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C/ Alenza 4, 28003 Madrid, Spain

lu.gavete@upm.es

3Universidad Nacional de Eduacación a Distancia
Apdo. de correos 60149, 28080 Madrid, Spain

jbenito@ind.uned.es, esalete@ind.uned.es

Keywords: meshless methods, generalized finite difference method, moving least squares,
beams, plates, stability.

Abstract. This paper shows the application of Generalized Finite Difference Method (GFDM)
to dynamic analysis of beams and plates. The use of a meshless method with the possibility of
using an irregular grid-point distribution can be of interest for modeling this problem.
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1 INTRODUCTION

The Generalized finite difference method (GFDM) is evolved from classical finite difference
method (FDM). GFDM can be applied over general or irregular clouds of points [7]. The basic
idea is to use moving least squares (MLS) approximation to obtain explicit difference formulae
which can be included in the partial differential equations [9]. Benito, Ureña and Gavete have
made interesting contributions to the development of this method [1, 2, 6, 4, 5, 12]. The paper
[3] shows the application of the GFDM in solving parabolic and hyperbolic equations.
This paper decribes how the GFDM can be applied for solving dynamic analysis problems of
plates [10, 11, 13].
The paper is organized as follows. Section 1 is the introduction. Section 2 describes the explicit
generalized finite difference schemes. In section 3 is studied the von Neumann stability. In
Section 4 is analyzed the relation between stability and irregularity of a cloud of nodes. In Sec-
tion 5 some applications of the GFDM for solving problems of dynamic analysis are included.
Finally, in Section 6 some conclusions are given.

2 EXPLICIT GENERALIZED FINITE DIFFERENCE SCHEMES

2.1 Vibrations of simple beam

Let us consider the problem governed by the following partial differential equation (pde)

∂2U(x, t)

∂t2
+ A2

1

∂4U(x, t)

∂x4
= F1(x, t) x ∈ (0, L), t > 0 (1)

with boundary conditions at the ends of the beam of length L for each particular case and initial
conditions

U(x, 0) = 0;
∂U(x, t)

∂t
|(x,0) = F2(x) (2)

where F1 and F2 are two known smooth functions, the constant A1 depends of the material and
geometry of the beam.
Firstly, we use the explicit difference formulae for the values of partial derivatives in the space
variable. The intention is to obtain explicit linear expressions for the approximation of partial
derivatives in the points of the domain.
First of all, an irregular grid or cloud of points is generated in the domain. On defining the
composition central node with a set of N points surrounding it (henceforth referred as nodes),
the star then refers to the group of established nodes in relation to a central node. Each node in
the domain have an associated star assigned [1, 5, 7, 9].
If u0 is an approximation of fourth-order for the value of the function at the central node (U0)
of the star, with coordinate x0 and uj is an approximation of fourth-order for the value of the
function at the rest of nodes, of coordinates xj with j = 1, · · · , N , then, according to the Taylor
series expansion

Uj = U0 + hj
∂U0

∂x
+
h2
j

2

∂2U0

∂x2
+
h3
j

6

∂3U0

∂x3
+
h4
j

24

∂4U0

∂x4
+ · · · (3)

where hj = xj − x0.
If in equation 3 the terms over fourth order are ignored. It is then possible to define the function
B4(u) as in [1, 3, 4, 5, 7, 9]

B4(u) =
N∑
j=1

[(u0 − uj + hj
∂u0

∂x
+
h2
j

2

∂2u0

∂x2
+
h3
j

6

∂3u0

∂x3
+
h4
j

24

∂4u0

∂x4
)w(hj)]

2 (4)
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where w(hj) is the denominated weighting function.
If the norm 4 is minimized with respect to the partial derivatives the linear equations system is
obtained

