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Abstract. In this contribution the application of Passive Control techniques is applied to re-
duce the severe transverse vibrations that railway bridges of moderate lengths may experi-
ment under resonance conditions. The proposed solution consists on connecting the slab to a 
series of auxiliary beams with partially restrained rotational end conditions through a set of 
fluid-viscous dampers. A particular configuration minimizing the space occupied under the 
bridge deck by the devices and the auxiliary beams is proposed for slabs and girder bridges, 
typical typologies in the aforementioned range of lengths. First, the dynamic response of the 
double-beam system at resonance is obtained in closed-form under harmonic excitation in 
order to detect the main governing parameters of the bridge response. Then conditions for the 
optimal dampers constants and minimum beam sizes that minimize the bridge dynamic ampli-
fication at resonance are obtained using a planar analytical model. Finally the effectiveness 
of the solution and the adequacy of the expressions derived from the harmonic case are prov-
en under railway traffic excitation. Special attention is given to the beneficial effect of partial-
ly restraining the auxiliary beam supports throughout the study. 
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1 INTRODUCTION 
The extensive construction of new High-Speed railway lines and the use of conventional 

lines for higher operating train velocities require the continuous upgrading of railway infra-
structure and, in particular, of bridge structures. Even though modern trains’ axle loads are not 
higher than old-time vehicles transmitted forces, higher design velocities may lead to the ap-
pearance of resonance phenomena. Resonance, in a railway bridge, takes place when the ex-
citing frequency of the train’s periodic loading becomes close to the natural frequency of the 
bridge. If this is the case, the loads enter the bridge in phase with the natural oscillations of 
the structure leading to a progressive increase of the deck transverse oscillations. If structural 
damping is low, as it usually is the case in railway bridges [1], and the number of axles is suf-
ficient severe transverse vibrations at the platform area could build up causing the failure of 
the Serviceability Limit State of vertical acceleration [2]. Specially critical structures in this 
regard are short-to-medium-span bridges (12 to 25 m) where the main structural elements are 
simply-supported (S-S) beams or plates. In these structures resonance phenomena may cause 
not only impact or fatigue related damage but also failure of ballast-beds due to relaxation and 
scattering of ballasts. This can compromise the running safety of the trains, the ride comfort 
of passengers, and ultimately increase the bridge maintenance costs [1, 3, 4]. 

In existing bridges that experiment this kind of behavior, due to either an increase in the 
Maximum Line Speed at the site or to structural degradation with time, classical solutions 
could be applied such as increasing the mass of the deck and therefore reducing its accelera-
tion or augmenting its stiffness and consequently raising its natural frequencies and critical 
velocities. Nevertheless in many circumstances it is not possible to preserve the original struc-
ture and the deck needs to be demolished and replaced with the subsequent interruption of the 
line services. Alternatively, in this contribution the reduction of the bridge dynamic response 
by artificially increasing the overall damping of the structure applying Passive Control tech-
niques and, in particular, retrofitting the bridge deck with Fluid Viscous Dampers (FVDs) is 
proposed and evaluated. 

Despite the fact that vibration control systems have been applied to reduce the dynamic re-
sponse of structures since the 1960s, only a few authors have addressed the practical applica-
tion of these technologies to bridges under the action of moving vehicles. The application of 
Tuned Mass Dampers (TMDs) to the train-induced vibration problem has been addressed by 
Kwon et al. [5], Wang et al. [6], Yau et al. [7, 8, 9] and Li et al. [10]. These authors investi-
gate the dynamic performance of bridges using planar models retrofitted with single or mul-
tiple TMDs. TMDs are tuned to a single frequency of the superstructure (usually the 
fundamental one) or several frequencies which contributions need to be reduced. From these 
works it can be inferred that the vehicle passage time on the bridge is, in many circumstances, 
too short to build up the needed TMD vibrating regime that effectively mitigates the bridge 
excessive vibrations; besides, detuning problems may arise if the devices are tuned to the 
bridge natural frequency, due to the variability of this magnitude over time associated to ve-
hicle-bridge interaction effects, changing environmental parameters (e.g. temperature), or to 
the decay of the TMD stiffness with time. Nevertheless this second drawback may be partially 
overcome with multiple TMDs tuned in a frequency interval [8, 10] or with the string-type 
TMD presented in [9]. Recently Samani [11] has compared the vibration reduction capability 
of nonlinear TMDs when compared to linear elements connected to simply-supported beams 
under moving loads concluding that the vibration reduction achieved levels are very similar. 

