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Abstract. Integration algorithms are typically utilized to solve temporally discretized equations of 
motion in structural dynamics. Stability is an important property to be considered when selecting the 
proper integration algorithm for analysis of structures with a large number of degrees of freedom. The 
recent development of real-time structural testing brings more challenges to the integration algorithm. 
An explicit integration algorithm is more favorable in real-time structural testing because of its com-
putational efficiency. However, the presence of numerical errors will lead to the spurious growth of 
high-frequency response in the dynamic analysis and the presence of inevitable experimental errors 
will aggravate this effect during real-time structural testing. It is therefore advantageous for an expli-
cit integration algorithm to possess numerical damping to suppress any spurious participation of the 
high-frequency response while the lower modes are accurately integrated. This paper presents the de-
velopment of a family of explicit direct integration algorithms with controllable numerical damping. 
Discrete control theory is utilized to assign proper stable poles to the discrete transfer function of the 
integrations algorithms to achieve unconditional stability and numerical damping. The properties of 
the proposed algorithm are investigated and compared with other well established algorithms such as 
the Newmark family of integration algorithms and the CR integration algorithm. 
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1 INTRODUCTION 
Integration algorithms are usually utilized to solve the equations of motion of structures 

subjected to external excitations. Various integration algorithms have been developed and ap-
plied in structural dynamics such as the Newmark Family of integration algorithms [1] and 
the Hilber-Hughes-Taylor α-method [2]. Various methods have been used to develop integra-
tion algorithms, including Taylor series expansions, weighted residual methods, Hamilton’s 
principle, and least-squares methods [3]. Currently available integration algorithms can usual-
ly be classified as either explicit or implicit. An integration algorithm is explicit if the dis-
placements for the next time step can be determined from the accelerations, velocities and 
displacements at the current and previous time step, otherwise it is implicit. The implicit inte-
gration algorithms are usually unconditionally stable such as the Newmark method with con-
stant average acceleration and the HHT α-method, while the explicit integration algorithms 
are often conditionally stable, including the Newmark explicit method and the central differ-
ence method. In many structural dynamics applications, where iterations are not concerned in 
the analysis, the implicit integration algorithms with unconditional stability are generally pre-
ferred over conditionally stable explicit integration algorithms.  

In addition to the structural dynamic analysis, integration algorithms are also applied in on-
line structural experiments, where they are utilized to solve the dynamics of a prototype struc-
ture to sequentially determine the displacement response of an experimental structure in the 
laboratory. This application was first investigated by Takanashi et al. [4] and then by Mahin 
and Shing [5], and can be categorized as quasi-static pseudodynamic testing or quasi-static 
substructure testing. It is believed that by having the structural components (usually difficult 
to model numerically) tested in the laboratory and keeping the remainder of the structural sys-
tem modeled analytically, the response of the entire structure under a selected ground motion 
can be replicated in an economic and efficient manner. Both explicit and implicit integration 
algorithms have been utilized in quasi-static pseudodynamic and substructure testing [5, 6]. 
Since the experiments are conducted in an extended time scale (i.e., quasi-statically), the re-
quired iterations for implicit integration algorithms are not critical and the implicit integration 
algorithms therefore are often used because of their unconditional stability. 

Recent earthquake engineering research have advanced the quasi-static pseudodynamic 
and substructures testing methods to real-time pseudodynamic testing [7] and real-time hybrid 
simulation [8] to accommodate rate-dependent behavior in the experimental specimens. These 
two structural testing methods will be referred to as real-time testing hereafter. Unlike the 
conventional experimental methods, real-time testing requires that the command displace-
ments from the integration algorithm be applied accurately to the experimental substructures 
in a real-time manner. Integration algorithms therefore are required to solve the equations of 
motion and compute the command displacements in a timely manner so as not to introduce 
any time delay in the real-time test. This poses a great challenge to the integration algorithm 
when the real-time test involves a complex structure with a large number of degrees of free-
dom. Explicit integration algorithms thus present more attractive solution for real-time testing 
than implicit integration algorithms since no iterations are necessary.  