A4Du4 = b4 (5)

where

A4 =



N∑
j=1

h2
jw

2

N∑
j=1

h3
j

2
w2

N∑
j=1

h4
i

6
w2

N∑
j=1

h5
j

24
w2

N∑
j=1

h4
j

4
w2

N∑
j=1

h5
j

12
w2

N∑
j=1

h6
j

48
w2

N∑
j=1

h6
j

36
w2

N∑
j=1

h7
j

144
w2

SYM
N∑
j=1

h8
j

576
w2


(6)

and

Du4 =

{
∂u0

∂x

∂2u0

∂x2

∂3u0

∂x3

∂4u0

∂x4

}T

(7)

b4 =



N∑
j=1

(−u0 + uj)hjw
2

N∑
j=1

(−u0 + uj)
h2
j

2
w2

N∑
j=1

(−u0 + uj)
h3
j

6
w2

N∑
j=1

(−u0 + uj)
h4
j

24
w2



(8)

and solving system 5 the explicit difference formulae are obtained as in [2]. On including the
explicit expressions for the values of the partial derivatives the star equation is obtained

∂4U(x, t)

∂x4
|(x0,n) = η0u0 +

N∑
j=1

ηjuj (9)

with

η0 +
N∑
j=1

ηj = 0 (10)

Secondly, we shall use an explicit formula for the part of the equation 1 that depends on time.
This explicit formula can be used to solve the Cauchy initial value problem. This method
involves only one grid point at the advanced time level. The second derivative with respect to
time is approached by

∂2U

∂t2
|(x0,y0,n) =

un+1
0 − 2un0 + un−1

0

(4t)2
(11)
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If the equations 9 and 11 are substituted in equation 1 the following recursive relationship is
obtained

un+1
0 = 2un0 − un−1

0 − A2
1(4t)2[η0u

n
0 +

N∑
j=1

ηju
n
j ] + F1(x0, n) (12)

The first derivative with respect to the time is approached by the central difference formula

∂U

∂t
|x,0 =

u1
0 − u−1

0

24t
= F2(x0)⇒ u−1

0 = u1
0 − 24tF2(x0) (13)

If equation 13 is substituted in equation 12 and taking into account initials conditions (2), the
following equation is obtained

u1
0 = 4tF2(x0) +

F1(x0, 0)

2
(14)

The equation 14 relates the value of the function at the central node of the star, at time n = 1,
with the values F1(x0, 0) and the initial conditions F(x0).

2.2 Vibrations of plates

Let us to consider the problem governed by

∂2U(x, y, t)

∂t2
+ A2

2[
∂4U(x, y, t)

∂x4
+ 2

∂4U(x, y, t)

∂x2∂2
+
∂4U(x, y, t)

∂y4
] = G1(x, y, t)

(x, y) ∈ (0, L)× (0, L), t > 0 (15)

with boundary conditions at the edges of the plate [0, L] × [0, L] for each particular case and
initial conditions

U(x, y, 0) = 0;
∂U(x, y, t)

∂t
|(x,y,0) = G2(x, y) (16)

where G1 and G2 are two known smooth functions, the constant A2 depends of the material and
geometry of the plate.
In a similar way that the one used in the subsection previous. If u0 is an approximation of
fourth-order for the value of the function at the central node (U0) of the star, with coordinates
(x0, y0) and uj is an approximation of fourth-order for the value of the function at the rest of
nodes, of coordinates (xj, yj) with j = 1, · · · , N , then, according to the Taylor series expansion

Uj = U0 + hj
∂U0

∂x
+ kj

∂U0

∂y
+
h2
j

2

∂2U0

∂x2
+
k2
j

2

∂2U0

∂y2
+ hjkj

∂2U0

∂x∂y
+

+
h3
j

6

∂3U0

∂x3
+
k3
j

6

∂3U0

∂y3
+
h2
jkj

2

∂3U0

∂x2∂y
+
hjk

2
j

2

∂3U0

∂x∂y2
+
h4
j

24

∂4U0

∂x4
+
k4
j

24

∂4U0

∂y4
+

+
h3
jkj

6

∂4U0

∂x3∂y
+
h2
jk

2
j

4

∂4U0

∂x2∂y2
+
hjk

3
j

6

∂4U0

∂x∂y3
+ · · · (17)
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where hj = xj − x0; kj = yj − y0.
If in equation 17 the terms over fourth order are ignored. It is then possible to define the function