Minsili et al. [12] suggest the installation of supplemental diagonal elements in truss 
bridges connected to the original braces through Slotted Friction Connections, in order to mi-
tigate traffic and earthquake induced vibrations. The authors point out that with this alterna-



J. Lavado, M.D. Martinez-Rodrigo and P. Museros  

 3

tive structural displacements can be reduced to a great extent, but vertical accelerations may 
exceed their initial values due to the nature of the new forces introduced in the bridge deck. 
The appearance of residual displacements in the structure after the devices activation is an 
additional inconvenient of the proposed system. 

 

Figure 1: Simply-supported double beam system connected through FVDs and (b) simply-supported-partially-
clamped double beam system connected through FVDs. 

The use of viscoelastic (VE) materials to improve the dynamic performance of railway 
bridges has been addressed by a number of researchers. Choo et al. [13] propose the introduc-
tion of acrylic rubber patches connected to S-S beams deforming in shear when the main ele-
ments bend. The authors carry out an experimental program and adjust a numerical 
constitutive model for this material. They finally conclude that the proposed design could re-
duce to permitted levels the structural response of long span bridges which experience inad-
missible vertical accelerations. A few authors have investigated the applicability of 
Continuous Dynamic Vibration Absorbers (CDVAs) combined with viscoelastic materials, to 
the vibration control of beams under harmonic and moving loads. Vu et al. [14] and Abu-
Hilal [15] study the possibility of reducing the dynamic response of a Bernoulli-Euler (B-E) 
beam by connecting it to an identical element through a continuous layer of VE material. On-
sizczuk analyses the dynamic behaviour of double-beam [16, 17] and double plate systems 
[18, 19] linked through continuous Winkler media focusing on the relative properties of the 
three elements that control the oscillations of the main element. Recently, Moliner et al. [20, 
21] have investigated the dynamic performance of the double-beam system connected by dis-
crete Kelvin elements and have evaluated its applicability in reducing the resonant response of 
short S-S railway bridges. A few authors have addressed the use of pure viscous dampers to 
reduce the amplification in beams traversed by moving vehicles. Oliveto et al. [22] and Greco 
et al. [23] solve the dynamic problem of a continuous beam with two end rotational viscous 
dampers under the circulation of a single load, by using an extension of the complex mode 
superposition method. Nevertheless, to the authors’ knowledge, this type of damper has never 
been previously applied in the context of High-Speed railway traffic. 

FVDs have been selected, as compared to other Passive Control devices for this application, 
because they dissipate energy at a wide scope of frequency ranges, and not only at narrow 
ranges like TMDs. As a consequence, they do not present relevant tuning and detuning draw-
backs. A further advantage is the fact that dissipative devices based on friction or yielding in-
crease replacement operations and maintenance costs. In contrast, some FVDs are equipped 
with labyrinth seals which eliminate mechanical friction [24], allowing them to undergo an 
enormous number of cycles before they have to be replaced. Moreover, since in FVDs the 
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maximum force and maximum displacement are out of phase, additional forces introduced in 
the structure are small when compared to other techniques. 

The authors of this contribution have investigated in the past the dynamic behaviour of a 
double-beam system as the one shown in Fig. 1 linked through a distribution of pure FVDs 
under the circulation of moving loads [25, 26]. 

It consists of a main beam, which represents the bridge, and an auxiliary beam with simp-
ly-supported end conditions connected to the bridge by means of FVDs. Closed-form expres-
sions for the optimal dampers minimising the bridge response have been provided, and a 
methodology for the auxiliary beam design has been developed based on the overall damping 
needs. This study has been completed accounting for the contribution of three-dimensional 
modes of the bridge, which cannot be neglected in multi-track decks or when the deck has a 
skew geometry. To this end the dynamic performance of orthotropic plates connected to aux-
iliary beams distributed along the deck width with, again, simply-supported end conditions 
through FVDs has been analysed in detail [25, 27, 28]. 

 

Figure 2: Simply-supported-partially-clamped double beam system connected through FVDs. 

