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Abstract. Non-conforming techniques as the Mortar spectral Element Method (MSEM) or
the Discontinuous Galerkin Spectral Element Method (DGSEM) are variational approaches to
discretize partial differential equations, that rely on a spectral finite element approximation of
a non-overlapping subdomain partition of the computational domain. In this contribution we
compare and analyse MSEM and DGSEM, giving more details on the algorithmic aspects of
the two non-conforming approaches, and we address their applicability and flexibility to handle
seismic wave propagation problems. The numerical strategies are implemented in the spectral
elements based code GeoELSE [14].
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1 INTRODUCTION

During the last three decades seismology is undergoing arrtrapsformation at both the
research and the application level. In modern seismologglssical scientific approach based
on laboratory experiments has being replaced by compuneraiions. Indeed, the rapid devel-
opment of efficient numerical methods, gives the chancemalsite, with high resolution the
complete seismic waveform field in highly heterogeneoutheaedia with complex geometries
and up to relatively large frequencies (about 3 Hz).

The recent developments on computational seismology hese based on high-order numeri-
cal modelling of wave propagation (see, for example|, [5/182,15/ 16| 17]). The reasons for
using spectral element based approximations are the fioigpirstly the flexibility in handling
complex geometries, retaining the spatial exponentialeence for locally smooth solutions.
Secondly, spectral element methods are based on the weaakl&tion of the elastodynamic
equations involving only first-order spatial derivativesally spectral element methods retain
a high level parallel structure, and are therefore welleglior parallel computers.

In this paper we consider two different non-conforming hayder techniques, namely the
Mortar Spectral Element Method (MSEM) and the Discontirsi@alerkin Spectral Element
Method (DGSEM) to simulate seismic wave propagation infogfeneous media. In contrast
to standard conforming discretizations, as Spectral BEreriviethod (SEM), these techniques
have the further advantages that they can accommodatentisaities, not only in the parame-
ters, but also in the wave-field, they are energy conservatid well suited for parallel imple-
mentation. In our contribution we compare their perfornewhen effectively applied to real
problems. The paper is organized as follows. In Section 2eeelrthe model problem under
investigation. In Section 3 the non-conforming formulas@are summarized. In Sections 4 we
introduce the corresponding algebraic formulations and, ne Section 5 we describe how two
efficiently implement them in a numerical code. In order towlan effective application of the
methods previously described, in Section 6 a complex $aiktire interaction is studied using
the MSEM and the DGSEM discretizations. Finally, in Secfipmve draw some conclusions.

2 FORMULATION OF PROBLEM

Fixing the temporal interval0, 7', with T" > 0, the equilibrium equations for an elastic
medium, occupying a finite regidn C R?, d = 2, 3, subjected to an external for€eead:

pattu -V Q(U) =f+ fvisc(l'l’ l,l), (1)

whereu is the displacement of the body,the stress tensot,the time andy the density of
the material. Since we are dealing with viscoelastic malgriwe introduce in model](1) a
structural damping in the form of volumetric forc&4¢(11, u) = —2p¢ua — p¢*u, where( is

a spatially variable (i.e., piecewise constant) suitalkleag factor with dimension of inverse of
the time [8]. It is worth remarking that the introduction £3f* in (@) results in a frequency
proportional quality factor, i.e. a non dispersive wavegagation (for further details sele [18]).
We denote by = I'p, UT'y U 'y the boundary of the physical domédihand without loss of
generality on the boundaty we make the following assumptions (Cf [22]):

- onI'p the body is rigidly fixed in the space,
- onI'y we prescribe surface tractions({1) - n = t),

- onI'y non-reflecting boundary conditions are imposed:[cf| [231.example.
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Hereafter, an underlying bar denotes matrix or tensor dtigstwhile vectors are typed in
bold. Moreover, we adopt the standard notation), to denote the ?-inner product for scalar,
vectorial and tensorial functions definedin To ease of presentation we describe the numerical
methods in the case of null viscoelastic forces, f%:°(11,u) = 0 (see Section 4.1 below for
the general case).

