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Abstract. Equivalent homogeneous soils are investigated as simplified approximations of 
continuously inhomogeneous soils. The examined system comprises of an inhomogeneous sur-
face layer over a homogeneous one of higher stiffness. Five alternative definitions are 
adopted for the representative shear wave velocity (Vhom) in the inhomogeneous layer: (i) 
Vhom1 at the base of the inhomogeneous layer (ii) Vhom2 in the middle of the inhomogeneous 
layer (iii) Vhom3 equal to the mean shear wave velocity within the inhomogeneous layer (iv) 
Vhom4 providing equal travel time from base to surface between homogeneous and inhomoge-
neous soil and (v) Vhom5 corresponding to an equivalent homogeneous soil having the same 
fundamental frequency as the inhomogeneous profile. Seismic response between inhomogene-
ous and equivalent homogeneous soils is compared by means of exact analytical solutions for 
single- and two-layer inhomogeneous soils. Fundamental frequencies and resonant peak am-
plitudes are examined, as affected by salient model parameters such as inhomogeneity factor, 
surface-to-base shear wave velocity ratio in the inhomogeneous layer, shear wave velocity 
contrast between the inhomogeneous and the homogeneous layer and relative layer thickness. 
It is observed that resonant frequencies of a smoothly-to-moderately inhomogeneous soil may 
be adequately captured by an equivalent homogeneous soil of either equal shear wave propa-
gation velocity at the mid depth of the inhomogeneous layer, or of equal mean shear wave ve-
locity within the whole layer. On the contrary, resonant amplitudes of a moderately-to-
strongly inhomogeneous soil may be significantly underestimated or overestimated when an 
equivalent homogeneous soil is adopted, especially at higher resonances. The response of in-
homogeneous soils with vanishing shear wave velocity near soil surface is explored.     
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1 INTRODUCTION 

Based on a detailed in-situ investigation of dynamic properties of soft deposits, Towhata [1] 
demonstrated analytically that shear wave propagation velocity may vary continuously with 
depth even for complex stratifications involving different soil materials. Utilizing a one-
dimensional model of inhomogeneous soils with zero or finite stiffness at the surface, the 
above author showed analytically the possibility of higher amounts of seismic energy reach-
ing the ground surface with respect to soils with discontinuous variation in shear modulus. 
Continuously inhomogeneous soils have been studied for different types of soil inhomogene-
ity or of seismic waves in multiple directions providing closed-form solutions for natural fre-
quencies, modal shapes and amplification functions. Following the early work of Ambrasseys 
[2] and Seed and Idriss [3], Dobry et al.[4] studied the dynamic response of inhomogeneous 
soils with shear wave propagation velocity of the form Vs=c z n, z being depth and n a positive 
inhomogeneity coefficient, corresponding to zero shear modulus at ground surface. A special 
case of the above equation, corresponding to n = 2/3, was adopted by Travasarou and Gazetas 
[5] as part of an investigation of seismic response of soft marine clay sediments verifying ana-
lytically that exceedingly large amplification of seismic motion may occur on the free surface. 
The effect of rate and type of heterogeneity on the seismic response of heterogeneous soils 
with shear wave velocity increasing from a non-zero value at the free surface has been exam-
ined by Ambraseys [2], Toki & Cherri [6], Schreyer [7] and Gazetas [8]. More recently, 
Parashakis [9] and Semblat and Pecker [10] extended the aforementioned models to obtain 
analytical solutions of the wave equation for a heterogeneous soil with shear wave velocity 
increasing with depth according to a generalized power law.  

On the other hand, according to most modern seismic codes [11-13], site classification is 
based on the average shear wave propagation velocity within the top 30 metres (i.e. Vs,30) of 
the soil profile. The above regulations essentially refer to a homogeneous or inhomogeneous 
profile without strong gradients in shear wave propagation velocity with depth. However, in 
case of a moderately-to-strongly inhomogeneous soil, the choice of a pertinent, “representa-
tive” shear wave velocity is not straightforward especially when thick and soft soil deposits 
are encountered. In this case, conventional analyses based on discretizing soil in a multi-layer 
system with constant properties within each layer, may underestimate soil amplification with 
respect to the actual response of a continuously inhomogeneous medium, depending primarily 
on frequency content of input motion [1].  