One of the main conclusions derived from the previous works by the authors is that in or-
der for the FVDs to effectively reduce the deck vibratory response, the fundamental frequency 
of the auxiliary beam (lower beam in Fig. 1) needs to exceed the bridge or main beam highest 
frequency which contribution is to be controlled. Moreover, as the auxiliary beam frequency 
increases, the dissipative capacity of the system raises. Due to this condition the secondary 
beam needs always to be oversized when compared to the minimum beam that would accom-
plish resistance requirements under the dampers forces. As the proposed configuration, that is 
presented in section 2, consists on installing the retrofitting system below the slab the needed 
auxiliary beams may occupy an excessive portion of the free space under the deck. Further-
more, as current design standards [2, 29] prescribe to account for frequency contents up to 30 
Hz in the computation of the deck transverse acceleration, modes close to 30 Hz are almost 
impossible to control with the proposed system because beams with fundamental frequencies 
exceeding 30 Hz require enormous section heights for spans in the neighborhood of 20-25 m. 
To overcome this problem a variation on the configuration of the retrofitting system already 
studied by the authors is proposed which consists on transforming the original simply-
supported boundary conditions of the auxiliary beam restraining the extreme sections rotation. 
In an ideal case if the beam could be perfectly clamped at the ends the natural frequency of 
the fundamental mode would increase approximately 2.27 times with respect to simply-
supported end conditions. As perfect clamping is not possible the system shown in Fig. 2 is 
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analyzed. This way the efficiency of the solution can be investigated in terms of the partial 
rotational restriction of the beam supports. 

The objectives of the present study are (i) to propose a methodology to select the minimum 
size of the auxiliary beam and optimum FVDs constants minimizing the dynamic response of 
the main simply-supported beam at resonance; (ii) to prove that with the proposed solution 
severe levels of vertical acceleration may be drastically reduced without exceeding the devic-
es maximum bearing capacity, the maximum admissible stress in the beams nor the punching 
force in the slab, and (iii) to evaluate the beneficial effect of partially clamping the auxiliary 
beam supports when compared to the previously analyzed simply-supported case. 

2  CONFIGURATION OF THE DAMPING SYSTEM 
The dissipative system to be installed on the beam supporting the passage of the loads con-

sists of two main elements. The first element is an auxiliary, partially clamped beam which in 
typical applications is generally located underneath the main one.  

The second element is a set of FVDs linking the vertical motion of certain sections of the 
main beam and the auxiliary one. Our attention here is focused on mitigating the flexural vi-
brations of the main beam when the train of moving loads induces a resonance situation. For 
this reason, the planar model shown in Fig. 2 is used to analyse the performance of the pro-
posed retrofit alternative. For the sake of simplicity two Cartesian coordinate systems are in-
troduced with origins located at both beams mid-span sections. 

The loads acting on the structure are assumed to be constant-valued, i.e. vehicle−bridge in-
teraction effects are neglected. Also, the main beam is assumed to rest directly on the abut-
ments without any intermediate elastic bearing. 

The torsional oscillations experienced by beams subjected to eccentric moving loads are 
not accounted for in the analytical formulation and optimisation of this study. Consequently, 
the results presented in sections 2 and 3 are not applicable to either multi-track or single-track 
skewed railway bridges. However, it should be emphasised that single-track non-skewed 
bridges, and in particular, medium to short-span ones are some of the most unfavourable cases 
found in practice. As a consequence of their low total mass, this type of structures may under-
go severe resonant oscillations under the passage of fast trains, thus generating highly de-
manding situations for any dissipative system. 

 

Figure 3: Retrofit configuration for a concrete girders bridge deck. 

Fig. 3 shows a possible configuration of the auxiliary beam and dampers installed in a sin-
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gle-track railway bridge. The dampers link the lower side of the slab and the upper flange of 
an auxiliary beam with hollow rectangular cross-section. The auxiliary beam is clamped on 
the abutments at the outermost sections of the bridge. Other suitable configurations could be 
adopted for different auxiliary beams geometries and deck typologies with an essential dy-
namic behaviour as that represented in Fig. 2. 