B14(u) =
N∑
j=1

[(u0 − uj + hj
∂u0

∂x
+ kj

∂u0

∂y
+
h2
j

2

∂2u0

∂x2
+
k2
j

2

∂2u0

∂y2
+ hjkj

∂2u0

∂x∂y
+

+
h3
j

6

∂3u0

∂x3
+
k3
j

6

∂3u0

∂y3
+
h2
jkj

2

∂3u0

∂x2∂y
+
hjk

2
j

2

∂3u0

∂x∂y2
+
h4
j

24

∂4u0

∂x4
+
k4
j

24

∂4u0

∂y4
+

+
h3
jkj

6

∂4u0

∂x3∂y
+
h2
jk

2
j

4

∂4u0

∂x2∂y2
+
hjk

3
j

6

∂4u0

∂x∂y3
)w(hj, kj)]

2 (18)

where w(hj, kj) is the denominated weighting function.
If the norm 18 is minimized with respect to the partial derivatives the linear equation system is
obtained

A14Du14 = b14 (19)

whereA14,Du14 and b14 can be obtained in a similar way that the one used in the expressions
6, 7 and 8, and solving system the explicit difference formulae are obtained. On including the
explicit expressions for the values of the partial derivatives the star equation is obtained

[
∂4U(x, y, t)

∂x4
+ 2

∂4U(x, y, t)

∂x2∂2
+
∂4U(x, y, t)

∂y4
](x0,y0,n) = µ0u0 +

N∑
j=1

µjuj (20)

with

µ0 +
N∑
j=1

µj = 0 (21)

If the equations 9 and 20 are substituted in equation 15 the following recursive relationship is
obtained

un+1
0 = 2un0 − un−1

0 − A2
2(4t)2[µ0u

n
0 +

N∑
j=1

µju
n
j ] +G1(x0, y0, n) (22)

Using a similar process for to obtain the equation 14 the following equation is obtained

u1
0 = 4tG2(x0, y0) +

G1(x0, y0, 0)

2
(23)

The expressions 12 and 22 relates the value of the function at the central node of star, at time
step n+ 1, with the values of the functions in the nodes of the star at time step n.

3 CONVERGENCE

According to Lax’s equivalence theorem, if the consistency condition is satisfied, stability
is the necessary and sufficient condition for convergence. In this section we study firstly the
truncation error of the equations 1 and 14, and secondly consistency and stability.

5
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3.1 Truncation error

As it is well known, the truncation errors for second order time derivative (TEt) is given as
follows:

∂2U(x, t)

∂t2
=
ut+4t

0 − 2ut0 + ut−4t
0

(4t)2

− (4t)2

12

∂4U(x, t1)

∂t4
+ Θ((4t)4), t < t1 < t+4t (24)

(TEt) = −(4t)2

12

∂4U(x, t1)

∂t4
+ Θ((4t)4), t < t1 < t+4t (25)

In order to obtain the truncation error for space derivatives, Taylor’s series expansion including
higher order derivatives is used and then higher order functions B∗p [u], p = 4, 14 are obtained.
The expressions of Bp[u], p = 4, 14 are similar to the ones given in 4 and 18, but incorporating
now higher order derivatives. If the new norms B∗p [u], p = 4, 14 are minimized with respect to
the partial derivatives until the fourth order, the following linear equation systems are obtained:

ApDup = b∗p (26)

where Ap, Dup and bp with (p = 4, 14) are as previously calculated in 6, 7, 8 for p = 4 and
similarly for p = 14, and b∗p can be split in two parts as follows

b∗p = bp + b∗∗p (27)

where the news terms b∗∗p correspond to the new higher order derivatives incorporated in the
Taylor’s series expansion to extend the functions from Bp[u], p = 4, 14 to B∗p [u], p = 4, 14.
Then a better approximation of the partial derivatives can be obtained using the inverse matrix
A−1
p

Dup = A−1
p bp +A−1

p b∗∗p (28)

In the equation 28 the expression A−1
p bp is the approximation used in the GFDM ( see [3] and

[12]) and then the truncation errors for spatial derivatives are given by

TExp = A−1
p b∗∗p (29)

We develop only the truncation error corresponding to p = 4 case. The other truncation error
for p = 14 case can be obtained in a similar way that the one used in p = 4 case.