In light of the above considerations, “equivalent” homogenous soils are investigated as 
simplified approximations of continuously inhomogeneous soils. The investigation focuses on 
layered inhomogeneous soils as an extension of a previous research effort by the authors re-
ferring to single-layer systems [14]. The examined system comprises of a surficial inhomoge-
neous zone followed by a homogeneous layer on rigid base. A generalized parabolic function 
is adopted to describe the shear wave propagation velocity in the inhomogeneous layer, allow-
ing modeling of inhomogeneous soils having vanishing values of shear modulus at ground 
surface. The problem is treated analytically by implementing closed-form solutions derived 
both for single- and two-layer inhomogeneous soil deposits in terms of base-to-surface trans-
fer functions [9, 15, 16]. Seismic response between inhomogeneous and equivalent homoge-
neous soils is compared by means of fundamental frequencies and resonant amplitudes ratios, 
as affected by governing model parameters such as layer thickness, surface-to-base shear 
wave velocity ratio in the inhomogeneous layer, impedance contrast between surface and base 
layer and rate of inhomogeneity. The dependence of near-surface shear strains for inhomoge-
neous soils with very small surface-to-base shear wave velocity ratios is investigated by 
means of asymptotic analyses.    
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2 PROBLEM DEFINITION 

A continuously inhomogeneous viscoelastic soil zone of thickness H over a rigid base    
(Fig.1a) is considered as a basis of the layered inhomogeneous soil examined. Soil mass den-
sity, ρ, and hysteretic damping ratio, ξ, are considered constant with depth. Shear wave propa-
gation velocity is assumed to increase with depth according to the generalized power law 
function: 

                                         ( ) (1 )     

n

s H

z
V z V b b

H
 (1) 

where b is defined as a function of the shear wave velocity at the surface (Vo) and base (VH) of 
the inhomogeneous soil layer [i.e. b=(Vo/VH)1/n], n is a dimensionless inhomogeneity factor 
varying in the common range of 0 to 1 ([9], [17], [18]) and z stands for the vertical coordinate 
(depth) measured from ground surface. For small values of the inhomogeneity factor n, Eq.1 
simplifies to a uniform distribution while values of n close to unity correspond to linear in-
crease in shear wave velocity with depth.  

The single-layer system is extended to account for the presence of an underlying homoge-
neous layer of thickness (hb) and shear wave propagation velocity (Vb) forming a generalized 
two-layer inhomogeneous soil with bounded shear wave velocity at large depths (Fig.1b). In 
this manner, a wide set of soil types can be modeled encompassing different soil properties 
between the inhomogeneous and the homogeneous layer.  

Seismic response of layered inhomogeneous soils is compared to different equivalent ho-
mogenous cases. The latter are defined through a representative shear wave velocity Vhom  in 
the inhomogeneous layer using the following definitions [14]:  

• Vhom1, equal to the shear wave propagation velocity VH at the base of the inhomogeneous 
layer: 

                                         hom1  HV V  (2) 
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Figure 1.  (a) Single inhomogeneous layer over rigid rock (b) Inhomogeneous surface layer over a homogeneous 
layer (c) Comparison of a two-layer inhomogeneous soil to the shear wave velocities of five equivalent homoge-

neous profiles (Vo/VH = 0.1, Vb/VH=1, hb/H=1, n=0.6) 
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representing an always-stiffer soil with respect to the actual one 
• Vhom2, equal to the shear wave propagation velocity at the mid depth of the inhomogene-

ous layer [8]:    

                                         hom2 ( / 2) sV V H  (3) 

pertaining to an elementary yet potentially useful solution. 
• Vhom3, equal to the mean shear wave propagation velocity within the inhomogeneous layer: 

                                         hom 3

1
( ) 

H
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V V z dz
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 (4) 

where Vs(z) is given by Eq.1. 