DefiningV = {v € [H'(Q)]*: v = 0 onT'p}, the variational formulation of{1) reads:

Vt € (0,T] find u = u(t) € V such that

du (pu,v)g + A(u,v)g = L(v), VveV, (2)

where the bilinear fornd(,-) : V x V — R?is defined asd(u, v)q = (o(u),g(v))q, and the
linear functionall : V. — R*asL(v) = (t,v)p + (t*,v);  + (f,v), . We suppose that the
strain tensote and the stress tensorare related through the Hooke’s law

() = L(Vat Va), ofu) = AV ul + 2us(u)

where_lis thed—dimensional identity tensor andand, are the Lamé elastic coefficients. We
remark that for heterogeneous megia andy are bounded functions of the spatial variable,
not necessarily continuous i.e,, A andp € L*(Q)). Finally, to complete problenif2), we
prescribe initial conditions, andu; for the displacement and the velocity, respectively.

It can be proved that the bilinear fors(-, -) is symmetric,V-elliptic and continuous. These
conditions imply that probleni{2) admits a unique solutiaf, [4,23]).

Let Vs be a suitable finite dimensional approximation of the sgactihe semi-discrete approx-
imation of (2) reads V¢ € (0,T] find us = us(t) € Vs such that

dy (pus, v)o + A(us, v) = L(v), Vv el (3)

In general, in non-conforming approximations, the spegés not a subspace df. In the
following section we describe how to build for both for the Mortar Spectral Element Method
(MSEM) and the Discontinuous Galerkin Spectral Elementiddt(DGSEM).

3 NON CONFORMING FORMULATIONS

To approximate the problernl(3) we start by a discretizatiahe spatial differential opera-
tors in{2, that rely on a time-independent three-level spatial dguusition of the domain.
At the first level, we subdivid€ into K non overlapping regionQ;, k = 1, ..., K, such that
Q= Uszl Q, with Q, N Q, = 0if k # ¢ and we define the skeleton of this (macro) decomposi-
tionasS = Ule 00\ 092. Note that this decomposition can be geometrically norfaroming,
i.e., for two neighbouring subdomaifi, €, the interfacey = 00, N 92, may not be a com-
plete side (fowl = 2) or face (ford = 3) of {2, or €2,.
To get the second level, in ea€h we introduce a (meso) partitionirig, , made by elements
Qi that are image through an invertible mappiﬁg of the reference elemefit = (—1,1)%
The quadrilateral$), if d = 2, or hexahedra, ifl = 3, have typical linear sizé,, and
O, = Ujil Qi
The third (micro) level is represented by the so-called Gdwabatto-Legendre (GLL) points
in each mesh eleme@. LetQNk(Q) be the space of functions defined @rhat are algebraic
polynomials of degree less than or equalMp> 2 in each spatial variable, ..., 4. Thus, we
set

Q. () = {v=ToF{ T eQu @},
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and we define the finite dimensional spacg ;) as
X5(@%) = {v5 € COT) : 050 € Que(U) VO, € Tr |

and finallyV; = {vs € [L2(Q)]" : Vi, € (Xs5(Q)]* VE=1,.. K : Vsr, = 0}. Hered =
{h, N} with h = (hy, ..., hg) andN = (N, ..., Ng) are K-uplets of discretization parameters.
Problem((B) is then equivalent tot € (0, 7] find (us:(¢), ..., usx(t)) € Vs such that

K K
> dulpusk, vi)o, + Asr, Vi), + B(sk, vi)ooo0 = Y L(Vi)a,. 4)
k=1 k=1

forall (vq,...,vk) € Vs, where
.A(ll, V)Qk = (g(u)ag(v))ﬂw and B(U,V)agk,\ag = (g(u) -1, V)an\aQ. (5)

Depending on the chosen non-conforming approach, theitumattspacéd/s is completed by
additional conditions om; ., £ = 1, ..., K, on the skeleton of the macro decomposition which
ensure thatis;, is the restriction td;, of u; € H'(Q)¢. The bilinear formB(-,-) may either
be zero or gather all the contributioqs(u; ) - Nk, Vi)ao, 00, ¥ = 1,..., K, depending on
the chosen approach. Equatidh (4) represents the stadingtp introduce the MSEM and the
DGSEM.

In the next sections we describe the two approaches. To eagedsentation, we suppose that
I'p = 09 and we assume that each partitifp of €2, consists in only one element, i.€,is
subdivided intoKX non-overlapping spectral elemefils, ..., Qx so thatS = ﬂszl O\ I'p.
The more general case follows from similar arguments.