B∗4(u) =
N∑
j=1

[(U0 − Uj + hj
∂U0

∂x
+
h2
j

2!

∂2U0

∂x2
+
h3
j

3!

∂3U0

∂x3
+
h4
j

4!

∂4U0

∂x4
+

+
h5
j

5!

∂5U0

∂x5
+
h6
j

6!

∂6U0

∂x6
+ · · · )w(hj)]

2 (30)

If the function 29 is minimized with respect partial derivatives up to the fourth order, the fol-
lowing linear equations system is defined

A4Du4 =

(
N∑
j=1

Ξhj

N∑
j=1

Ξ
h2
j

2!

N∑
j=1

Ξ
h3
j

3!

N∑
j=1

Ξ
h4
j

4!

)T

(31)

6
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where

Ξ = [−U0 + Uj −
h5
j

5!

∂5U0

∂x5
−
h6
j

6!

∂6U0

∂x6
− · · · )]w(hj)

2 (32)

with N ≥ 4, and then

TEx4 = − 1

A2
1

A−1
4 ×

(
N∑
j=1

Υhj

N∑
j=1

Υ
h2
j

2!

N∑
j=1

Υ
h3
j

3!

N∑
j=1

Υ
h4
j

4!

)T

(33)

where

Υ = −[
h5
j

5!

∂5U0

∂x5
+
h6
j

6!

∂6U0

∂x6
+ · · · )]w(hj)

2 (34)

and operating

TEx4 =
1

A2
1

[
N∑
j=1

Ψ1,j
∂5U

∂x5
+ Ψ2,j

∂6U

∂x6
+ ....] + Θ(hj) (35)

where Ψ1,j(hj) and Ψ2,j(hj) are homogeneous rational functions of order two and Θ(hj) is a
series of third- and higher-order functions.
The expression 35 is the truncation error for spatial derivatives.
Taking into account that the total truncation errors (TTE) is given by

TTE = TEt + TEx4 (36)

where TEt and TEx4 are given by 25 and 35 respectively.

3.2 Consistency

By considering bounded derivatives in 36

lim
(4t,hj)→(0,0)

TTE → 0 (37)

Then, the truncation error condition given in 37 shows the consistency of the approximation.

3.3 Stability criterion

For the difference schemes, the von Neumann condition is sufficient as well as necessary for
stability [8]. ”Boundary conditions are neglected by the von Neumann method which applies
in theory only to pure initial value problems with periodic initial data. It does however provide
necessary conditions for stability of constant coefficient problems regardless of the type of
boundary condition”.
For the stability analysis the first idea is to make a harmonic decomposition of the approximated
solution at grid points and at a given time level n. Then we can write the finite difference
approximation in the nodes of the star at time n, as

un0 = ξneiν
Tx0 ; unj = ξneiν

Txj (38)

where ξ is the amplification factor,

xj = x0 + hj ; ξ = e−iw4t

7
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ν is the column vector of the wave numbers

ν =

{
νx
νy

}
then we can write the stability condition as: ‖ξ‖ ≤ 1.
Including the equation 38 into the equation 12 or 22, cancelation of ξneiνTx0 , leads to

ξ = 2 +
1

ξ
− (4t)2A2(m0 +

N∑
1

mje
iνThj ) (39)

where A is the constant A1 or A2 respectively and m0,mj are the coefficients η0, ηj or µ0, µj .
Using the equations 10 or 21 and after some calculus we obtain the quadratic equation

ξ2 − ξ[2 + A2(4t)2(
N∑
1

mj(1− cosνThj)− i
N∑
1

mj sinνThj)] + 1 = 0 (40)

Hence the values of ξ are
ξ = b±

√
b2 − 1 (41)

where

b = 1 +
A2(4t)2

2

N∑
1

mj(1− cosνThj)− i
A2(4t)2

2

N∑
1

mj sinνThj (42)