• Vhom4, providing equal base to surface travel times between homogeneous and inhomoge-
neous soil [19] 
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• Vhom5, corresponding to an equivalent homogeneous soil having the same fundamental 
frequency as the inhomogeneous profile 

                                         hom5 1 hom 4 InV f H  (6) 

Alternatively, Vhom5  may be viewed as the shear wave propagation velocity in the inhomo-
geneous soil corresponding to the “equivalent” depth (zeq) proposed by Dobry et al. [20]. The 
two-layer equivalent homogeneous soils are compared to the inhomogeneous case in Fig. 1c 
based on the above Vhom profiles and the generalized parabola Vs(z) in Eq.1. In this graph, the 
model parameters n, Vo/VH, Vb/VH and hb/H were selected at 0.6, 0.1, 1 and 1 respectively. The 
deviation observed among the shear wave velocity profiles of the equivalent homogeneous 
soils is due to the small surface-to-base shear wave velocity ratio (Vo/VH). Naturally, larger 
Vo/VH ratios correspond to a smoother variation of Vs(z) leading to comparable Vhom profiles.  

The input motion is imposed at the base of the system in the form of a harmonic horizontal 
displacement, u=uoexp(iωt), ω being the cyclic excitation frequency, generating vertically 
propagating S waves.  

3 ANALYTICAL SOLUTION 

Starting from the following ordinary differential equation: 

                                         
2( ) 0
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  (7) 

which describes one-dimensional shear waves under harmonic oscillations in a soil layer with 
constant mass density ρ and variable shear modulus G(z), it can be shown [14-16] that the 
displacement field of an inhomogeneous layer such as that described in Eq.1 is given by: 
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where q=1-b, C1 is an integration constant determined from the boundary conditions, Jν( ) and  
Νν( ) denote the Bessel functions of the first and second kind and order ν, respectively, and 

2(1 )  n is a dimensionless parameter representing the step of the associated power series 
solutions [21]. Parameters μ and ν are obtained from the asymptotic convergence of the solu-
tion close to zero, as μ=(1-2n)/2 and ν=(2n-1)/2(1-n), while the asymptotic behavior of the 
solution at infinity requires 2 / r rk z q , kr and zr being a reference wave number (=ω/Vr) 

and a reference depth.  
 By definition, the base-to-surface transfer function is expressed as [22, 23]: 

                                         
(0)
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  (9) 

where u(0) and u(H) stand for the horizontal soil displacement at the free surface and the base 
of the single-layer system, computed from Eq.8 by setting z=0 and z=H, respectively. After 
some algebra, Eq.9 yields: 
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 (10)              

Referring to the two-layer inhomogeneous soil, the base-to-surface transfer function is de-
fined in the same spirit as in Eq. 9: 
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where ub(0) denotes the soil displacement at base level (zb=0). The response of the underlying 
homogeneous layer is given by the function [22, 23]: 

                                         1 2( ) sin( ) cos( ) b b b b b bu z A k z A k z  (12) 

where A1 and A2 represent the amplitudes of the waves travelling upward and downward in 
the layer, respectively, and kb (=ω / Vb) is the corresponding wave number. Upon enforcing 
the continuity of shear stresses and displacements at the base of the system and the interface 
of the surface and the base layer: 
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by means of Eqs. 8 and 12 yield the following solution for the base-to-surface transfer func-
tion in Eq.11: 
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 (14)              

where / 2 
O b  ,   / 2

/  
H rb qH z  ; ρH and ρb stand for soil mass density of the inhomoge-

neous and the homogeneous layer, respectively, and kH (=ω/VH), kb (=ω/Vb) the correspond-
ing wave numbers. Material damping can be accounted for in the above solutions by replacing 
the real wave numbers with the complex counterparts  * */H Hk V  and  * */b bk V , respec-

tively. Further details on the analytical derivations of Eqs.10 and 14 can be found in refer-
ences [9] and [14]. 
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Figure 2. Base-to-surface transfer functions of two-layer inhomogeneous soil for (a) Vb/VH=1 (b) Vb/VH=2 (c) 
Vb/VH=3. In all graphs Vo/VH=0.1, hb/H=2, ρb/ρH=1, ξ=0.05  

