
 COMPDYN 2011
III ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.)

Corfu, Greece, 25–28 May 2011

ADVANCED PARALLEL COMPUTING FOR EXPLOSIVE FLUID-
STRUCTURE INTERACTION

V. Faucher1

1 CEA, DEN, DANS, DM2S, SEMT, DYN
CEA/Saclay, 91 191 Gif sur Yvette Cedex, France

e-mail: vincent.faucher@cea.fr

Keywords: Fast transient dynamics, fluide structure interaction, kinematic links.

Abstract. Present contribution exposes current R&D issues in the framework of parallel computing
for fast transient dynamics involving fluid-structure interaction and coupled models. In particular,
simulation of accidental explosive situations often requires simultaneous representation of both fluids
with multiple components and structures that may undergo large deformation down to complete ruin.
Is especially considered the generic treatment of kinematic links by means of Lagrange Mul-
tipliers , and the parallel concurrency it implies amoung solving algorithms throughout the
simulation. Current research and investigated solutions are illustrated with industrial exam-
ples performed with EUROPLEXUS software.

V. Faucher

 2

1 INTRODUCTION

Simulation of fast transient phenomena arising from accidental situations often requires
simultaneous modeling of fluids, both liquids and gases, interacting with surrounding struc-
tures that may undergo large deformations down to complete ruin. This yields couplings be-
tween various kinds of models, such as Finite Elements, Finite Volumes or SPH particles for
the fluids, and Finite Elements, SPH particles or Discrete Elements for the structures (cf. fig-
ure 1). Examples of such simulations in explosive fluid-structure interaction are given in
[1][2].

(a) Explosion in a
vessel with internal

structures

(b) Explosion et
fragmentation d’un
bidon immergé dans

un liquide

Figure 1: Examples of explosive FSI simulations.

Kinematic links between various models is thus a fundamental issue and the choice is
made in EUROPLEXUS to verify the link equations exactly by means of Lagrange Multip-
liers, avoiding the use of user defined penalty parameters to simplify the input process and
prevent any dependency of the solution on non-physical parameters. From the algorithmic
point of view, this introduces a strong specificity for the temporal solver: time integration
scheme is classically central differences explicit scheme, but solving a linear system at each
step is necessary to compute link forces, leading to a partially implicit solving procedure.

Parallel handle of both building and solving the system giving Lagrange Multipliers for all
the kinematic connections available in the program competes with classical parallel algo-
rithms used in fast transient dynamics software and is addressed by current paper.

2 GENERAL ALGORITHM

2.1 Dynamic equilibrium for fluid-structure interaction with explicit time integration

Conservation of momentum at time tn+1 of the time integration process, all quantities as-
sumed to be known at times tn (displacements, for structure only) and tn+1/2 (velocities), takes
general form:

()1 1 1/2 1 1 1

1 3/2 1

3/2 1/2 1

,+ + + + + +

+ + +

+ + +

+ + =

=

= + ∆ ⋅

ɺɺ ɺ

ɺ

ɺ ɺ ɺɺ

M U F U U C Λ F

C U B

U U U

Tn n n n n n n
i ext

n n n

n n nt

 (1)

V. Faucher

 3

Forces Fi represent internal forces for the structure or transport forces for the fluid. The system is
completed for the fluid by conservation of mass and energy equations, written in EUROPLEXUS us-
ing a Finite Volume formalism, i.e. computing fluxes of quantities through faces of the fluid mesh
cells. Mn+1 is a diagonal matrix.

Matrix Cn+1 is the kinematic connections matrix, linking velocities of both fluid and struc-
tural nodes, whose construction is presented in next paragraph. Its dimension, profile and
coefficients are all variable with time.

Before computing nodal accelerations allowing advancing to next time-step in the simula-
tion, Lagrange Multipliers are obtained by a condensation procedure, yielding a system of the
form:

11 1 1 1 1 1 1−+ + + + + + += =C M C Λ H Λ S
Tn n n n n n n (2)

2.2 Writing fluid-structure interaction links

Two types of fluid-structure links are considered in classical transient explosive simula-
tions [1][3]. First is conform node-to-node links, when the structure coincides with fluid do-
main’s envelop. Second is diffuse links for immersed structures, for which enforcing a
conform mesh between fluid and structure generates large extra work for data sets creation
and lack of robustness for ALE rezoning of the fluid grid. Figure 2 illustrates both types of
links.

Figure 2: Fluid-structure interaction links.

Interaction with conform meshes produces permanent links, whose coefficients are varia-
ble along with direction normal to the structure. Diffuse interaction with topologically un-
coupled meshes generates links whose support and coefficients are variable with time.