3 GOVERNING PARAMETERS AND INFLUENCE ON THE RESPONSE 

3.1 Equations of motion of a simple beam under moving loads 
The partial differential equation governing the flexural behaviour of a simply supported 

beam (main beam of the system) subjected to a train of concentrated loads can be found in the 
works of several authors such as Frýba [30, 31], Olsson [32], Yang et al. [33] and Museros 
and Alarcón [34]. Neglecting the effects of shear deformation and rotary inertia, and consider-
ing that the loads are aligned with the axis of symmetry of the cross-section (Y axis), the go-
verning equation can be written as 

 ( )
2 2 2

2 2 2 , .y ym EI q x t
y x x

⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (1) 

In Eq. (1) the following notation is used: m is the mass per unit length, y = y(x,t) the trans-
verse displacement of any beam section at time t, x refers to the longitudinal coordinate, E is 
the Modulus of Elasticity, I the second moment of area of the cross-section and q(x,t) stands 
for the distributed load per unit length acting at time t (positive if directed upwards). 

The deformed shape is expressed as a linear combination of a family of sines and cosines 
φj (x) as in Eq. (2), where Nmod stands for the number of modes considered, ξ j (t) is the ampli-
tude of the jth mode, and L is the length of the beam. 
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1
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( , ) ( ) ( ) where ( )
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L

=
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∑  (2) 

The loads are represented by means of Dirac delta functions acting at x = Vt−dk , where V 
is the constant train speed, and dk is the original distance from the kth load to the mid-span 
section of the beam. Thus, q(x,t) may be expressed as follows: 

 ( ) ( )( )
1

, ,
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k k
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∑  (3) 

where NP is the total number of axle loads; Pk is the value of the kth load; and H(t−t0) is the 
Heaviside unit function acting at time t0. When Eqs. (2) and (3) are introduced in Eq. (1), and 
multiplication by the nth function φn(x) and integration along the span L are carried out, the 
nth modal equation of motion is obtained. To this end, the mass per unit length m and the 
flexural stiffness EI are assumed to be constant along the beam. Introducing a modal viscous 
damping ratio ζn, the modal equation of motion is expressed as 

 ( ) ( ) ( )
( ).. . )2

1

22 cos ,
pN

kk k
n nn n n n k

k

n Vt dd d L
t t t H t H t P

mL V V L=
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∑  (4) 

where over-dots indicate differentiation with respect to time, and ωn represents the nth circu-
lar frequency of the main beam in rad/s 



J. Lavado, M.D. Martinez-Rodrigo and P. Museros  

 7

 
2

.n
n EI
L m
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 (5) 

3.2 Governing equations of the beam equipped with fluid viscous dampers and sub-
jected to moving loads 
In this section the equations of motion of the double-beam system are formulated as the 

auxiliary beam is connected to the main one through the dampers distribution. 
The auxiliary beam is partially clamped, therefore, the boundary conditions of the second-

ary beam are considered to be simply supported with two identical rotational springs at both 
ends. The partial differential equation governing the flexural behaviour of the auxiliary beam 
has the same general expression than that of a simply supported element Eq. (1). 

When the auxiliary beam is connected to the main one by means of the FVDs, the equa-
tions of motion must be suitably modified. In practical applications, resonance induced by 
constant moving loads is a problem of bridges subjected to the passage of fast trains. Museros 
and Alarcón [34] show that resonance of the second bending mode can take place in certain 
cases but, in single-track bridges it is most likely that resonance will be related to oscillations 
of the first bending mode. This is a consequence of the maximum speed attainable by modern 
high-speed trains. Under such circumstances, the influence of modes other than the one un-
dergoing resonance can be disregarded for the computation of the main beam response. 

The oscillations of the first mode of the main beam at resonance tend to create a symmetric 
distribution of dampers forces with respect to the mid-span section. These forces excite the 
movement of the auxiliary beam which, consequently, can be initially analysed only taking 
into account the contribution of its first bending mode as well. The viability of disregarding 
the second and higher modes of the beams in the calculation of the optimal parameters of the 
damping system is subsequently verified in section 5. 

If the deformed shape of the auxiliary beam is expressed as the product of a modal ampli-
tude times its first modal shape: 
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1 1 1
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 (6) 

where β is: 

 
2

14 .
m
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ω ⋅
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⋅

 (7) 

In expression (7) ω1 represents the first circular frequency of a simply-supported beam 
with rotational springs, in rad/s, which can be computed from the lowest root of the frequency 
equation: 
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4
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being K  a stiffness ratio between the rotational springs constants and the beam bending 
stiffness defined as 

 .
4
KLK
EI

=  (9) 
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Considering therefore only the contribution of the fundamental modes of both beams, the 
resulting equations of motion of the double-beam system linked by the distribution of the 
dampers in modal space are as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )2 ,BB Bb
B B B B B B D B D b B Bm t m t C t C t K t q x tξ + ζ ω ξ + ξ − ξ + ξ =&& & & & %% %  (10a) 