Figure 3. Base-to-surface transfer functions of two-layer inhomogeneous soil for (a) Vb/VH=1 (b) Vb/VH=2 (c) 
Vb/VH=3. In all graphs Vo/VH=0.75, hb/H=2, ρb/ρH=1, ξ=0.05  

4 HARMONIC RESPONSE OF THE TWO-LAYER INHOMOGENEOUS SOIL   

Analytical base-to-surface transfer functions obtained for the two-layer inhomogeneous 
soil by means of Eq.14 are plotted in Fig.2 referring to the combined effect of inhomogeneity 
factor n and shear wave velocity ratio (Vb/VH) at the interface of the inhomogeneous and the 
homogeneous layer, with the abscissa normalized by the fundamental frequency of the soil, 
f1soil. Shear wave velocity ratio Vo/VH at the surface and the base of the inhomogeneous layer 
was set at 0.1 corresponding to strong gradients in shear wave velocity with depth. For this 
range of soil inhomogeneity, increasing the inhomogeneity factor n amplifies response and 
shifts higher mode resonances to lower frequencies [15, 16], especially for large shear wave 
velocity contrast (i.e large Vb/VH ratios) between the surface and the base layer (Fig.2c). Of 
particular interest is the strong amplification observed at higher modes, indicating reduced 
soil damping effects, contrary to the response of a piece-wise homogeneous two-layer soil, 
where the role of higher soil modes progressively diminishes.  

On the contrary, for higher surface-to-base wave velocity ratio (Vo/VH)  corresponding to a 
mild variation of shear wave propagation velocity within the surface inhomogeneous layer, 
the harmonic response of the two-layer inhomogeneous soil resembles that of the homogene-
ous case (n=0.01). This is clearly demonstrated in Fig.3 where Eq.14 is computed for a Vo/VH 
ratio of 0.75 providing comparable base-to-surface transfer functions. Note that the only dif-
ference between the results shown in Fig.2 and Fig.3 is the value of Vo/VH ratio. The above 
behavior was found to exist regardless of thickness (hb) of the underlying homogeneous layer. 
The effect of the latter is explored in Fig. 4 for a two-layer inhomogeneous soil described by 
three layer thickness values (hb/H) and a Vo/VH  ratio of 0.1. It is observed that as the inho-
mogeneity factor n approaches 1, deeper soil deposits tend to respond at lower frequencies 
with larger peak amplitudes (Figs. 4b-4c). However, the effect of both relative layer thickness 
and inhomogeneity factor is minimized with increasing Vo/VH ratio, as shown in Figure 5 
where base-to-surface transfer functions are computed for a higher Vo/VH   ratio (0.75).  



George E. Mylonakis, Emmanouil Rovithis and Haralambos Parashakis 

 7

Figure 4. Base-to-surface transfer functions of two-layer inhomogeneous soil for (a) hb/H=1 (b) hb/H=2 (c) 
hb/H=3. In all graphs Vo/VH=0.1, Vb/VH=2, ρb/ρH=1, ξ=0.05  

 

Figure 5. Base-to-surface transfer functions of two-layer inhomogeneous soil for (a) hb/H=1 (b) hb/H=2 (c) 
hb/H=3. In all graphs Vo/VH=0.75, Vb/VH=2, ρb/ρH=1, ξ=0.05  

Conclusively, the harmonic response of the generalized two-layer inhomogeneous system un-
der investigation is primarily controlled by Vo/VH ratio corresponding to a critical measure of 
soil inhomogeneity. Similar observations have been reported by Rovithis et al [14] referring 
to the single-layer system (Fig.1a) based on Eq.10. 

5 COMPARISON WITH “EQUIVALENT” HOMOGENEOUS SOIL 

The response of the inhomogeneous two-layer system was compared to the equivalent ho-
mogeneous soils in terms of natural frequencies and resonant peak amplitudes. Recall in this 
regard that for a homogeneous viscoelastic two-layer soil, base-to-surface transfer function is 
given by the expression [22]: 

                         1

hom hom( ) cos cos sin sin


   b b R b bF q H q h I q H q h  (15)              

where qhom(=ω/Vhom) and qb(=ω/Vb) stand for the wave numbers of the surface and the base 
layer, respectively, and IR (=ρbVb/ ρHVhom) is the impedance contrast between the two layers.  