3.1 Mortar Spectral Formulation

In this section we introduce the MSEM for the solution of (4&e [11/ 21] for a more
detailed description. We denote by, ¢ = 1,...,2d, the edges (faces) of each subdomain
Qp, k= 1,..., K, so thatdQ,, = |2, T,. We then identify the skeleto§ as the union of
elementary non-empty components caltedrtars(or master$, more precisely

K M
S=J0Ou\0) = [J 7 withy Ny =0, ifm#n, (6)
k=1 m=1

where each mortar is a whole edge (or fa‘c“é(}fn)) of a specific element;,,, andm is an

arbitrary numberingn = 1,..., M, with M a positive integer. Those edges or fatgghat do
not coincide with a mortar are callesbn-mortargor slave$ and provide a dual description of

the skeleton, as
s= U wm= U

mmortar n non mortar

The intersection of the closures of the mortars defines af setrtices orcross-points

whereg is an arbitrary numbering = 1,..., V. We define as well the s&t of virtual vertices
(that are not cross-points) a8 = {x, = (7, N ~)}, whereq is an arbitrary numbering
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Figure 1: Nonconforming domain decomposition (left) anédlston structure (right) showing a cross-pow, @
virtual vertex (0), the mortars (dark continuous lines) and the non-mortiaek(dashed lines).

q=1,...,V (see Fig.[ol). Let\s(T'%) = Qu,(T%) be the space of the traces of functions of
X5(Q,) overTy and As(T'%) = Qu,_2(T'%). We can now define the nonconforming spectral

element discretization spadg as the space of functiong; € V; that satisfy the following
additionalmortar matching condition

(MC) let @ be themortar functionassociated withv;, i.e., a function that is continuous on

S, zero ondf) and such that on each mortgy, = Ff;((’fn)) coincides with the restriction
of vsi = Vs)0, 10 7, then, for all indices(k, /) such thatl, is contained inS but
(k,0) # (k(m), (m)) forallm = 1,..., M (thatis for all indicegk, ) such thaf%, is a
non-mortal) we require that:

Le (V(;’k — (I’) . ‘i)d’}/ =0 \V/qA) € [K(;(Ff;)]d, (7)

and that B
Vi, (Xg) = P(x4), VX, € VUV (8)

The integral matching conditionl(7) represents a mininnredf the jump in functions at inter-
nal boundaries with respect to tlié norm. The vertex conditioi]8) ensures exact continuity
at cross-points.

The Mortar Spectral Formulation is obtained by solving ioleeegionS?; the elastodynamic
variational problem(4) with homogeneous Neumann boundanglitions onS (g(u) - n =0

so that) _, B (u, V)aszk,\an Is identically zero), and enforcing weak continuity of theplace-
ment onS with mortar condition(?). Thus, the semi-discrete Mortar Spectral Formulation
reads:

vt € (0,T)] find (us1(t), ..., usx(t)) € Vi"rtar such that

> du (pusk, vi)g, + A(usk, vi)o Zﬁ (Vi)s Y (Vi,..., Vi) € Ve (9)
k

whereVymertar = {(vy, ..., vk) € Vs : themortar condition (MC) is satisfied .
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Figure 2: Nonconforming domain decomposition (left) anélston structure (right) showing the elementary
components (dark continuous lines).

3.2 Discontinuous Galerkin Spectral Formulation

In order to introduce the Discontinuous Galerkin Spect@htulations, we subdivide the
skeletonsS in the set of elementary components (edgek4f 2, faces ifd = 3) as follows:

M
=7, withyny =0, ifij (10)
j=1

where each edge (face) is given hy = (0Q%(;) N Oy;) \ 09, for some different positive
integersk and/. Notice that this decomposition is unique (see Eig. 2). Nextcollect all the
edges (faces) in the s&t;. For regular enough functions, we use the standard notf&jdo
define the jumps[(]) and the averag€ (}) operators on each edge (face§ F;.