 ( ) ( ) ( ) ( ) ( )2 0bb Bb
b b b b b b D b D B b bm t m t C t C t K tξ + ζ ω ξ + ξ − ξ + ξ =&& & & & %% %  (10b) 
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∑  (10c) 

The notation in Eq. (10) is analogous to previous equations but with superscripts and sub-
scripts B and b, which are included to indicate magnitudes associated to the main and aux-
iliary beam, respectively. Moreover, in equation (10): 

 
2
B B

B
m L

m =%          is the first modal mass for the main beam (11) 
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 b bm m c= ⋅%            is the first modal mass for the auxiliary beam, where: (13) 
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Notice that parameter γ is a function of the quotient between the auxiliary partially 
clamped beam circular frequency and the same beam frequency with simply-supported end 
conditions: 

 
,

b
b

b ss

L
ω

γ = β = π
ω

 (20) 

In expressions (17), (18) and (19), CDi is the constant of the ith damper. The location of the 
ith damper is designated as xB

Di along the XB axis of the main beam, and as xb
Di along the Xb 

axis of the auxiliary beam. The significance of parameters A and B is: 
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From Eqs. (10) it can be seen that, if the modal system of equations is written in matrix 
form, the load term associated to the forces exerted by the FVDs gives rise, in general, to a 
full damping matrix. 

3.3 Nondimensional formulation of the system under harmonic excitation 
This article focuses on the reduction of the resonant response of beams or bridges, and 

therefore the system shown in Fig. 2 will first be analysed under the action of a harmonically 
varying force applied at the mid-span section of the main beam (see Fig. 4a). This kind of ex-
citation captures the essential features of the system response at resonance. 

 

Figure 4: (a) Double-beam system under harmonic excitation applied at mid-span. (b) Equivalent 2dof system in 
modal space. 

In what follows, it will be assumed that the lengths of both beams are equal, LB = Lb = L 
and the main and auxiliary beams are vertically aligned so that xB

Di = xb
Di , i = 1, 2, ... ND. 

These hypotheses are the most relevant ones for real applications because it is most likely that 
in actual bridges, the auxiliary beam or beams are supported at the original abutments or close 
to them. If only the first mode of both beams is taken into account, any number of FVDs lo-
cated at different sections is equivalent to a single equivalent FVD located at mid-span with 
equivalent damping constant: 

 
2

1
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D BN
Di

D Di
i B

x
C C

L=

⎛ ⎞⎛ ⎞π
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∑  (22) 

Under the aforementioned circumstances, the response in terms of modal amplitudes cor-
responds to that of the two-degree-of-freedom (2dof) system shown in Fig. 4b, where ξB and 
ξb, are the first modal amplitudes of the main and auxiliary beam, respectively. 

The equations of motion of the system may be expressed as: 
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 (23) 
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In Eq. (23) P0 and ωf are the amplitude and the forcing frequency of the excitation, respec-
tively. In order to solve Eq. (23) the following dimensionless ratios are defined: 

 Frequency ratio:  b Bη = ω ω  (24a) 

 Excitation frequency ratio:  f BΩ = ω ω  (24b) 

 Mass ratio:  b Bm mµ =  (24c) 

 Supplemental damping ratio:  ( )D D B BC m Lζ = ω  (24d) 

Moreover, when there is only a single equivalent FVD located at mid-span, with 
xD

B=xD
b=0 parameters CD

BB, CD
Bb and CD

bb become equal: 
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Rewriting Eq. (23) in terms of the dimensionless ratios defined in Eqs. (24) yields 

 ( )0
2

2

2
cos1 0 1 0
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D b D bb b
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m L
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⎝ ⎠

&& &

&& &
 (28) 

Equation (28) written in terms of the nondimensional parameters is equivalent to that of the 
double-beam system with simply-supported end conditions in both beams previously analysed 
by the authors in reference [26]. Assuming again that the maximum response of the main 
beam will take place at resonance the transient solution is neglected and the dynamic amplifi-
cation of the response is obtained for both beams as: 