Resonant frequencies and peak amplitudes ratios between equivalent homogeneous and in-
homogeneous soils were obtained by means of Eqs.14 and 15 for each representative shear 
wave propagation velocity Vhom according to Eqs 2-6. For the purpose of this parametric in-
vestigation both (Vb/VH) and (hb/H) ratios were consecutively set at 1, 2 and 3.  

Ratio of the fundamental frequency of the equivalent homogeneous profile to the first natu-
ral frequency of the inhomogeneous soil (f1hom/f1Inhom) is plotted in Fig.6 against the inho-
mogeneity factor n for the examined Vo/VH ratios. In all graphs, Vhom is defined by Eq.2 (i.e 
Vhom=VH) and Vb/VH is equal to 3. Each plot corresponds to a different hb/H ratio; 1, 2 and 3 
respectively. Naturally, the use of VH as the equivalent shear wave propagation velocity of the 
inhomogeneous layer results in a stiffer soil, leading to frequency ratios above unity espe-
cially for moderately-to-strongly inhomogeneous soils (small Vo/VH ratios and large inho-
mogeneity factors n). However, larger hb/H values referring to deeper soil deposits lead to 
lower f1hom/f1Inhom ratios (Fig. 6b-6c), indicating a prevailing contribution of the underlain ho-
mogeneous layer to the overall response. 
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Figure 6. Ratio of fundamental frequency of the equivalent homogeneous soil (f1hom) to first natural frequency of 
the inhomogeneous soil (f1Inhom) as function of inhomogeneity factor n: (a) hb/H=1 (b) hb/H=2 (c) hb/H=3. In all 

plots, Vhom=Vhom1, Vb/VH =3, ρb/ρH=1, ξ = 0.05  

Resonant frequencies of a smoothly-to-moderately inhomogeneous soil (i.e Vo/VH  > 0.25) 
are well-predicted by an equivalent homogeneous soil with a surface layer of either equal 
shear wave propagation velocity at the mid depth of the inhomogeneous layer (Eq.3), or of 
equal mean wave propagation velocity within the whole layer (Eq.4). Figures 7a-7c show 
f1hom/f1Inhom ratios computed by means of Eq.3 for various hb/H and Vb/VH ratios. Similar re-
sults obtained from Eq.4 are plotted in Figs. 7d-7f referring to the second natural frequency of 
the deposit (i.e. f2hom/f2Inhom). In all cases, frequency ratios are close to unity indicating a good 
approximation of the resonant frequencies of the inhomogeneous soil. The latter should be 
correlated with the continuous nature of the generalized parabola adopted to describe the 
wave propagation velocity in the inhomogeneous layer. Insignificant deviations from the ex-
act solution are observed for low Vo/VH ratios (Vo/VH =0.1) leading to slightly overestimated 
frequencies with increasing inhomogeneity factor n, especially at high resonances (Figs. 7d-
7f).  

On the contrary, when the equivalent homogeneous soil is defined through Eq.5 
(Vhom=Vhom4) the actual fundamental frequency of the inhomogeneous deposit is underesti-
mated. Fig.8 shows the corresponding f1hom/f11inhom ratios for three values of shear wave veloc-
ity contrast at the interface of the inhomogeneous and the homogeneous layer. It is observed 
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Figure 7. (a-c) f1hom/f1Inhom ratios as function of inhomogeneity factor n: Vhom=Vhom2 (d-f) f2hom/f2Inhom ratios as 
function of inhomogeneity factor n: Vhom=Vhom3. In all plots ρb/ρH=1, ξ = 0.05  
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Figure 8. f1hom/f1Inhom ratios as function of inhomogeneity factor n: (a) Vb/VH=1 (b) Vb/VH=2 (c) Vb/VH=3. In all 
plots, Vhom=Vhom4, hb/H=1, ρb/ρH=1, ξ = 0.05  
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Figure 9. f3hom/f3nhom ratios as function of inhomogeneity factor n: (a) Vb/VH=1 (b) Vb/VH=2 (c) Vb/VH=3. In all 
plots, Vhom=Vhom5, hb/H=2, ρb/ρH=1, ξ = 0.05  

that indeed the fundamental frequency ratio is lower than 1 especially for large Vb/VH ratios 
(Fig.8b-8c). Similar trends can be seen in Fig. 9 where f3hom/f3Inhom ratios referring to the third 
natural frequency of a two-layer homogeneous soil having the same fundamental frequency as 
the inhomogeneous one are plotted by means of Eq.6 (Vhom=Vhom5).   