We obtain the following semi-discrete DG Spectral Formatat

vt € (0,T) find us = (us,(t), ..., us (1)) € V¢ = Vj such that

K M
Z (du (pus, v)q, + A(us, v)o,) + ZB(u(g,v)% =L(v) Vv =(vy,..vg)e Ve
k=1 j=1

(11)

Bus,v),, = — {a(us)}, VD), + 6 ([us], e}, +m, (Tl [V]), - (12)

with

Heren,, = ah—Pf{AJr 241} 4, Where{-} 4 represents the harmonic averalje= max(Ny(;), Negj)),

h; = min(hx;), hej)) @nda is a positive constant at our disposal. Corresponding fereifit
values off we obtain different DG schemes, namely= —1 (resp.f = 1) leads to the sym-
metric (resp. non-symmetric) interior penalty method,le/fii= 0 corresponds to the so-called
incomplete interior penalty method (seél[2] 24,25, 26] forendetails).

4 ALGEBRAIC FORMULATION AND TIME INTEGRATION SCHEME

We discuss here the algebraic formulation of the two norfaroming approaches presented
in the previous section. In particular we described how itdlibe linear systems coming from
the mortar or DG discretization and discuss the time integracheme.
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4.1 Algebraic formulation of the problem

We denote byD = ZkK:l(Nk +1)? the dimension of each componentigfand we introduce
a basis{W!, w2}2  for the finite dimensional spack;, where®! = (0! 0)" and w2 =
(0, \I!Z?)T. We choose the set of shape functions in such a way that tleegrévonormal with
respect to thé.? inner product on the reference element.
We denote by{p;} 7, the GLL nodes of the mesh and we suppose#jap;) = V7 (p;) = d;,
fori,j =1,....D, whereéw represents the Kronecker symbol. Dropping the subséripte
write the trial functionsu € Vs as a linear combination of the basis functions

xt:é{ }Ul +Z[\1ﬂ ] 2(t).

Next, we definay, = 1+ 57/ (N; + 1) andb, = Y% (N, + 1)? and we order the basis
functions such that

.
w, = (u', <Z\1/j jk,Z\Ifj ) . fork=1,.., K.

J=ak Jj=ay
With such a notatiori(11) can be rewritten as the following$®©DE
Ml Q '["jl N Al + Bl A2 + B2 Ul B Fe:rt,l (13)
Q M2 -["JQ A3 4 BB A4 4 B4 U2 - Fe:rt,Q )
whereU represents the vector of the nodal accelerationEtitthe vector of externally applied
loads. As a consequence of our assumptions on the basisofusicthe mass matrices 'M
and_M have a block diagonal structure, i.e./ M di ag(M{,M%, ..., M%), for £ = 1,2,

where each block Klis associated to the spectral elem@ptand M. (i, j) = (p¥s, Wh)q,, for
i,j = ag,...,b,. The matrix_Aassociated to the bilinear form(-, -) defined in [BS) takes the

form Loy
A" A
A= [ A3 Al ] )
where the block diagonal matrice$,& = 1, .., 4 are equal to A= di ag(A{,AS, ..., A%). The
elements of the matricess A/ = 1, ...,4 andk = 1, .., K, are defined by

Ar(i g) = Ao (®5), £(¥)))a,,  AL(i.j) = A(e(¥7), £(®;))a,, fori, j = ax, ..., br,

AL, ) = Ala(5),e(P))ay, AL 7) = A(a(P9),2(P7))q,, fori,j = a, ..., by.

We remark that the matrices Bhd Aare very similar to those coming from the discretization
of the elastodynamic equatidd (2) with the conforming Spé&lement Method (seel[6] 7]).

If we are using the mortar formulation, the matrix &ssociated to the bilinear forii(-, -)
defined in[(b), is the null matrix, whereas in the DG appro&the one that takes into account
of the discontinuity of the numerical solution across thelstonS. More precisely,

B! B?
E:{Es 54]7 (14)

7
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where

Bf = : : for 0 =1,...,4.

In particular the elements of each blogk ,(i,7) = > .5, B(¥}, ¥}),, i = a, ..., b, and

j = ap,...,b,. The elements of the matricgéﬁ; for ¢ = 2,3, 4 are defined in a similar way.
The situation is a little bit more complicated in the Mortapeoach, since the weak continuity
condition across the skeletéhdoes not appear explicitly in the variational equation big a
constraint in the functional spagg .