 ( )
0

12

2

0

B
Bf f

b

P
m Li

−
−⎛ ⎞

⎛ ⎞ξ ⎜ ⎟= −ω + ω + ⋅⎜ ⎟ ⎜ ⎟ξ⎝ ⎠ ⎜ ⎟
⎝ ⎠

M C K  (29) 

where Bξ  and bξ  are the complex amplitudes, M, C and K are the mass, damping and 
stiffness modal matrices from Eq. (28), and 1i = − . The moduli of Bξ  and bξ  give the ampli-
tudes of the response. In order to obtain a dimensionless representation of the beams response, 
two modal amplifications are defined as the modulus of Bξ  and bξ  divided by the static def-
lection caused by the concentrated load P0 acting on the main beam  

 
( )2

02
B

B
B B

A
P m L

ξ
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ω
 (30a) 

 
( )2

02
b

b
B B

A
P m L

ξ
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ω
 (30b) 

After some algebraic manipulation, the modal amplifications are obtained 
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( ) ( )22 2 2 2

2 2 2

4

4
b D

BA
E F

Ω ζ ηµ + ζ +µ η −Ω
=

+ Ω
 (31a) 

 
2 2 2

2

4
D

bA
E F

Ωζ
=

+ Ω
 (31b) 

being 

 ( )( ) ( )( )( )2 2 2 2 21 4 D B D b DE = µ −Ω η −Ω + Ω ζ − ζ + ζ ζ ηµ + ζ  (31c) 

 ( ) ( ) ( )( )2 2 21 b D B DF = −Ω ζ ηµ + ζ +µ ζ + ζ η −Ω  (31d) 

The main beam modal acceleration is also of great interest because of its relation with bal-
last stability, as mentioned in section 1. In the steady-state the amplitude of the acceleration 
aB is 

 2 22
b B f B

B

Pa A
m L

= ξ ω = Ω  (32) 

Eq. (31) shows that the amplification of the main beam response AB, depends on the fol-
lowing six parameters: Ω, η, µ, ζD, ζb, ζB. Additionally, from Eq. (32) it can be seen that the 
modal acceleration of the main beam is inversely proportional to its total mass mBL. The be-
haviour of the system in terms of these parameters is analysed in detail in the following sec-
tion. 

4 RETROFITTING SYSTEM OPTIMISATION 

4.1 Optimal value of the supplemental damping ratio 
The key variables of the problem that should be minimised are the main beam dynamic 

amplification and modal acceleration, AB and aB. In order to visualise how the governing pa-
rameters affect these magnitudes and determine what is the best selection of the auxiliary 
beam and damper for a particular bridge, a number of plots are included in Fig. 5. 

 

Figure 5: Main beam amplification AB versus Ω for different values of ζD, µ and η. 

The plots illustrate the evolution of the main beam resonant amplification with µ, η, and ζD. 
In all the cases structural dampings of the main and secondary beams are 2% and 0.5%, re-
spectively. In Fig. 5a µ and η are fixed and equal to 0.1 and 1.9, respectively. In this plot, for 
a particular bridge and auxiliary beam the resonant response of the former is analyzed as the 
damper constant increases. As it can be seen, there is an optimum value of the damper con-
stant which, for a particular auxiliary beam, leads to the minimum response of the main ele-
ment. In Fig. 5b it is shown how the main beam amplification at resonance monotonically 
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diminishes with the auxiliary beam mass for fixed values of this element natural frequency 
and damper constant. Finally, in Fig. 5c the evolution of AB with the frequency ratio η of the 
two beams fundamental frequency is evaluated. From the analysis of this plot it can be con-
cluded that in order for the retrofitting system to effectively reduce the dynamic response of 
the main beam, η has to be higher than one, that is, the secondary beam natural frequency 
must exceed the main beam frequency. The system hardly dissipates energy when η=1. For 
values of η<1 the secondary beam and damper behave in a certain way as a Tuned Mass 
Damper and the main beam resonant response partially reduces but this reduction can reach 
much higher levels for values of η>1. When η tends to infinity, AB monotonically decreases 
as in this case the damper lower end tends to be attached to a fixed reference (the same occurs 
when µ→∞). From this situation the clear advantage of partially clamping the auxiliary beam 
ends is evident as it leads to an increase of the secondary beam frequency and a reduction of 
the main beam resonant response. 

In conclusion, as there are not optimal values of η and µ, or in other words, the dissipation 
capacity of the system increases with increasing values of any of these two parameters, the 
design strategy should be to select the smallest auxiliary beam such that with its associated 
optimal damper provides enough energy dissipation to achieve the desired target performance. 
In what follows, a closed form expression for the optimal supplemental damping ratio ζD is 
obtained. 