More recently, several unconditionally stable explicit integration algorithms were devel-
oped by researchers to enable real-time structural tests [9, 10]. Unlike other available integra-
tion algorithms, integration parameters of these algorithms are defined as functions of the 
linear elastic properties of the structure to be analyzed. By carefully selecting the integration 
parameters, these algorithms possess both explicitness and unconditional stability. When ap-
plied for nonlinear structural behavior, Chen and Ricles [11, 12] showed that these algorithms 
maintain the stability when the structure has softening behavior. The explicitness and uncon-
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ditional stability of these integration algorithm present great potential for real-time structural 
testing. Chen et al. [13] implemented the unconditional explicit CR integration algorithm for 
real-time hybrid simulation of structures with an elastomeric damper. The experiment results 
were compared with those using the existing HHT α-method with a fixed number of substep 
iteration [14]. Good agreement was observed, indicating that the unconditional explicit CR 
algorithm is applicable for real-time testing. Chen et al. [15] further extended the application 
of the CR algorithm for the real-time hybrid simulation of a moment resisting frame (MRF) 
with magneto-rheological (MR) dampers in passive mode. The prototype MRF had a total of 
122 degrees of freedom and 71 elements. The experimental results was later compared with 
pure numerical simulation by Chen et al. [16]. Good agreement further validated the effec-
tiveness of the CR algorithm for real-time testing. However, it was observed that the experi-
mental results, especially the restoring forces in the experimental substructures (i.e., the MR 
dampers), had high frequency noise. Small oscillation was also observed in the structural dis-
placement response. These high frequency mode responses are attributed to the spatially dis-
cretized equations of motion and do not necessarily represent the true behavior of the 
prototype structure under earthquakes. In addition, the presence of numerical errors will lead 
to the spurious growth of high-frequency response and the inevitable experimental errors will 
aggravate this effect in real-time tests. Therefore, it is advantageous for an algorithm to pos-
sess numerical damping to suppress any spurious participation of the high-frequency response 
and minimize the effect of numerical and experimental errors, while the lower modes can be 
integrated accurately. However, the current unconditionally stable explicit CR integration al-
gorithm has zero or only little numerical damping properties. It is thus desirable to introduce 
controllable numerical damping into the algorithm while maintaining its explicitness and un-
conditional stability. This paper presents the development of a family of unconditionally sta-
ble explicit integration algorithm using the discrete control theory.  

2 INTEGRATION ALGORITHM AND DISCRETE TRANSFER FUNCTION FOR 
SDOF STRUCTURE 

Consider a single-degree-of-freedom (SDOF) linear elastic structure represented by the fol-
lowing differential equation of motion under external excitation F(t): 

 )()((t)(t) tFtxkxcxm =⋅+⋅+⋅     (1a) 

where m, c and k are the mass, viscous damping and linear elastic stiffness of the SDOF struc-
ture, respectively; and )(tx , )(tx , )(tx  are the displacement, velocity and acceleration of the 
SDOF structure, respectively. Integration algorithms in structural dynamics are usually ap-
plied to solve the temporally discretized equation of motion of Eq. (1a) for structural response, 
which can be written as: 

 1i1i1i1i ++++ =⋅+⋅+⋅ Fxkxcxm        (1b) 

where 1+ix , 1+ix , 1+ix  are the displacement, velocity and acceleration of the SDOF structure at 
the (i+1)th time step, respectively; and Fi+1 is the value of excitation F(t) at the (i+1)th time 
step. 

To obtain an explicit integration algorithm, the variation of the displacement and velocity 
over the time step can be defined as 

 i1i1i xtxx  ⋅∆⋅+=+ α   (2a) 

 i
2

2i1 xtxtxx ii  ⋅∆⋅+⋅∆+=+ α    (2b) 
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where 1α  and 2α  are integration parameters and will be determined later; ix , ix , ix  are the 
displacement, velocity and acceleration of the SDOF structure at the ith time step, respectively; 
and Δt is the time step for the dynamic analysis.  

