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Abstract. Particle-Discretization-Scheme (PDS) is a new discretization scheme which uses a
pair of basis functions that discretize a function and its derivatives using characteristic func-
tions, and PDS-FEM is an FEM which is implemented with PDS. It is straight forward to
numerically solve a crack problem by means of PDS-FEM. This paper presents an application
example of PDS-FEM to seismic structure response analysis of an RC bridge pier. A sophisti-
cated non-linear elasto-plastic constitutive relation is used for concrete, and a detailed model
is made. It is shown that the processes in which the pier is damaged and partially failed due
to seismic loading are computed. Large plastic deformation as well as initiation and growth of
local cracks in concrete are computed.

1



M. Hori, K. Oguni, Y. Takahashi, T. Maki, S. Okazawa, and T. Yamashita

unit: m

Figure 1:Schematic view of C1-1 Reinforced Concrete Bridge Pier.

1 INTRODUCTION

Earth Defense (E-Defense)[1] is the world largest shaking table that is capable to shake a
full scale four story building. A project of Earthquake Simulator (E-Simulator) is aimed at
building a virtual shaking table which numerically computes seismic response of a structure
which even E-Defense cannot shake[2]. A solid element finite element method is used in E-
Defense, so that only material constitutive relations are implemented in it even though large
scale numerical computation is inevitable. ADVC is used as a base finite element analysis
method in E-Simulator.

Reinforced concrete pier is a core target of E-Defense as well as E-Simulator. As an example,
C1-1 Reinforced Concrete Bridge Pier, which was shaken by E-Defense, is presented in Fig.1;
the height of the pier reaches 7.5 m. There are two major characteristics in concrete materials.
The first is brittle failure that is induced by single or multiple cracking. Closure of cracking
or contact of crack surfaces is important as well as initiation and propagation of cracks.The
second is constitutive relations (CCR), which expresses transition from elastic state to elasto-
plastic state that accompanies material damage.

The implementation of cracking treatment and a sophisticated CCR into E-Simulator is thus
needed. Cracking treatment of E-Simulator is made by applying a new discretization scheme,
called Particle Discretization Scheme (PDS). PDS is implemented in E-Simulator. The most
complicated but most reliable CCR is being implemented.

This paper briefly reports the current state of implementing PDS and CCR into E-Simulator.
Concise but rigorous formulation for PDS and CCR is presented in Section 2. An example
problem of seismic structure analysis of a concrete pier is solved in Section 3. This problem
uses an E-Defense experiment of a real scale reinforced concrete pier.

2 FORMULATION

2.1 PDS

The main idea of PDS is the use of a characteristic function as a basis function of discretization[3,
4]. Let us denote byD and{Φα} the analysis domain and a set of sub-domains ofD, repsec-
tively (D is decomposed into{Φα}). A basis function isϕα, a characteristic function ofΦα.
A discretized function is thus expressed in terms of sub-domain-wise constant functions. This
function has discontinuities across∂Φα’s. Derivative of a function is computed by using a dif-
ferent domain decomposition ofD. Denoting this decomposition by{Ψβ}, the derivative is
expressed in terms ofψβ, which is a characteristic function ofΨβ.
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The implementation of PDS to FEM is straightforward. For simplicity, we consider the case
thatD is a linearly elastic body, and define the following functional for displacement, strain and
stress (u, ϵ andσ) is used:

J(u, ϵ,σ) =

∫
D

1

2
ρu̇·u̇− 1

2
ϵ :c :ϵ+ σ : (ϵ−∇u) dv, (1)

wherec andρ are elasticity and density,∇u is the gradient ofu, and· and: stand for the first-
and second-order constraction. The variation of thisJ leads to the wave eqution,

ρü−∇ · (c : (∇u)) = 0. (2)

Discretizingu in terms of{ϕα} and discretizingϵ andσ in terms of{ψβ}, we now compute
variation for the discretization coefficients and obtain

[M ][ü] + [K][u] = [f ] (3)

where[u] is a vector for the coefficient ofϕα for discretizedu and [f ] is a vector of the cor-
responding nodal force;[M ] is a diagonal mass matrix and its diagonal term isρΦα with Φα

standing for the volume of the sub-domainΦα; and[K] is

kαα
′

ij =
∑
β

cipjq b
βα
p bβα

′

q (4)

with bβαp =
∫
D
ψβ(∇ϕα)p dv.