If we consider now the condition for stability, we obtain

‖b±
√
b2 − 1‖ ≤ 1 (43)

Operating with the equations 42 and 43, canceling with conservative criteria, the condition for
stability of star is obtained as

4t ≤ 1

4A
√
|m0|

(44)

4 IRREGULARITY OF THE STAR (IIS) AND STABILITY

In this section we are going to define the index of irregularity of a star (IIS) and also the
index of irregularity of a cloud of nodes (IIC).
The coefficient m0 is function of:

• The number of nodes in the star

• The coordinates of each star node referred to the central node of the star

• The weighting function (see references [1, 4])

If the number of nodes by star and the weighting function are fixed, then the equation 44 is
function of the coordinates of each node of star referred to its central node.
Denoting τ0 as the average of the distances between of the nodes of the star and its central node
with coordinates (x0, y0) and denoting τ the average of the τ0 values in the stars of the cloud of
nodes, then

m0 = m0τ
4 (45)

8
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The stability criterion can be rewritten as

4t < τ 2

4A
√
|m0|

(46)

For the regular mesh case, the inequality 44 is for the cases of one and two dimensions as
follows 

4t <
√

2τ 2

18A
√

3
if N = 4

4t < 9τ 2

A
√

13[3(1 +
√

2) + 2
√

5]2
if N = 24

(47)

Multiplying the right-hand side of inequalities 47, respectively, by the factors
9
√

3

2
√

2|m0|
if N = 4

√
13[3(1 +

√
2) + 2

√
5]2

36
√
|m0|

if N = 24

(48)

the inequality 46 is obtained.
For each one of the stars of the cloud of nodes, we define the IIS for a star with central node in
(x0, y0) as Eq. 48 

IISx0 =
9
√

3

2
√

2|m0|
if N = 4

IIS(x0,y0) =

√
13[3(1 +

√
2) + 2

√
5]2

36
√
|m0|

if N = 24

(49)

that takes the value of one in the case of a regular mesh and 0 < IIS ≤ 1
If the index IIS decreases, then absolute values of m0 increases and then according with 43,
4t decreases.
The irregularity index of a cloud of nodes (IIC) is defined as the minimum of all the IIS of the
stars of a cloud of nodes.

5 NUMERICAL RESULTS

In this section we present different numerical results.

5.1 Transverse vibrations of a simply supported beam

In this section, the weighting function used is

Ω(hj) =
1

(
√
h2
j)

3
(50)

The global exact error can be calculated as

Global exact error =

√∑NT
i=1 e

2
i

NT
(51)

9
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Figure 1: regular and irregular mesh

Figure 2: irregular meshes

where NT is the number of nodes in the domain and ei is the exact error in the node i.
Let us solve the pde

∂2U(x, t)

∂t2
+

1

π4

∂4U(x, t)

∂x4
= 0 x ∈ (0, 1), t > 0 (52)

with boundary conditions {
U(0, t) = U(1, t) = 0
∂2U(x,t)

∂x2 |(0,t) = ∂2U(x,t)
∂x2 |(1,t) = 0,

(53)

and initial conditions

U(x, 0) = 0;
∂U(x, t)

∂t
|(x,0) = sin(πx) (54)

The exact solution is
U(x, t) = sin(πx) sin t (55)

Table 1 shows the results of the global error, using a regular mesh of 21 nodes (figure 1), for
several values of4t.

4t Global error
0.005 0.00276
0.002 0.00109
0.001 0.00017

0.0005 0.00002

IIC Global error
0.96 0.00107
0.78 0.00295
0.62 0.00534
0.46 0.00903

Table 1: Influence of4t in the global error. Table 2: Influence of irregularity of mesh in the global error

Table 2 shows the results of global error with 4t = 0.001 for several irregular meshes of
21 nodes (figures 1 and 2). We have established a measure of the irregularity of the nodes
distribution in the domain. For this purpose we have assigned to every node in the domain a
value that corresponds with the average of the distances from it to the rest of its star nodes.
Then, the index of irregularity (IIC) is defined as the standard deviation of these values.
Figure 3 shows the approximated solution of the equations 52, 53 and 54 in the last time step
(n = 1000) with4t = 0.005.
As new initial conditions let us assume that due to impact an initial velocity is given to a point
of the beam at the distance x = 0.5 from the left-hand support, which give the initial conditions