To take into account thévi C) we have to modify the systern (13) as follows. Without loss of
generality let us suppose thgf is a non mortar edge containeddhand that it is shared by
two regions(2,, and(,,. We callmasterthe side ofy; belonging tof2,, andslavethe other
side. Thus, thenortar conditionscan be recast as:

(i) ® =u, onvy,,
(i) [ (u, —uy)-®ds=0 Y& € [As(v;)]"

At the algebraic level, the condition ifii) is represented by the following linear system of
equations
R 0 ][U P 0 ][0,
0w llel=l0 2)le] (19

R'(i,j) = / Uidlds and P'(i,j) = / idlds, (=1,2. (16)
n Tn
By using that the shape functions are orthonormal on theaeée element and suitable quadra-
ture rules to integraté (16), (cf.|[3,/111]), it is possiblestsily invert the matrix? and to reduce

@s) to
U] [ 0 Ul
ol -[% o ] ur)
whereQ = (RYH~'P' = (R*)~' P> To obtain a global projection opera@rwe proceed as
follows. For each component afwe denote byU ;... the vector of unknowns associated to the
dofs that lay on the slave side §fand byU.,,,.:.. the vector of unknowns associated to all the

remaining dofs. Then, for eacfy contained into the skeleta$ we build the local projection
operatorQ) and we store it into the matrig. In this way(@ has a block structure of the form

S 0

whereQ is block diagonal matrix with a block equal to the identitydahe other equal to the
rectangular matrix) containing all the local matric@n. Thus, we have that the global linear
system can be expressed as

where

|

~T ~T

~ o~ T e~
9 MQUmaster + 9 AQUmaster = 9 Fea:t’ (18)

where the rows and the columns of the matriE_&asandE have been modified according to
these latter assumptions on the unknown renumbering. Warkethat it is possible to obtain

8
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the linear systen{{18) using as a basis ¥gt", the functions{®!, ¥2}2  where®! =
(U1 0)" and®? = (0, ¥2)" are defined by
G {\I/f Vi s.tp; is amastemode
i 2 Y . .
> Qij\pj Vi s.tp; is aslavenode (p; mastemnode onsS).
All the terms appearing in the algebraic formulations pnése so fare are computed using the
Gauss-Lobatto quadrature rule in which the quadraturetpaiincide with GLL points. We
notice that since the teri; UV, € Qqy, , for somek, the spectral mass matrix is slightly under
integrated. However, since the Gauss-Lobatto rule withpoints is exact for polynomials up

to degree€ N, — 1, the final accuracy of spectral methods is not damaged [6].
Finally, we point out that if“* £ 0 we must compute the following additional external forces:

Froise,l . Ql 0 I'J'l B Dl 0 Ul
Fvisc,Q - Q QQ I'J—Q Q DQ U2 )

where the matrices‘@ind D, for ¢ = 1, 2 have a block diagonal structure. Each bIo_éka(Dd
Qﬁ is associated to the spectral elem@ptand

Ci(laj) = (pC\Dﬁaqu)ka Di(laj) = (pCQ\I,§7\I]f)Qk7 for Za] = aka---abka
respectively. Then the discretized system becomes:
MU +CU + (A +B+D)U = F*", (19)

where the acceleratiofi§ and the velocitiedJ are approximated as described in the next sec-
tion.
4.2 Timeintegration

Let now subdivide intaV subinterval of amplitude\t = Z the interval(0, T]: the time
integration scheme folr (13) is achieved with the secondrareietral difference scheme, setting
t, = nAt:

Ultnsr) — 2U(ty) + Ulta_y)

Thus, the equation (13) dr (I18) at each time gtepecomes:
KU(tn-i—l) = b(U(tn)a U(tn—l)a Fewt(tn)a Aa B)a (21)

with initial condition U(t,) = uy andU(t,) = u,. If we adopt a fully explicit time integration
scheme the matrix s the mass matrix, i.e. K M, if a DGSEM is employed and K- QTM Q

for the MSEM. In particular, for the latter approach, takadyantage of the structure @fit is
possible to decompose the linear system (21) as follows

Mmaster 0 U%laster _ b%—uzster
0 QTMslaveQ :| |: Ugmster :| B |: QTbS . (22)

Here the superscrip§andS denote if the unknowns belong to the interior or to the skeleff
the domain. Then at each time step we solve separately thadeks of the linear systemnis (22).

slave

9
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In particular for the non diagonal block we perform the Lidttaization with pivoting (cfl[22]).