When a traction-free crack is initiated or propagated onto a facet of∂Φα, the constribution
of ∇ϕα in the integral ofbβαp which is used in Eq. (4) is dropped. Additional boundary tractions
need to be discribed on the facet, so that the traction free boundary conditions are met. As an
approximation, the traction that has acted befor cracking is cancelled. In this manner, the re-
duction of[K] and the change in[f ] due to the crack initiation or propagation can be rigorously
computed in PDS-FEM.

2.2 CCR

Maekawa and his group[5, 6, 7] have proposed the most sophisticated and reliable CCR,
which has the following two key relations:

σ = c :ϵE, dϵP = ℓℓ :dϵE, (5)

where d stands for the increment, superspcritE or P designates elastic or plastic parts, respec-
tively; c andℓℓ are functions ofϵE which have been determined as experimental relations. An
elasto-plasticity or instantaneous modulus tensor which gives strain increment-stress increment
relation is thus given as

cEP = (c+ (∇c) :ϵE) : (I+ ℓℓ)−1. (6)

where∇c is a six-order tensor which gives the derivative ofc with respect toϵE andI is the
fourth-oder symmetric unit tensor.

As is seen,cEP is not symmetric. Furthermore, it loses the positive-definiteness asϵE in-
creases. The loss of the positive-definiteness will be a bottle neck for a solver which uses a
conjugate gradient (CG) method or its extension. Beside the loss of symmetry and positive-
definiteness, the numerical computation ofcEP is not trivial since it involves the computation
of derivatives and an inverse tensor.
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Table 1:Material properties used in numerical simulation.

Young’s modulus 25,200 MPa

Poisson’s ratio 0.2

compression strength 29.4 MPa

density 2,300 kg/m3

critical strain for tensile failure 0.001339

Young’s modulus 197,100 MPa

Poisson’s ratio 0.3

density 7,930 kg/m3

a) concrete b) steel

The authors are proposing reformulation of Maekawa’s CCR, assuming that an experimental
relation between plastic and elastic invariants is a yield function, i.e.,JP

2 −H(JE
2 ) = 0, withH

being an experimentally determined function andJ2 being the second invariant of the deviatoric
part; this function yields a consistency condition that fully determines plastic strain increment.
Indeed, when dϵP = dg d is assumed withd being a second-order tensor which is experimen-
tally determined, the increment of this yield function produces dg eP:d

2JP
2

= H ′ eE:deE
2JE

2
. Thus, the

reformulated elasto-plasticity tensor is

cEP = (c+ (∇c) :ϵE) : (I− L). (7)

whereL =
(
DP δ + eE

JE
2

)
⊗
(
( eE:eP

H′ JP
2
+ 2)−1eE

)
.

Unlike the original equation, Eq. (6), cEP of Eq. (7) does not involve computation of the
inversion. Explicit expression of∇c is obtained to further reduce numerical computation. Fi-
nally, the stress increment-strain increment is rewritten as

dσ = c :ϵ+ dσ∗, (8)

where
dσ∗ = −c :dϵP + (∇c :ϵE) :dϵE. (9)

Sincec always satisfies the symmetryc and the positive-definiteness, a solver based on the CG
method is applicable.

3 NUMERICAL SIMULATION RESULTS

As an illustrative example of PDS-FEM implemented with Maekawa’s CCR, we compute
the seismic response of the C1-1 which is shown in the introduction; see Fig.1. The material
properties of concrete and steel are summarized in Table1. Linear tetrahedron elements are
used, and the element number, the node number and the degree-of-freedom are 29,740,000,
4,860,000 and 14,580,000, respectively. Concrete and rebars are separately discretized; see
Fig.2. The input strong ground motion is presented in Fig.3.

A super-computer SGI Altix 4700 Intel Itanium 1.66 GHz, 1 node× 256 core, is used for the
computation. It takes 300 s for the computation of linear response at one increment of 0.01 s.
The CPU time increases when plastic deformation becomes large as well as cracking takes place
in the element. Cracking or the reduction of the element stiffness matrix is made according to
the strength of material criterion; if the principal value of the element stress reaches the critical
value of the strength, cracking takes place on a facet that is close to the principal value. It should
be emphasized that the value of the reduced components of the element that suffers cracking is
rigorously computed by using Eq. (4).

First, we examine the quality of the model. Eigen-values and eigen-vectors of the linear
elastic deformation is computed, and the eigen-values are converted to the natural frequencies.
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a) steel bar embedded in pier
b) surface covered by rectangular

elements of 15 x 7.4 mm

Figure 2:Examples of meshes used in analysis model.