U(x, 0) = 0;

{
∂U(x,t)

∂t
|(x,0) = 1 if x = 0.5

∂U(x,t)
∂t
|(x,0) = 0 if x 6= 0.5

(56)

10
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Figure 3: Approximated solution in the last time step (4t = 0.005)

Figure 4: Approximated solution with n=100 Approximated solution with n=200

The exact solution in this case is given by

U(x, t) = 2(sin(πx) sin(t)− 1

9
sin(3πx) sin(9t) +

1

25
sin(5πx) sin(25t)− · · · ) (57)

Table 3 shows the results of the global error, using a regular mesh of 21 nodes (figure 1) and
4t = 0.001, when we increases the number of time steps (n).
Figures 4 and 5 shows the approximated solution of the equation 52 with the initial conditions

n Global error
100 0.001628
200 0.001700
500 0.001816

1000 0.002252
Table 3: Variation of global error versus the number of time steps.

56 in the last time step for n = 100, n = 200, n = 500 and n = 1000 respectively.

5.2 Forced vibrations of a simply supported beam

In this section, the weighting function used is 50 and the global error is calculated by 51
The pde is given by

∂2U(x, t)

∂t2
+

1

π4

∂4U(x, t)

∂x4
= 15 sin(2πx) sin t x ∈ (0, 1), t > 0 (58)

with boundary conditions {
U(0, t) = U(1, t) = 0
∂2U(x,t)

∂x2 |(0,t) = ∂2U(x,t)
∂x2 |(1,t) = 0,

(59)

11
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Figure 5: Approximated solution withn=500 Approximated solution with n=1000

Figure 6: Approximated solution in the last step (4t = 0.005)

and initial conditions

U(x, 0) = 0;
∂U(x, t)

∂t
|(x,0) = sin(πx) + sin(2πx) (60)

The exact solution for this case is given by

U(x, t) = (sin(πx) + sin(2πx)) sin t (61)

Table 4 shows the results of the global error, using a regular mesh of 21 nodes (figure 1) for
several values of4t.
Table 5 shows the results of global error with 4t = 0.001 for several irregular meshes of 21
nodes (figures 1 and 2).
Figure 6 shows the approximated solution of the equation 57 in the last time step (n = 1000)

4t Global error
0.005 0.01025
0.002 0.00987
0.001 0.00625

0.0005 0.00126

IIC Global error
0.96 0.00744
0.78 0.00751
0.62 0.01960
0.46 0.04496

Table 4: Influence of4t in the global error. Table 5: Influence of irregularity of mesh in the global error.

with4t = 0.005.

5.3 Natural vibrations of a simply supported plate

In this section, the weighting function used is

Ω(hj, kj) =
1

(
√
h2
j + k2

j )3
(62)

and the global exact error can be calculated by 51
The pde is

12



F. Ureña, L. Gavete, J.J. Benito and E. Salete

Figure 7: Regular and irregular mesh

Figure 8: Three irregular meshes

∂2U(x, y, t)

∂t2
+

1

4π4
[
∂4U(x, y, t)

∂x4
+ 2

∂4U(x, y, t)

∂x2∂2
+
∂4U(x, y, t)

∂y4
] =

15 sin t sin(2πx) sin(2πy) (x, y) ∈ (0, 1)× (0, 1), t > 0 (63)

with boundary conditions
U(x, y, t)|Γ = 0
∂2U(x,y,t)

∂y2
|(0,y,t) = ∂2U(x,y,t)

∂y2
|(1,y,t) = 0,∀y ∈ [0, 1]

∂2U(x,y,t)
∂x2 |(x,0,t) = ∂2U(x,y,t)

∂x2 |(x,1,t) = 0,∀x ∈ [0, 1]