To ensure stability, the explicit time integration schemeshsatisfy the usual Courant-Friedrichs-
Levy (CFL) condition (see [22]) that imposes a restrictiontbe amplitude of\¢. This limita-

tion is proportional to the minimal distancer between two consecutive spectral nogeand

p;, with i # j, of the numerical grid, seel[8]. Since GLL points are clustienear the edges
of spectral element&;,, where the grid size is proportional 16, 2, the stability requirement
on At may become too restrictive for very large approximationeosdV,. In such cases an
implicit time scheme is recommended.

5 HOW IMPLEMENTING THE METHODS

In this section we describe the implementation of the MSERIthie DGSEM in the spectral
element code GeoELSE [14] and we compare the two differguirihms from the efficiency
view point. In this context the word "efficiency” has the memnof low memory storage
and executing program velocity. In this sense, the assambli the matrices in.(13)-(18) is
performed once, outside the time loop.

After setting the initial conditioru; andu;, we build the skeleto as explained in{6)-(10)
for the MSEM or the DGSEM respectively. In the mortar solotstheme, see Algorithm 1, a
further step is required in order to identify theasterand theslavedecomposition of.

For both algorithms we notice that in general, all the magextor multiplications involving
M, A, B and@ have to be intended subdomains per subdomains.

Algorithm 1. Mortar Solution Scheme

Set initial conditionsiy andu;.
Build the skeletois for the domair.
Decomposé into the union of masterandslave edges.

Construct the projection operat@rfor the interface unknown&J ;4.

Perform the LU-factorization @TMSMEQ.

o g > wbd Pk

For each discrete timsg:

e compute the internal forcd&™(t,,) = AU(t,) ;

e assemble external forc®st(t,,);

o solve for themasterunknownsU,,,q sz, the systemd (22);
e perform the projection on thelave unknowns;

o if the final timeT is not reached sét, < t,+1 and go ta6.

Algorithm 2 describes the DG solution scheme. Here we ddnpikt,,) = BU(t,,) the vector
containing the interface terms. Since the matrideBined in[(1#) has a highly sparsity structure,
it is stored taking advantage of it.

Algorithm 2: DG Solution Scheme

1. Setinitial conditionsiy andu;.

2. Build the skeletor$ for the domairt.

10
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3. Decomposé into elementary components.
4. Construct the matrix Bor the interface unknowns.
5. For each discrete timg:
e compute the internal forcd&™(t,,) = AU(t,,);
e assemble external forc®$*t(t,,);
e compute the jumps at the interfackg,,) = BU(¢,,) ;
o solve the systenMU = F*t(t,,) — F"!(t,) — J(t,,);
o if the final timeT" is not reached sét, < t,+1 and go tod.

According to [1] 9] 10], it seems that for elastic wave pragamn problems the more effective
method, in term of accuracy, grid dispersion and stabiktyhe symmetric interior penalty
Galerkin method (SIPG). However, if the symmetric appraaatsed we recall that the constant
a in (12) must be sufficiently large to guarantee consisteftysomethod without affecting the
conditioning of the stiffness matrix in_(1L.3).

6 A SOIL-STRUCTURE INTERACTION PROBLEM

In this section we aim at studying a soil-structure intaoacproblem, namely the seismic
response of a railway viaduct (Acquasanta viaduct, Geritatg). We consider the viscoelastic
model 1) in the computational domain, z) € Q = (0,10*m) x (0, f(z)), wheref describes
the top profile of the bridge and of the surrounding valleg, B&.[3. The size of the domain
is chosen in order to avoid any possible interference witleegons of the waves of interest
with the spurious ones eventually arising from the abs@riioundaries. The dynamic and
mechanical properties of the structure and of the surraundoil are summarized in Table
6. Depending on the material involved, we subdivided the matational grid into different
regions, as shown in Fid.] 3 (top panel). Note that the meshdesigned to propagate up to
about 3 Hz.

We simulate a point source load of the fofitx, t) = g(x)h(t), wheref is the external force
introduced in[(lL). The functiog describes the space distribution of the source and oftdmeis t
body forceg(x) = d(x — xg)W, whered represents the Dirac distributiorg is the source
location andw is the direction of the body force. The source time historyiven by a Ricker-
type time function with maximum frequeney,,, = 3H z, defined as

h(t) = ho[l = 2B(t — t0)?] exp[=B(t — )7, (23)

whereh, is a scale factor, = 2 seconds is the time shift amtl= 7202 = 9.8696 s ! is a
parameter that determines the width of the waveélet (23).