��������������������������
� � �� �� �� �� �� ��z direction time [s]

acc [gal]��������������������������
� � �� �� �� �� �� ��y direction time [s]

acc [gal]��������������������������
� � �� �� �� �� �� ��x direction time [s]

acc [gal]

Figure 3: Input strong ground motion; time series of
acceleration.
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Figure 4: Seismic structure response computed for
analysis model.
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Table 2:First five natural frequencies of anal-
ysis model.

frequency Hz mode

1 2.58 1st bending normal to bridge axis

2 2.62 1st bending parallel to bridge axis

3 9.08 torsion

4 24.1 2nd bending normal to bridge axis

5 29.4 2nd bending parallel to bridge axis

Table 3:Number of broken element.time [s] 30 facets 60 facets 30 facets 60 facets0.800000 0 0 360 4200.810000 0 0 420 4200.820000 0 0 420 3600.830000 0 0 360 3600.840000 0 0 420 4800.850000 124 124 1200 11400.860000 1,778 2,055 8640 53400.870000 4,255 4,366 17400 94200.881914 7,094 7,170 24780 156000.891914 7,118 7,071 23340 130200.901914 21,867 22,654 67800 386400.911914 20,273 20,181 72180 38100total 62,509 63,621

number of brokenelements CPU time for 0.01 [s]

a) whole view c) cross section at connecting part

b) connecting part

Figure 5:Schematic view of cracking att =8.81 s.

The first five natural frequencies are shown in Table2. These values are slightly larger than the
experimentally measured data of the natural frequencies of the C1-1. The mode that corresponds
to the natufral frequency is described in the table.

At this moment, the numerical computation is finished up to the input of first large shaking.
The response of the top part of the pier is shown in Fig.4. This response will be compared with
the experimental data of E-Defense.

In PDS-FEM, cracking is made element-wise. The stiffness element and the nodal force
increment are changed when one facet of an element is broken. Thus, it could take an unac-
ceptable CPU time if non-linear computation is made every time one facet is broken, in order
to carry out the most accurate computation. In this paper, we use the simultaneous cracking by
specifying the maximum number of the facets of elements that are broken during one increment
(0.01 s). The results of the number of broken element are summarized in Table3, where the
maximum number of the facets which are broken simultaneously is set as 30 or 60. As is seen,
the number of the broken element does not differe significantly for the two cases. From now
on, we set the maximum number as 60.

A schematic view of cracking is presented in Fig.5; a) is the whole view of the pier and b) and
c) are the closed-up view of the connecting part. The spatial distribuiton of the vertical normal

6



M. Hori, K. Oguni, Y. Takahashi, T. Maki, S. Okazawa, and T. Yamashita

0.86 [s] 0.88 [s] 0.90 [s]

0.86 [s] 0.88 [s] 0.90 [s]

a) surface

b) stress distribution inside of column

Figure 6:Distribution of broken elements.

stress component is shown. On the surface of the pier, cracking takes place at the connecting
part (Fig.5b)). The crack penetrates inside the pier (Fig.5c)). The time series of cracking is
presented in Fig.6; a) is for the broken elements on the surface that have cracking and, and b)
is for the broken elements inside the pier. The spatial distribution of the vertical normal stress
component is plotted, to show that the stress is carried by steel rebars when cracking takes place
in concrete.

We first have to admit that the results presented here are tentative and that a systematic
evaluation will be made when the numerical computation is finished. At this momenet, however,
it is shown that PDS-FEM is capable to simulatemultiplecracking. In concrete, the crack tip is
not broken uniformly, and a few parts of the crack tip are broken. By choosing suitable facets,
PDS-FEM computes this cracking. Branching of cracks frequently occurs in concrete, and this
cracking is computed, as well. It is certanily true that a model with the same configuration
but different meshinng will produce different processes of cracking since PDS-FEM sues mesh
boundary (or{∂Φα}) as candidates of crack facets. A Monte-Carlo simulation of evaluating
cracking processes or crack paths will be made by using a few models of the C1-1.

4 CONCLUDING REMARKS

This paper presents an application example of PDS-FEM to the seismic structure response
analysis of the C1-1 that was shaken by E-Defense. A sophisticated CCR is implemented into
ADVC, and detailed model is constructed. While the numerical computation is not finished,
multiple cracking that is often observed in concrete is reproduced.

A sysmatic comparsion of the numerical results of PDS-FEM with the experimental data
will be made, in order to clarify the limitations of PDS-FEM and to improve the treatment of
cracking. A Monte-Carlo simulation of using different meshing will be made, as well, in oder
to evaluate the variability of failure processes.
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