It can be observed that both the displacement 1+ix and velocity 1+ix in Eqs. (2a) and 2(b) are 
explicit since they are only dependent on the structural response of the previous time step. 
This explicitness will lead to significant computational efficiency when the algorithm is used 
in dynamic analysis structures subjected to earthquakes. Eqs. (2a) and (2b) were also used by 
Chen and Ricles [10] to develop the unconditionally stable CR explicit integration algorithm. 
The discrete transfer function G(z) for the integration algorithms can be derived by substitut-
ing Eqs. (2a) and (2b) into Eq. (1b), whereby it can be written in the following general form 

 
01

2
2

01
2

2
)(
)()(

dzdzd
nznzn

zF
zXzG

++

++
==  (3) 

where G(z) is a discrete transfer function relating the displacement response of the structure 
and the external excitation; X(z) and F(z) are discrete z-transforms of the displacement re-
sponse xi+1 and excitation force Fi+1, respectively; z is the complex variable in the discrete z-
domain; n2, n1, n0, d2, d1 and d0 are coefficients of the numerator and denominator of the dis-
crete transfer function G(z), respectively. The coefficients of the discrete transfer function are 
tabulated in Table 1 for the new algorithms. It can be observed that the coefficients in Table 1 
are dependent on the structure properties (m, c, and k) and the integration time step Δt as well 
as the two integration parameters (α1 and α2). 
 

Numerator Denominator 

2n  0  2d  m  
1n  2

2 t∆⋅α  1d  mtctk 21
2

2 −∆⋅⋅+∆⋅⋅ αα  
0n  2

21 )( t∆⋅−αα  0d  mtctk +∆⋅⋅−∆⋅⋅− 1
2

21 )( ααα  
 

Table 1. Coefficients of G(z) for the new integration algorithm 
 

Chen and Ricles [10] indicated that the poles of the discrete transfer function G(z) in Eq. (3) 
determine the properties of the corresponding integration algorithm including the stability and 
accuracy. The complex poles of G(z) in Eq. (3) can be written in the following form 

 )]1(exp[ 2
2,1 eqeq iip ζζεσ −±−⋅Ω=⋅±=  (4) 

where σ and ε are the real components, and i is the imaginary unit defined as 1−=i ; the ap-
parent frequency Ω  and the equivalent damping ratio ζeq

 

 are defined as 

)1/()/(tan 21
eqζσε −=Ω −  (5a) 

 ( ) Ω+−= 2/ln 22 εσζ eq  (5b) 

The integration algorithm will be unconditionally stable if the poles in Eq. (4) are always lo-
cated inside or on the unit circle of the discrete z-domain as shown in Figure 1. Otherwise, the 
algorithm is conditionally stable. Compared with the conventional stability criterion [17], the 
magnitude of the complex poles in Eq. (4) represent the spectral radius, while Eqs. (5a) and 
(5b) determine the period elongation and numerical damping of the integration algorithm.  
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To achieve unconditional stability, Chen and Ricles [10] used the Tustin transform [18] to 
discretize the continuous poles and assigned the resulting discrete poles to the discrete transfer 
function in Eq. (3), which leads to the integration parameters α1 and α2

 

 for the unconditional-
ly stable explicit CR algorithm.  

 
 

Figure 1: Schematic of Stable and Unstable Poles in Complex z-domain. 
 

3 INTEGRATION PARAMETER DERIVATION FOR INTEGRATION 
ALGORITHMS WITH NUMERICAL DAMPING 

Chen and Ricles [11, 12] demonstrated that an integration algorithm can schematically be 
represented by a open-loop block diagram in Figure 2(a), or by a closed-loop block diagram 
in Figure 2(b). The inputs and the outputs in Figures 1(a) and 1(b) are the external excitation 
F(t) and the structural response x(t), respectively. The block G(z) in Figure 1(a) represents the 
discrete transfer function in Eq. (3) for the integration algorithm, while the block k in Figure 
1(b) is the linear elastic stiffness of the SDOF structure and G’(z) is referred to as the open-
loop transfer function for the integration algorithm.  
 

 
 

Figure 2: Block diagram representation of:  (a) open loop system; and (b) closed loop system. 
 