Further comparisons between continuously inhomogeneous and equivalent homogeneous 
soils were performed, relating peak resonant amplitudes of base-to-surface transfer functions. 
Resonant amplitude ratios (Ahom/Ainhom) defined in the same spirit as the resonant frequency 
ratios are plotted in Fig. 10 corresponding to the first natural frequency (i.e. A1hom/A1Inhom) of a 
two-layer system with (Vb/VH) and (hb/H) ratio of 3 and 2, respectively. Each plot in Fig.10 
corresponds to a different equivalent homogeneous soil based on Eqs 2-6. Linear hysteretic 
damping was taken at 0.05 for both inhomogeneous and equivalent homogeneous cases. The 
same results are shown in Fig.11 for the second natural frequency of the deposit 
(A2hom/A2Inhom). It is observed that the replacement of a continuously inhomogeneous soil with 
an equivalent homogeneous may lead to substantial overestimated or underestimated resonant 
amplitudes depending on the value of Vhom. Note, for example, that for a strongly inhomoge-
neous soil (i.e. Vo/VH = 0.1, n = 0.9), A1hom/A1inhom ratio based on Eq.5 can be about 0.6 
(Fig.10d), which suggests an underestimation of the actual resonant amplitude while Eq.6 
yields a value of 1.7 (Fig.10e) overestimating strongly the amplitude of the fundamental reso-
nance. The above deviation becomes larger at higher resonances. For example, A2hom/A2Inhom 
ratios may vary in the range 0.4 (Fig.11a) to 4.5 (Fig.11e) depending on the approach fol-
lowed to define Vhom. Thereby, the replacement of a continuously inhomogeneous soil layer 
with an equivalent homogeneous one in terms of peak resonant amplitudes may be valid only 
for a sufficiently smooth variation of shear wave velocity with depth. The latter was observed 
independently of Vb/VH ratio, hb/H ratio and Vhom.  
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Figure 10. Resonant amplitude ratios (A1hom/A11nhom) corresponding to the first natural frequency of the system as 
function of inhomogeneity factor n: (a) Vhom=Vhom1 (b) Vhom=Vhom2 (c) Vhom=Vhom3 (d) Vhom=Vhom4  (e) Vhom=Vhom5. 

In all plots, Vb/VH=3, hb/H=2, ρb/ρH=1, ξ = 0.05 
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Figure 11. Resonant amplitude ratios (A2hom/A21nhom) corresponding to the second natural frequency of the system 
as function of inhomogeneity factor n: (a) Vhom=Vhom1 (b) Vhom=Vhom2 (c) Vhom=Vhom3 (d) Vhom=Vhom4                    

(e) Vhom=Vhom5. In all plots, Vb/VH=3, hb/H=2, ρb/ρH=1, ξ = 0.05 

6 INHOMOGENEOUS SOIL WITH VANISHING STIFFNESS AT SOIL SURFACE 

For an inhomogeneous soil layer having zero stiffness at the free surface (b=0), it can be 
shown [14-16] that shear strain γ(z) in the soil is given by: 

                  
22

1/ 2 / 2
12

( )


    
 


n

H

H z
z C z J b

V H 
   (16)              

where ν=1/2(1-n), 2(1 )  n  and μ=1/2.   
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For values of z close to zero the term  1/ 2 / 2z J b   becomes asymptotically equal to [24]: 

                  
/ 2

1/ 2 / 2 1/ 2 1

Γ(1+ ν) 2

 
 
 


  z

z J b z



  (17)              

where Γ( ) is the Gamma function. Accordingly the solution in Eq.16 takes the form: 