Second type of link is mandatory to deal with problems where structural fragmentation oc-
curs, to simulate fluid flow through created openings, as shown on figure 1-b or on figure 3.

(b) Interface discrétisée avec
maillages conformes

(c) Interface discrétisée avec
liaison diffuse

(a) Interface F/S continue
(situation de reference)

V. Faucher

 4

Figure 3: Simulation of an explosion in a metro carriage.

3 PARALLEL SOLUTION WITH DISTRIBUTED MEMORY

3.1 Principle and problematic of remote links

Parallel solution in EUROPLEXUS relies on domain decomposition, splitting elements
upon available processing units with minimum interface size between subdomains. Formally,
system (1) becomes, for example in the case of 3 subdomains:

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1

2

3

()

()

i ext

T
i ext

i ext

a

b

 + + =

 =

ɺɺ

ɺɺ

ɺɺ

ɺɺ

ɺɺ

ɺɺ

M U F Λ F

M U F C Λ F

M U F Λ F

U

C U B

U

 (3)

Parallel acceleration is first achieved by distribution of the work for both internal forces
vector computation and fluid-structure links building.

However, connections matrix C must be considered at global level for the multi-domain
system, since links may couple nodes belonging to different subdomains, for example with
large displacements of structural fragments through fluid domain. Such links are called re-
mote links, to emphasize the fact that they concerns non-local quantities on subdomains.

The problematic associated to these remote links is the global treatment they require.

In the rare situation where no link couples degrees of freedom belonging to different sub-
domains (i. e. no remote links in the model), system (3) can be uncoupled and parallelism is
straightforward. On the contrary, if couplings exist, a solution procedure implying all subdo-
mains must be provided to compute Lagrange Multipliers.

Existing approach consists in identifying in condensation operator H blocks that can be
solved inside one subdomain, i. e. corresponding to groups of fully local links with only local
nodes involved. Figure 4 illustrates the process in the elementary case of 2 subdomains. On
each subdomain, dofs are partitioned between those concerned by any remote link (or a link
coupled to a remote link, the two having to be treated simultaneously) and the others.

V. Faucher

 5

Figure 3: Identification of diagonal blocks in condensation operator.

Global block HR is then solved on a single processor, resulting in a loss of parallelism all
the more important that kinematic couplings between subdomains are numerous. This can se-
verely harm scalability, again for example when large displacements of structural fragments
occur, these fragments interacting with initially distant fluid elements.

Let us also notice that building global block HR requires centralizing all concerned remote
links data on the processor dedicated to the solution. These communications done, a distri-
buted linear solver is useless to compute Multipliers, since time necessary for data redistribu-
tion prior to solution easily compensate parallel acceleration provided by the solver.

3.2 Algorithmic solutions

Keeping the same distributed memory parallel structure for the program, two alternative
parallel algorithms can be proposed to deal with the problematic exposed above. They are be-
ing developed and tested in the framework of French ANR REPDYN project [4]. In both cas-
es, the point is to increase parallelism for the solution of the problem involving remote links.

3.2.1 Correct use of a distributed linear solver

As noticed earlier, this option is worthless if data have to be centralized on one unique pro-
cessor to build to system to be solved. Instead, to achieve efficiency, a distributed linear solv-
er must start from a matrix whose terms (either its lines or its terms individually) are already
equally split upon available resources.

One way to provide such a distribution is to share among all processors data concerning
remote links (and links coupled to them), yielding block HR to be solved at global level. This
represents a reduced extra-cost in communications, compared to existing transfer from all
processors to one unique destination.

Each processor is then able to compute terms of HR. Its building becomes a parallel task
and matrix distribution is controlled in order to benefit from a parallel solver, such as

dofs SD1 dofs SD2

Local
links SD1

Local
links SD2
Remote
links

CL1

CL2

CR1 CR2

Local
links SD1

Local
links SD2
Remote
links

HL1

HL2

HR

1
L1 L1 1 L1

−=H C M C T

1
L2 L 2 2 L2

−=H C M C T

[]
1

1 R1
R R1 R 2 1

2 R 2

−

−

=

M C
H C C

M C

T

T

Connections
matrix

Condensation
operator

V. Faucher

 6

MUMPS [5][6] for example.

3.2.2 Iterative solution with no operator building

Even if building global block becomes parallel and produces a distributed matrix, linear
solver are known to suffer from limited scalability, especially in the present situation where
the matrix size is small, the number of linked nodes being far lower than the total number of
nodes.