The relationship between the discrete transfer functions G(z) and G'(z) can be expressed as 

 
)('1

)(')(
zGk

zGzG
⋅+

=  (6) 

To determine the parameters for the integration algorithms defined by Eqs. (2a) and (2b), 
the open-loop transfer function G'(z) for the Newmark method with constant average accelera-
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tion is utilized in this paper, where its coefficients are tabulated in Table 2 and the discrete 
transfer function of G'(z) can be written as 

 
)24(8)24(

)12()( 2

22

tcmzmztcm
tzzzG

∆⋅−+⋅−⋅∆⋅+

∆⋅++
=′  (7a) 

 
Numerator Denominator 

2n  2t∆  2d  tcm ∆⋅+ 24  

1n  22 t∆  2d  m8−  

0n  2t∆  0d  tcm ∆⋅− 24  
 

Table 2. Coefficients of G'(z) for the Newmark method with constant average acceleration. 
 

It can be observed that the discrete transfer function G’(z) has duplicate zeros at z = -1. To 
develop an integration algorithm with numerical damping, the transfer function G’(z) in Eq. 
(7a) is assigned to have two duplicate zeros at z = -λ, which can then be written as 

 
)24(8)24(

)()( 2

22

tcmzmztcm
tzzG

∆⋅−+⋅−⋅∆⋅+

∆⋅+
=′ λ  (7b) 

where λ is a positive real number and has a value between zero and one. If Eq. (7b) is used for 
the open-loop transfer function, the corresponding closed-loop transfer function can be de-
rived using Eq. (6) as 

 
)24()28()24(

)(
)(
)()( 2222

22

tktcmztkmztktcm
tz

zF
zXzG

∆⋅+∆⋅−+⋅∆⋅⋅+−+⋅∆⋅+∆⋅+

∆⋅+
==

λ
λ  (8a) 

The poles of the discrete transfer function in Eq. (8a) can be derived by setting the deno-
minator equal to zero and solving for the values of z: 

 0)24()28()24( 2222 =∆⋅+∆⋅−+⋅∆⋅⋅+−+⋅∆⋅+∆⋅+ tktcmztkmztktcm λ  (8b) 

Assigning the poles of the closed-loop transfer function of Eq. (8b) to the transfer function 
G(z) for the integration algorithms defined by Eqs. (2a) and (2b), and solving for α1 and α2

 

 
leads to 

)2)23()242(
)12(2

222

2

1
tktcm

m
∆⋅+∆⋅⋅−++⋅++

++⋅
=

λλλλ
λλα  (9a) 

 
)2)23()242(

)1(4
2222

tktcm
m
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+⋅
=

λλλλ
λα  (9b) 

For different values of the parameter λ, Eqs. (9a) and (9b) lead to different sets of integra-
tion parameters α1 and α2

 

, and a family of explicit integration algorithms, which will be re-
ferred to the new algorithm. It can also be derived that for the case of λ equal to 1.0, Eqs. (9a) 
and (9b) reduce to  

221
24

4
tktcm

m
∆⋅+∆⋅+

==αα   (10) 
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Eq. (10) gives the integration parameters for the unconditionally stable explicit CR integration 
algorithm [10]. This indicates that the CR algorithm can be considered as a special case of the 
new integration algorithms. 

4 STABILITY AND ACCURACY ANALYSIS  
With the integration parameters defined in Eqs. (9a) and 9(b), the discrete transfer function 

for the new family of integration algorithms can be derived and written in the general form of 
Eq. (3). The coefficients are tabulated in Table 3. The stability and accuracy of the family of 
algorithms are then investigated using Eqs. (4) through (5b). 

 
Numerator Denominator 

2n  0  2d  mtctk ⋅++∆⋅⋅−⋅+−∆⋅⋅ 22 )1(2)3()1(2 λλλ  
1n  2)1(4 t∆⋅+λ  1d  mtctk ⋅+−∆⋅⋅−+∆⋅⋅ 222 )1(4)1(44 λλλ  
0n  22 )1(2 t∆⋅−λ  0d  mtctk ⋅++∆⋅⋅−⋅+−∆⋅⋅ 222 )1(2)13()1(2 λλλλ  

 
Table 3. Coefficients of G(z) for the new algorithms. 