                 
22 / 2

1/ 2
12

1
( )

Γ(1+ ν) 2

       
   

n

H

H z z
z C z

V H


   (18)              

which for small z’s yields the expression (recall that 2(1 ) / 2(1 ) 1    n n  in this solution):   

                 
2 1/ 2 / 2 2 1/ 2 1/ 2 1 2       n n nz z z  (19)              

indicating that for n>1/2 the exponent (1-2n) becomes negative and, thereby, the magnitude of 
shear strain becomes infinite, regardless of frequency and excitation amplitude and despite the 
fact that the corresponding shear stress is zero. On the contrary, for n<1/2 the exponent is 
positive and shear strain is zero at the ground surface. Therefore, strain amplitude at the sur-
face can be either zero or infinite, depending on the value of the inhomogeneity factor, but 
never finite. These findings are in agreement with those obtained in [5] for n=2/3. 

However, as real soils inherently possess a finite amount of stiffness at the surface, the 
behavior of the solution at very small Vo/VH  ratios is investigated in Fig.12, for a single inho-
mogeneous layer described by four inhomogeneity factors. Damping ratio, ξ, was set at 0.05 
in this graph. Strong amplification is evident at higher mode resonances, as Vo/VH  and n tend 
to 0 and 1, respectively. This suggests that strong amplification will develop even for finite 
surface stiffness (under zero shear strain), which will merely get maximized at the theoretical  

 

 

Figure 12. Effect of inhomogeneity factor n on base-to-surface transfer functions for a single inhomogeneous 
layer having Vo/VH ratio of 0.1, 0.01, 0.001 and 0. In all plots, ξ = 0.05 
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limit Vo/VH=0. An explanation is that the strong amplification is associated with transition 
phenomena (i.e., accumulation of wave energy in areas of progressively smaller elastic 
modulus near the surface leading to an increase in wave amplitude) as opposed to reflection 
phenomena associated with development of resonance in the layer. 

7 CONCLUSIONS  

Equivalent homogeneous soils were examined as simplified approximations of layered 
continuously inhomogeneous soils implementing alternative definitions for the representative 
shear wave propagation velocity. The investigation focused on resonant frequencies and peak 
resonant amplitudes, as affected by salient model parameters. The special case of an inhomo-
geneous soil having zero stiffness at the surface was explored as to the variation of shear 
strain with depth. 

The harmonic response of a two-layer strongly inhomogeneous soil (Vo/VH  = 0.1) is ampli-
fied with increasing inhomogeneity factor n shifting higher mode resonance to lower frequen-
cies. The above effect is more pronounced for deeper soil deposits with large shear wave 
velocity contrast between the surface and the base layer. Comparison of resonant frequencies 
and amplitudes between two-layer inhomogeneous and equivalent homogeneous soils re-
vealed that the response of a smoothly-to-moderately inhomogeneous soil in terms of resonant 
frequencies may be adequately captured by an equivalent homogeneous soil with a surface 
layer of either equal shear wave propagation velocity at the mid depth of the inhomogeneous 
deposit, or of equal mean wave propagation velocity within the whole layer. For moderately-
to-strongly inhomogeneous soil (Vo/VH<0.5 and inhomogeneity factor n>0.3) the above 
equivalent homogeneous approximations remain a promising solution given that deep soil de-
posits (hb/H>2) are encountered. On the contrary, resonant amplitudes of a moderately-to-
strongly inhomogeneous soil may be significantly overestimated or underestimated when an 
equivalent homogeneous soil approach is adopted, especially at higher resonances. For the 
special case of inhomogeneous soils with vanishing shear wave velocity at the free surface 
(Vo/VH = 0), near-surface shear strain may be either zero (for n < 0.5) or infinite (for n >0.5) 
but never finite. Strong amplification will develop even for finite surface stiffness (under zero 
shear strain) which will get maximized at the theoretical limit Vo/VH = 0. From a practical 
viewpoint, a Vo/VH  ratio of less than 0.1 combined with an inhomogeneity factor n of over 0.5 
will suffice to trigger this effect.   
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