-processing with three time increments for different
numbers m.

m 2 10 50 100 500 1000 10000 100000 1000000
α1 -1.48091 -2.68405 -4.65819 -5.8846 -10.092 -12.7221 -27.4292 -59.1037 -127.339
α2 1.65042 3.0607 5.3386 6.75003 11.5871 14.6095 31.5058 67.8914 146.274

Table 2. Coefficients α1, α2 and α3 for post-processing with five time increments for different
numbers m.

m 2 10 50 100 500 1000 10000 100000 1000000
α1 1.93940 3.68743 6.46987 8.18896 14.0732 17.748 38.2851 82.505 177.762
α2 -1.57145 -2.89162 -5.03795 -6.3688 -10.9307 -13.7815 -29.7189 -64.0403 -137.977
α3 -2.06674 -3.9562 -6.95145 -8.80069 -15.1286 -19.0799 -41.161 -88.704 -191.119

3 NUMERICAL EXAMPLES

3.1 A single degree of freedom system

First let’s consider the increase in the order of accuracy by post-processing for time integra-
tion of the following elastodynamics equation for a single degree of freedom system:

ü(t) + 2ξu̇(t) + ω2 u(t) = f(t) , (2)

with the natural frequency ω = π = 3.1416 and the following initial conditions u(0) = 1 and
v(0)/π = u̇(0)/π = 1. Zero damping (ξ = 0) for the observation time T = 50, nonzero
damping (ξ = 0.1, 0.2) for the observation time T = 5, zero (f(t) = 0) and non-zero load
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Figure 1: The relative error in displacements and velocities e at the observation time T = 50 versus the total
number of time increments n in the logarithmic scale at integration of a single degree of freedom system (no
damping ξ = 0 and zero load f(t) = 0) without post-processing (curve 1) and the subsequent post-processing
with one (curve 2), three (curve 3) and five (curve 4) time increments.

(f(t) = 2 + 2t), and post-processing with one, three and five time increments as described
in Section 2 are considered. Different total numbers n (n = m plus the number of time in-
crements used at post-processing) of time increments are used in calculations (the correspond-
ing time increments in basic computations can be calculated as ∆t̄ = T

n
for the case of ba-

sic computations without post-processing, ∆t̄ = T
((n−1)− 3√n−1)

for the case of basic computa-
tions and the subsequent post-processing with one time increment, ∆t̄ = T

(n−3+2α1+α2)
for the

case of basic computations and the subsequent post-processing with three time increments, and
∆t̄ = T

(n−5+2α1+2α2+α3)
for the case of basic computations and the subsequent post-processing

with five time increments.
Figs. 1 - 2 show the relative numerical error e = euv√

u2(0)+(
v(0)
w

)2
(with euv =√

[u(tn)− unum(tn)]2 + [v(tn)−vnum(tn)
w

]2 where u(tn), v(tn) and unum(tn), vnum(tn) are the ex-
act and numerical solutions of Eq. (2) for the displacement and velocity at time tn) versus the
number of time increments in the logarithmic scale. At the fixed observation time T and a large
number of time increments, the number of time increments n is inversely proportional to a time
increment ∆t (n ≈ m ≈ T

∆t
or Log n ≈ Log T − Log∆t. Therefore, the slope of the curves

in Figs. 1 - 2 (which are plotted in the logarithmic scale) describes the order of convergence
(order of accuracy) of numerical results at large numbers n of time increments.

As can been seen from Fig. 1, at a large number of time increments n, the order of con-
vergence (order of accuracy) of numerical results after post-processing with one, three and five
time increments is in agreement with the analytical estimations reported in Section 2 (see the
slope of curves 2, 3 and 4). For example, it also follows from Fig. 1 that at the error of 1% (or
Log e = −2) for the observation time T = 50, post-processing with one, three and five time
increments reduces the total number of time increments by factors of 2.8, 3.8, 4, respectively
(compared with the results with no post-processing, curve 1). Post-processing is even more
effective if we are interested in more accurate results (for multi-dimensional problems a general
solution is the superposition of the solutions for separate modes and requires more accurate
results for individual modes). For example, at the error of 0.01% (or Log e = −4) for the ob-
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Figure 2: The relative error in displacements and velocities e at the observation time T = 5 versus the total number
of time increments n in the logarithmic scale at integration of a single degree of freedom system (with zero load
f(t) = 0 and damping ξ = 0.1 (a) and ξ = 0.2 (b)) without post-processing (curve 1) and the subsequent
post-processing with one (curve 2), three (curve 3) and five (curve 4) time increments.
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Figure 3: The numerical error in displacements and velocities ẽuv at the observation time T = 5 versus the total
number of time increments n in the logarithmic scale at integration of a single degree of freedom system with
damping ξ = 0.1 and non-zero loading f(t) = 2 + 2t without post-processing (curve 1) and the subsequent
post-processing with one (curve 2), three (curve 3) and five (curve 4) time increments.
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servation time T = 50, post-processing with one, three and five time increments reduces the
total number of time increments by factors of 6, 10, 12, respectively. However, we should also
remember that post-processing with one, three and five time increments requires the additional
factorization of one, two and three stiffness matrices, respectively. Therefore, the reduction in
computation time at the application of the post-processing procedure can be easily calculated if
the computation times for the factorization of a stiffness matrix and the back-substitution stage
of the solution of a system of linear equations are known for the selected computer code at the
given numbers of degrees of freedom.