An alternative strategy is to avoid building the operator within an iterative solution of the
link problem, using Conjugate Gradient for example. Starting from system (3) with value of
Lagrange Multipliers at iteration k, corresponding accelerations are obtained from (3-a):

1

1 1 1 1 1

2 2 2 2 1

1 3 3 3 1

k k
ext i

k T k
ext i

k k
ext i

−
 = −

ɺɺ

ɺɺ

ɺɺ

U M F F Λ

U M F F -C Λ

U M F F Λ

 (4)

Residual on kinematic links is then computed by:

1

2

3

k

k k

k

ɺɺ

ɺɺ

ɺɺ

U

S =C U -B

U

 (5)

These two evaluations are parallel steps using operators local to subdomains. For residual
computation, vector is obtained by blocks, each block corresponding to links written on a giv-
en subdomain.

Preconditioning the algorithm is necessary to speed-up convergence. One preconditioner of
interest consists in solving links written on a subdomain, potentially involving dofs it does not
own, as if they were not coupled to any other links on another subdomain, which the global
link operator classically handles.

Considering again simplified case (4), this first means isolating in remote links block of
connections matrix the links written locally:

[]
1 1
R1 R 2

R1 R 2 2 2
R1 R 2

=

C C
C C

C C
 (6)

Global condensation operator then writes:

11 1 1 1 2
R RCR1 R 2 1 R1 R1

R 22 2 1 1 2
RC RR1 R 2 2 R 2 R 2

T T

TT T

−

−

= =

H HC C M C C
H

H HC C M C C
 (6)

with 1 1 1 1 1 1 1
R R1 1 R1 R 2 2 R 2

T T− −= +H C M C C M C

 2 2 1 2 2 1 2
R R1 1 R1 R 2 2 R 2

T T− −= +H C M C C M C

 1 1 2 1 1 2
RC R1 1 R1 R 2 2 R 2

T T− −= +H C M C C M C

Blocks 1
RH and 2

RH can be assembled locally on subdomains 1 and 2 respectively, know-

ing only locally written links and masses of all involved dofs, potentially belonging to another
subdomain, which implies small communications.

Ignoring couplings in the preconditioner then consists in neglecting block HRC in the solu-

V. Faucher

 7

tion procedure. A diagonal per block operator is thus obtained, each block locally solved on a
subdomain. Extension to any number of subdomains is straightforward.

4 TOWARDS HYBRID PARALLELISM

In addition to scalability improvement for solving kinematic links with domain decomposi-
tion, recent hardware evolution suggests an alternative parallelism: a distributed memory ap-
proch with domain decomposition between nodes interconnected by a high-performance
network, coupled to a shared memory parallel acceleration using local cores inside a node,
with optional additional acceleration obtained from GPU(s).

From a theoretical point of view, this allows to lighten concurrency between domain de-
composition and kinematic links enforcement for a given number of processing units, pro-
vided an efficient multi-CPU/GPU shared memory parallelism.

Again, research in this area is carried out for EUROPLEXUS software in the framework of
REPDYN project, in collaboration with MOAIS team from INRIA/LIG laboratory. Dynamic
load balancing is handled through KAAPI library [7][8], implementing graph partitioning me-
thods and work stealing between SMP threads.

A strict goal is to achieve a cooperative hybrid parallelism among all available resources
efficient for all EUROPLEXUS functionalities. Originality is thus to propose different simu-
laneous parallel solutions adapting to multiple algorithms occurring together in a coupled si-
mulation, instead of parallel efficiency demonstrations based on restricted model applications,
which are classically hard to extend to industrial level.

REFERENCES

[1] F. Casadei, Fast Transient Fluid-Structure Interaction with Failure and Fragmentation,
8th World Congress on Computational Mechanics, June 30-July 5, 2008.

[2] V. Faucher, S. Kokh. Explosive Fluid-Structure Interaction using Multi-Component
Flows with Anti-Dissipation, IV European Conference on Computational Mechanics,
May 16-21, 2010.

[3] F. Casadei, J.P. Halleux, A. Saha, F. Chille, Transient Fluid-Structure Interaction Algo-
rithm for Large Industrial Applications, Comp. Meth. in Appl. Mech. and Engrg., 2001.

[4] http://www.repdyn.fr

[5] P.R. Amestoy, I.S. Duff & J.-Y. L'Excellent, Multifrontal parallel distributed symmetric
and unsymmetric solvers, ENSEEIHT-IRIT Technical Report, 1998. Revised version
appeared in Comp. Meth. in Appl. Mech. Eng., 184, 501-520 (2000).

[6] http://graal.ens-lyon.fr/MUMPS/

[7] T. Gautier, X. Besseron & L. Pigeon, KAAPI : a thread scheduling runtime system for
data flow computations on cluster of multi-processors. In Parallel Symbolic Computa-
tion’07 (PASCO’07), number 15-23, London, Ontario, Canada, 2007.

[8] http://kaapi.gforge.inria.fr/