4.1 Stability analysis for linear elastic SDOF structures 
Figure 3 shows the spectral radius of the new family of integration algorithms for a linear 

elastic SDOF structure, where ωn is the natural frequency of the SDOF structure. Zero visc-
ous damping (i.e., c=0) is assumed to represent the most critical case for stability. Different 
values are used for the parameter λ, including λ=1.0, 0.75 and 0.5. Also presented in Figure 3 
is the Newmark method with constant average acceleration. It can be observed that for se-
lected values of λ in Figure 3, the new algorithm is stable for ωnΔt up to 6.0. It can be further 
shown that the new algorithm is unconditional stable with λ between zero and one for any 
value of ωn

 

Δt. Figure 3 also shows that for λ equal to 1.0, the new algorithm has the same 
spectral radius as the CR algorithm. This further proves that the CR algorithm is a special 
case of the new family of integration algorithms. 

 
Figure 3: Spectral radius for the new family of integration algorithms. 
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4.2 Accuracy analysis for linear elastic SDOF structures 
The accuracy of the family of new integration algorithms is analyzed using numerical 

damping (ND) and period elongation (PE). The SDOF structure is assumed to have zero inhe-
rent viscous damping. The equivalent damping computed from Eq. (5b) therefore represents 
the numerical damping introduced by the new algorithms. Cases with the values of λ equal to 
1.0, 0.75 and 0.5 are considered. Figure 4 shows the numerical damping of the new algo-
rithms, where it is compared with the Newmark method with constant average acceleration 
integration algorithm. The new algorithm with λ=1.0 and the Newmark method with constant 
average acceleration have almost zero numerical damping. When λ takes values of 0.75 and 
0.5, the new algorithm is shown to introduce significant numerical damping, approaching 
25% and 10% for values of ωnΔt greater than 3.0, respectively. This numerical damping will 
help to minimize the effects of unrealistic higher mode response and the experimental errors 
during the structural experiments. However, Figure 4 also shows that the new algorithm in-
troduces numerical damping for small values of ωn

 
Δt smaller than 3.0. 

 
Figure 4. Numerical damping of the new algorithm. 

 

 
Figure 5. Period elongation of the new algorithm. 

 



First A. Author, Second B. Author and Third C. Author 

 9 

The period elongation presented in Figure 5 is observed to be almost same for the new al-
gorithms for the various values of λ. The new algorithm with λ=1.0 is observed to be identical 
as that of the Newmark method with constant average acceleration. The new algorithm is 
shown to introduce period elongation for all three values of λ equal to 1.0, 0.75 and 0.5, but 
nearly identical as that of the Newmark method with constant acceleration for all cases.  

4.3 Stability analysis for nonlinear SDOF structure  
The above analysis indicates that the new family of explicit integration algorithms have 

comparable stability and accuracy properties as the Newmark method with constant average 
acceleration. Application of an integration algorithm for structural dynamic analysis often in-
volves nonlinear structural behavior. Chen and Ricles [11, 12] proposed to use the discrete 
transfer function to analyze the stability limits of direct integration algorithms for nonlinear 
structural behavior. For a SDOF nonlinear structure, the equation of motion in Eq. (2) can be 
revised as 

 1111 ++++ =+⋅+⋅ iiii Frxcxm    (11a) 

In Eq. (11a), 1+ir  is the restoring force of the nonlinear SDOF structure at the (i+1)th time step. 
Eq. (11a) can be written in an incremental form as 

 iiii Frxcxm ∆=∆⋅+∆⋅+∆⋅   (11b) 

The increments of acceleration ix∆ , velocity ix∆  and restoring force ir∆  are defined as 
iii xxx  −=∆ +1 , iii xxx  −=∆ +1  and iii rrr −=∆ +1 . For small values of t∆ , the increment of restor-

ing force can be approximated as itiii xkrrr ∆⋅=−=∆ +1  [17], where kt

 

 is the tangent stiffness 
of the nonlinear SDOF structure. Using the open loop block diagram in Figure 2(b), the new 
integration algorithms can be represented by an open-loop transfer function G'(z) with the res-
toring force expressed by a varying feedback gain representing the varying stiffness [11]. The 
open-loop discrete transfer function can again be written in the general form in Eq. (3) and its 
coefficients are tabulated in Table 4.  