As can been seen from Figs. 2 and 3, for linear elastic problems with non-zero damping,
the order of convergence (order of accuracy) of numerical results after post-processing with
one, three and five time increments is in agreement with the analytical estimations described in
Section 2. It also follows from Fig. 2 that if after basic computations with the trapezoidal rule
the error is smaller than 10% for ξ = 0.1 or 5% for ξ = 0.2 (for the frequency and observation
time used), the suggested post-processing procedure improves the numerical results. For multi-
degree problems, numerically solving single degree of freedom problems for the maximum and
leading (i.e., those with large amplitudes) modes is recommended in order to roughly estimate
the range of time increments at which the suggested post-processing procedure improves the
results.

3.2 Harmonic response of an elastic rod

Next we show the application of the post-processing technique described in Section 2 to time
integration of the 1-D elastodynamics problem related to harmonic response of an elastic rod.
An elastic rod of the length L = 1 is considered. Both ends of the rod are fixed, no external
loads are applied, the initial velocity is zero, and the initial displacement is proportional to
the first harmonic u0(x, 0) = sin(πx); see Fig. 4a. The observation time is assumed to be
T = 50, Young’s modulus to be E = 1, and the density to be ρ = 1. A uniform mesh with
100 linear finite elements along the bar is used. The elastodynamics problem was integrated
in time by the trapezoidal rule with different numbers m of uniform time increments and the
subsequent post-processing with one and three time increments as described in Section 2 (a
time increment ∆t is calculated similar to that described above for a single degree of freedom
system). Numerical results show that a numerical solution can be approximated as un(x, t) =
sin(πx)g1(t), where g1(t) is a function of time only. This means that only frequencies close
to π are excited in the numerical solution. For comparison of the accuracy of the numerical
results, the following errors in displacements (ẽu), velocities (ẽv) and the combined error in
displacements and velocities (ẽuv) at time t were calculated: ẽu(t) = max0≤x≤L[ua(x, t) −
un(x, t)] = ua(L/2, t) − un(L/2, t), ẽv(t) = max0≤x≤L

[va(x,t)−vn(x,t)]
π

= [va(L/2,t)−vn(L/2,t)]
π

and ẽuv(t) =

√
ẽ2u + ẽ2v
u0max

, where un(x, t) and vn(x, t) are numerical solutions for displacements
and velocities at current time t, and ua(x, t) = sin(πx)cos(πt), va(x, t) = −πsin(πx)sin(πt)
are the analytical solutions for displacements and velocities at current time t, and the maximum
numerical errors in displacements and velocities occur at x = L/2, u0

max = 1 is the maximum
initial displacement. For this problem, we selected a relatively fine mesh which yields a very
small error in space. Therefore, for relatively large time increments, the combined error in
displacements and velocities ẽuv should relate to the global error in time with a scaling factor.
Fig. 4b shows the numerical error in displacements and velocities ẽuv versus the number of
time increments n in the logarithmic scale. As can be seen from Fig. 4b, at a large number of
time increments, the order of convergence (order of accuracy) of numerical results after post-
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Figure 4: Modeling of harmonic response of an elastic rod (a). The numerical error in displacements and velocities
ẽuv at the observation time T = 50 versus the total number of time increments n in the logarithmic scale (b) at
time integration by the trapezoidal rule (curve 1) and the subsequent post-processing with one (curve 2) and three
(curve 3) time increments.

processing with one (curve 2) and three (curve 3) time increments is in agreement with the
analytical estimations reported in Section 2. It also follows from Fig. 4b that at the error of 1%
(or Log ẽuv = −2) for the observation time T = 50, post-processing with one and three time
increments reduces the total number of time increments n by factors of 3.5 and 4.6, respectively
(compared with the results with no post-processing, curve 1). For more accurate results with the
error of 0.1% (or Log ẽuv = −3) at the observation time T = 50, post-processing with one and
three time increments reduces the total number of time increments n by factors of 5.5 and 8.5,
respectively. However, we should also remember that post-processing with one and three time
increments requires the additional factorization of one and two stiffness matrices, respectively.