(64)

where Γ is the boundary of the domain [0, 1]× [0, 1], and initial conditions

U(x, y, 0) = 0;
∂U(x, y, t)

∂t
|(x,y,0) = sin(πx) sin(πy) (65)

The exact solution is given by

U(x, y, t) = sin(πx) sin(πy) sin t (66)

Table 6 shows the results of the global error, using a regular mesh of 81 nodes (figure 7), for
several values of4t.
Table 7 shows the results of global error with 4t = 0.001 for several irregular meshes of 81

nodes (figures 7 and 8).
Figure 9 shows the approximated solution of the equation 63 in the last time step (n = 1000).
As new initial conditions let us assume that due to impact an initial velocity is given to a point

(x = y = 0.5) of the plate, which give the conditions

U(x, y, 0) = 0;

{
∂U(x,y,t)

∂t
|(x,y,0) = 1 if x = y = 0.5

∂U(x,y,t)
∂t
|(x,y,0) = 0 if (x, y) 6= (0.5, 0.5)

(67)
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4t Global error
0.01 0.08254

0.005 0.03513
0.002 0.01339
0.001 0.00212

IIC Global error
0.92 0.00224
0.83 0.00224
0.76 0.00231
0.58 0.00251

Table 6: Influence of4t in the global error. Table 7: Influence of irregularity of mesh in the global error.

Figure 9: Approximated solution in the last time step

The exact solution is given by

U(x, y, t) = 2[sin(πx) sin(πy) sin(t)− 1

9
sin(3πx) sin(3πy) sin(9t)

+
1

25
sin(5πx) sin(5πy) sin(25t)− · · · ] (68)

Table 8 shows the results of the global error, using a regular mesh of 81 nodes (figure 7) and

n Global error
100 0.01122
200 0.01858
600 0.02690

1200 0.03363
Table 8: Variation of global error versus the number of time steps

4t = 0.001, versus the number of time steps (n).
Figures 10 and 11 show the approximated solution of the equation 63 with the initial conditions
67 in the last time steps for the cases n = 100, n = 200, n = 600 and n = 1200 time steps
respectively.

5.4 Forced vibrations of a simply supported plate

In this section, the weighting function used is 62 and the global error is calculated by 51
The pde is

∂2U(x, y, t)

∂t2
+

1

4π4
[
∂4U(x, y, t)

∂x4
+ 2

∂4U(x, y, t)

∂x2∂2
+
∂4U(x, y, t)

∂y4
] =

15 sin t sin(2πx) sin(2πy)) (x, y) ∈ (0, 1)× (0, 1), t > 0 (69)
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Figure 10: Approximated solution with n=100 Approximated solution with n=200

Figure 11: Approximated solution with n=600 Approximated solution with n=1200
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Figure 12: Approximated solution in the last time step

with boundary conditions
U(x, y, t)|Γ = 0
∂2U(x,y,t)

∂y2
|(0,y,t) = ∂2U(x,y,t)

∂y2
|(1,y,t) = 0,∀y ∈ [0, 1]

∂2U(x,y,t)
∂x2 |(x,0,t) = ∂2U(x,y,t)

∂x2 |(x,1,t) = 0, ∀x ∈ [0, 1]

(70)

and initial conditions

U(x, y, 0) = 0;
∂U(x, y, t)

∂t
|(x,y,0) = sin(πx) sin(πy) + sin(2πx) sin(2πy) (71)

The exact solution is given by

U(x, y, t) = (sin(πx) sin(πy) + sin(2πx) sin(2πy)) sin t (72)

Table 9 shows the results of the global error, using regular mesh of 81 nodes (figure 7), for
several values of 4t. Table 10 shows the results of global error with 4t = 0.001 for several

4t Global error
0.01 0.53070

0.005 0.14640
0.002 0.07837
0.001 0.01444

IIC Global error
0.92 0.01412
0.83 0.01437
0.76 0.01442
0.58 0.01447

Table 9: Influence of4t in the global error. Table 10: Influence of irregularity of mesh in the global error.

irregular meshes of 81 nodes (figures 7 and 8).
Figure 12 shows the approximated solution of the equation 68 in the last time step (n = 1000).