In Fig.[3 we show the two different computational grids usadHie numerical simulations. The
conforming grid, Fig[ B left, is used with SEM discretizatitw produce a reference solution for
the problem. It provides, in fact, a sufficiently accuratecdetization, as we verified that further
mesh refinements generates quasi-identical seismogramesnoin-conforming grid, shown in
Fig.[3 right, is used for both DGSEM and MSEM simulations.

In our analysis we choose the polynomial approximation eegrs described in Tablé 6. It
is worth highlighting that the non-conforming approxinaets lead to a dramatic reduction of
the size of the numerical model and, hence, of the compuitmosts (102.640 unknowns for
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Figure 3: Conforming (left) and non conforming (right) ggidrhe full domain is displayed on the top and a zoom
of the railway bridge is displayed on the bottom. The reasiR1l and R2, on the ground and on the bridge,
respectively, are also highlighted.

Layer p[Kg/m? | cpm/s] | cs[m/s] | ¢[1/s] | N[SEM] | N [MSEM/DGSEM]
1 (bridge) 1750 1218 716,7 | 0.6283 4 2
2 (stiff soil) 2400 1100 635 0.31416 4 2
3 (soft bedrock) 2400 1100 635 0.02513 4 4
4 (medium bedrock 2600 1700 982 0.02284 4 4
5 (stiff bedrock) 2800 2300 1330 | 0.02094 4 4
6 (stiff bedrock) 2800 2300 1330 | 0.02094 4 4

Table 1. Dynamic and mechanical parameters and polynompabaimation degreé/ for each subregion of the
domain decomposition (the factoitakes into account the visco-elastic linear soil behavior)

12



|. Mazzieri et al.

SEM vs. 41.322 for MSEM or DGSEM).

Such an advantage is expected to play a major role for 3D eaging applications. In Fid.l 4
(resp Fig.Lb we analyse the synthetic seismograms recorgléitelreceiver R1 (resp. R2) on
the top of the ground (resp. bridge) using the misfits cat@mtroduced in[[19]. The results
shown an excellent fit of the data for R1 and a good fit for R2bRbbty, for the latter receiver,
the results are affected by the grid dispersion phenomensingwhen low order polynomial
approximation degrees are used [1, 9, 10].

7 CONCLUSIONS

In this paper we compared two different non-conforming haogtier numerical techniques,
namely the Mortar Spectral Element Method and the Discantis Galerkin Spectral Element
Method, for the approximation of the elastic wave equatioheterogeneous media. The key
feature of these methods is to replace the exact continaiitgliion at the skeleton of the decom-
position with a weak one, written in terms of the jumps of tiepthcements and the tractions
across the interfaces. Relaxing the continuity condit®then possible, preserving the accu-
racy of high order methods, to deal with a geometrically sonforming domain partitions
where local meshes are independently generated from tighbairing ones and associated
with different spectral approximation degrees. Note thatdubdomain partition is constructed
according to the (available) material properties. Stgrirtom a common weak formulation we
describe both approaches in parallel in order to highligbirtanalogies and their differences.
We gave a special attention to the implementation aspetite dfvo techniques in order to make
the reader able to deal with an efficient numerical codingaly, we show that the MSEM and
the DGSEM can be effectively used for complex seismic waepagation problems, namely
the soil-structure interaction between a valley and a egjiltwidge. The results, compared with
those obtained with the SEM, show that both the non-confogrsirategies are good in term
of accuracy and computational effort. We refer(to [1] for thikcomparison of the methods in
term of convergence, accuracy, grid dispersion and stabili
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Figure 4: Analysis of the synthetic signals recorded by ik@reR1, using the misfits criteria described [inl[19].
Comparison between the synthetic seismograms obtain \Eith &d DGSEM (left) and SEM and MSEM (right).
The graphics are subdivided as follows. Middle: displacetnmdtained using conforming (solid line) and non
conforming (dashed line) approximations. TFEM: time fregey envelope misfits. TFPM: time frequency phase
misfits. Top: horizontal component. Bottom: vertical coment.
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Figure 5: As in Fig[ but for receiver R2.
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