3.3 Impact of an elastic bar against a rigid wall

Here we show the application of the post-processing technique described in Section 2 to
time integration of a 1-D impact elastodynamics problem for which all frequencies of the semi-
discrete system, Eq. (1), are excited. An elastic rod of the length L = 4 is considered. The
following boundary conditions are applied: the displacement u(0, t) = t (it corresponds to the
velocity v(0, t) = v0 = 1) and u(4, t) = 0 (it corresponds to v(4, t) = 0). Initial displacements
and velocities are zero; i.e., u(x, 0) = v(x, 0) = 0. The observation time is assumed to be
T = 2, Young’s modulus to be E = 1, and the density to be ρ = 1. Zero damping CCC = 000 and
two cases of non-zero Rayleigh damping CCC = b1MMM + b2KKK with the coefficients b1 = 0.005,
b2 = 0.01 and with the coefficients b1 = 0.05, b2 = 0.1 are considered. A uniform mesh with
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Figure 5: Velocity distribution vref along the bar at time T = 2 for the impact problem with zero (a) and non-zero
Rayleigh damping (b). Curves 1 and 2 in b) correspond to the damping coefficients b1 = 0.005, b2 = 0.01 and
b1 = 0.05, b2 = 0.1, respectively. The solutions are obtained by the trapezoidal rule with 400000 uniform time
increments.

100 linear finite elements along the bar is used. In this paper we will consider the convergence in
time of numerical results to a solution of the semidiscrete problem, Eq. (1), which differs from
the analytical solution of the continuous impact problem. Because the semidiscrete problem
includes 100 degrees of freedom, the simplest way to find the solution of the semidiscrete
system is to use accurate time integration of Eq. (1) with very small time increments. This
solution, called the reference solution, is obtained by the trapezoidal rule with 400000 time
increments and is shown for the velocity vref in Fig. 5. An accurate numerical solution of the
original continuous impact problem with non-zero damping is considered in our papers [14, 16].
To study convergence of the trapezoidal rule after post-processing, the following measure for
the velocity error of the semi-discrete system at time T = 2 is introduced:

ev(T = 2) =

√√√√100∑
i=1

(vrefi (T = 2)− vnumi (T = 2))2 , (3)
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Figure 6: The numerical error in velocity ev at the observation time T = 2 versus the total number of time
increments n for the impact problem in the logarithmic scale at time integration by the trapezoidal rule (curve 1)
and the subsequent post-processing with one (curve 2) and three (curve 3) time increments. a), b) and c) correspond
to non-zero damping and to Rayleigh damping with the damping coefficients b1 = 0.005, b2 = 0.01 and with the
damping coefficients b1 = 0.05, b2 = 0.1, respectively.
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where vrefi (T = 2) and vnumi (T = 2) (i = 1, 2, ..., 100) are the nodal velocities of the reference
and numerical solutions at time T = 2, respectively.

Fig. 6 shows the numerical error ev at time T = 2 versus the number of time increments
in the logarithmic scale. At a large number of time increments, the number of time increments
n is inversely proportional to a time increment ∆t. Therefore, the slope of the curves at large
numbers n of time increments in Fig. 6 (which are plotted in the logarithmic scale) describes
the order of convergence (order of accuracy) of numerical results. As can been seen from Fig. 6,
the order of convergence (order of accuracy) of numerical results after post-processing with one
and three time increments is in agreement with the analytical estimations reported in Section 2
(see the slopes of curves 2 and 3).

4 CONCLUSIONS

In our previous papers, we suggested a new solution strategy for elastodynamics problems
and showed that for long-term time integration, a time-integration method at basic computations
does not need numerical dissipation even for wave propagation and impact problems. In the
current paper, we suggest a very simple and effective post-processing procedure to increase the
order of accuracy in time for numerical results obtained by the trapezoidal rule. Because the
same trapezoidal rule is used for basic computations and for post-processing, the new technique
retains all of the properties of the trapezoidal rule. For example, at zero physical damping C
= 0, the trapezoidal rule conserves the total energy and the linear and angular momentum of
a mechanical system during time integration. We should also mention that the new technique
requires no writing of a new computer program for its implementation and can be easily used
with any current commercial and research codes for elastodynamics. Of course, post-processing
with a time increment, the size of which differs from that used in basic computations, requires
the factorization of a tangent matrix and leads to additional computational costs. However, these
additional costs are small compared with those for long-term integration by the trapezoidal rule
in basic computations.
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