5.5 Transverse vibrations of a beam with fixed ends

In this section, the weighting function used is 50 and the global exact error can be calculated
as 51.
The pde is

∂2U(x, t)

∂t2
+

1

4.734

∂4U(x, t)

∂x4
= 0 x ∈ (0, 1), t > 0 (73)
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Figure 13: Approximated solution in last time step

with boundary conditions {
U(0, t) = U(1, t) = 0
∂U(x,t)

∂x
|(0,t) = ∂U(x,t)

∂x
|(1,t) = 0,

(74)

and initial conditions

U(x, 0) = 0;
∂U(x, t)

∂t
|(x,0) = cos(4.73x)−cosh(4.73x)−0.982501[sin(4.73x)−sinh(4.73x)]

(75)
The exact solution is given by

U(x, t) = (cos(4.73x)− cosh(4.73x)− 0.982501[sin(4.73x)− sinh(4.73x)]) sin t (76)

Table 11 shows the results of the global error, using a regular mesh of 21 nodes (figure 1), for

4t Global error
0.01 0.04649

0.005 0.01960
0.002 0.00798
0.001 0.00216

IIC Global error
0.96 0.00419
0.78 0.00423
0.62 0.00763
0.46 0.00781

Table 11: Influence of4t in the global error. Table 12: Influence of irregularity of mesh in the global error.

several values of4t.
Table 12 shows the results of global error with 4t = 0.001 for several irregular meshes of 21
nodes (figures 1 and 2).
Figure 13 shows the approximated solution of the equation 73, 74 and 75 in the last time step
(n = 1000) with4t = 0.001.

5.6 Natural vibrations of a fixed plate

In this section, the weighting function used is 62 and the global exact error can be calculated
by 51.
The pde is

∂2U(x, y, t)

∂t2
+

1

4(4.73)4
[
∂4U(x, y, t)

∂x4
+ 2

∂4U(x, y, t)

∂x2∂2
+
∂4U(x, y, t)

∂y4
] =

15 sin t sin(2πx) sin(2πy) (x, y) ∈ (0, 1)× (0, 1), t > 0 (77)
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Figure 14: Approximated solution in the last time step

with boundary conditions 64, and initial conditions
U(x, y, 0) = 0
∂U(x,y,t)

∂t
|(x,y,0) = (cos(4.73x)− cosh(4.73x)− 0.982501[sin(4.73x)−

sinh(4.73x)])(cos(4.73y)− cosh(4.73y)− 0.982501[sin(4.73y)− sinh(4.73y)])

(78)

The exact solution is given by

U(x, y, t) = (cos(4.73x)− cosh(4.73x)− 0.982501[sin(4.73x)− sinh(4.73x)])(cos(4.73y)

− cosh(4.73y)− 0.982501[sin(4.73y)− sinh(4.73y)]) sin t (79)

Table 13 shows the results of the global error, using a regular mesh of 81 nodes (figure 7), for
several values of4t.
Table 14 shows the results of global error with 4t = 0.001 for several irregular meshes of 81

4t Global error
0.005 0.36490
0.002 0.03519
0.001 0.00492

0.0005 0.00064

IIC Global error
0.92 0.00492
0.83 0.00494
0.76 0.00496
0.58 0.00504

Table 13: Influence of4t in the global error. Table 14: Influence of irregularity of mesh in the global error.

nodes (figures 7 and 8).
Figure 14 shows the approximated solution of the equation 77, 78 and 79 in the last time step
(n = 500).

6 CONCLUSIONS

The use of the generalized finite difference method using irregular clouds of points is an
interesting way of solving partial differential equations. The extension of the generalized finite
difference to the explicit solution of some dynamic analysis problems has been developed.
The von Neumann stability criterion has been expressed in function of the coefficients of the
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star equation for irregular cloud of nodes.
The index of irregularity of a clouds of nodes (IIC) is given and, also, its relation with the
stability. As it is shown in the numerical results, a decrease in the value of the time step, always
below the stability limits, leads to a decrease of the global error.
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