Numerator Denominator 

2n  0  2d  mtctk ⋅++∆⋅⋅−⋅+−∆⋅⋅ 22 )1(2)3()1(2 λλλ  
1n  2)1(4 t∆⋅+λ  1d  mtctk ⋅+−∆⋅⋅−+∆⋅− 222 )1(4)1(44 λλ  
0n  22 )1(2 t∆⋅−λ  0d  mtctk ⋅++∆⋅⋅−⋅+−∆⋅ 22 )1(2)13()1(2 λλλ  

Table 4: Coefficients of G'(z) for the new algorithms. 
 
The root locus approach is then used to determine the stability limit of the new family of 

explicit integration algorithms. Figure 6 shows a typical root locus for the open-loop transfer 
function with λ equal to 1.0. It can be observed that one branch of the root loci falls outside 
the unit circle. Therefore the new algorithm with is only stable for a finite range of stiffness 
values. The root locus plot crosses the unit circle at 1−=z , and the stability limit for the im-
proved CR algorithm can therefore be solved by substituting 1−=z  into the denominator of 
the closed-loop transfer function derived from G'(z), whereby 
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Solving Eq. (12) for kt leads to 

 2

222

)1()3(
])1()1([4

t
mtctkkt

∆+⋅−

+⋅−∆⋅⋅−+∆⋅−
≤

λλ
λλ  (13a) 

Eq. (13a) gives the stability limit for the new algorithms when applied to nonlinear SDOF 
structures. The stability limit in Eq. (13a) is observed to be dependent on the parameter λ as 
well as the structure properties (m, c, and k) and the integration time step Δt.  
 

 
 

Figure 6: Typical root locus of the open loop transfer function G’(z) for the new integration algorithm (λ=1.0). 
 
Eq. (13a) can be revised and expressed as 

 
)1()3(

])1(2)1([4 2222
2

+⋅−
+−∆⋅⋅−+∆−

≤∆⋅







λλ
λωζλω ttt

m
k nnt  (13b) 

where ζ is the inherent viscous damping ratio of the SDOF structure. Figure 7 shows the vari-
ation of the stability limit in Eq. (13b) with respect to the value of λ for the case of ζ=0.0. It 
can be observed that larger values of λ would lead to a larger stability limit. 
 

 
 

Figure 7: Stability limits for the new algorithms applied to nonlinear SDOF structure. 
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For the case of λ equal to one, the stability limit in Eq. (13) reduces to  

 2

2 4
t

mtkkt
∆

+∆⋅
≤  (14a) 

Eq. (14a) is same as the stability limit for the CR algorithm applied to a nonlinear structure 
[11]. When the algorithm is applied to a linear elastic structure, i.e., kkt = , the stability limit 
in Eq. (13) reduces to  

 
4)1()3(

])1()1[(4 22
2

++⋅−
+⋅−∆⋅⋅−

≤∆
λλ

λλ mtctk  (14b) 

For the case of λ equal to one, the stability limit in Eq. (14b) can be further simplified as 
∞≤∆ 2tk , which implies that the algorithm is stable for all values of ωn and Δt. 

5 SUMMARY AND CONCLUSIONS  
This paper presents the development of a new family of unconditionally stable explicit in-

tegration algorithms with controllable numerical damping using the discrete control theory. A 
parameter λ is utilized to introduce and control the numerical damping for the new algorithms. 
Using different values of λ between zero and one results in different properties of the new al-
gorithms. The stability of the algorithm is investigated for both linear and nonlinear structures. 
The new algorithms are demonstrated to be unconditionally stable for a linear elastic structure 
and conditionally stable for a nonlinear structure. The accuracy of the new algorithms is in-
vestigated for linear elastic structures in terms of numerical damping and period elongation. 
For the range of the parameter λ investigated in the present study, the new algorithm is shown 
to introduce small period elongation and significant numerical damping for high frequencies. 
This makes this new algorithms especially appealing for real-time structural testing. 
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