 

Figure 6: Main beam amplification AB versus Ω for different values of ζD neglecting structural damping. 

From the works of the European Rail Research Institute [1] it can be concluded that damp-
ing ratios in modern railway bridges are usually small, of the order of 1% or 2%, or even 
smaller in composite or metallic bridges. Therefore, in most practical cases an approximate 
solution to the problem can be obtained by assuming that structural damping is negligible in 
comparison with the dissipation introduced by the external FVD. This hypothesis allows the 
computation of a closed form expression for the optimal value of ζD. The subsequent numeri-
cal examples will prove the soundness of this approach. Neglecting structural damping, that is 
ζB = ζb =0, Eqs. (31a), (31c) and (31d) transform into 

 ( )
( ) ( ) ( )

22 2 2 2 2

22 22 2 2 2 2 2 2 2 2

4

1 4 1

D
B

D

A
Ω ζ +µ η −Ω

=
⎡ ⎤−Ω µ η −Ω + Ω ζ −Ω +µ η −Ω⎣ ⎦

 (33) 

Comparing Figs. 5a and 6 the effect of structural damping on the response can be observed. 
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The maximum amplification for low and high values of ζD at resonance reaches a much 
higher level when structural damping is neglected as in Fig. 6, but two important facts must 
be highlighted. First, the difference between the maximum amplifications is much lower when 
ζD takes the optimal value. This fact reveals that, if structural damping is low and the optimal 
value of ζD is selected, the greater part of the energy at resonance is dissipated through the 
FVD. Secondly, if structural damping is neglected as in Fig. 6, AB is independent of ζD at the 
value of Ω corresponding to the minimum maximum. This fact permits the computation of the 
excitation frequency ratio at the minimum maximum R

∗Ω : 

 ( )( )21 2 2
2R

∗Ω = +µ +µη
+µ

 (34) 

and the subsequent derivation of closed-form expressions for the optimal damping ratio ζD 
minimising the main beam amplification and acceleration responses: 

 ( ) ( )2

, , 2 2 2 2 3 2

1
, 0

4 6 2 2 3
B

R D D A D A
A ∗ ∗ ∗ η − µ∂

Ω = Ω ζ = ζ = → ζ =
∂Ω + µ + µ + µη + µ η +µ η

 (35a) 

 ( ) ( )2

, , 2 2 2 2 4 3 4

1
, 0

4 2 6 3 2
B

R D D a D a
a ∗ ∗ ∗ η − µ∂

Ω = Ω ζ = ζ = → ζ =
∂Ω + µ + µη + µ η + µ η +µ η

 (35b) 

Substituting the damping ratios given by Eqs. (35) into Eq. (24d), the associated optimal 
damper constants are obtained when structural damping is neglected. These equations provide 
optimum equivalent dampers, which are related to a particular longitudinal distribution of 
FVDs as per (22). In reference [26] a comprehensive analysis proving the adequacy of expres-
sions (35) when structural damping is not neglected has been performed under harmonic con-
ditions. Finally, in the example of a bridge retrofitted with the system proposed herein that is 
included in section 5 it is proven that these expressions predict dampers constants real optima 
with a great degree of accuracy under railway traffic, accounting for modal contributions 
higher than the fundamental one and including the presence of structural damping. 

4.2 Effect of partial rotational restriction at the auxiliary beam supports 

In this section the effect of partially restraining the auxiliary beam ends is analysed in 
terms of the reduction of the main beam resonant response attained as that obtained with a 
simply-supported auxiliary element. In order to isolate the boundary conditions alteration ef-
fect from the secondary beam size, the frequency ratio η is expressed as: 

 
2 2

,
,

b ss
ss B

B

ω γ γ⎛ ⎞ ⎛ ⎞η = = η⎜ ⎟ ⎜ ⎟ω π π⎝ ⎠ ⎝ ⎠
 (36) 

where ωb,ss is the auxiliary beam circular frequency with hypothetical simply-supported 
end conditions and γ varies from π in the simply-supported case to 4.73004074 in the clamped 
case. In Fig. 7a curves of AB associated to optimal values of the damping ratio ,D A

∗ζ  versus Ω 
have been plotted for a particular pair of beams (µ=0.1, ηss,B =1.2, ζB=2% and ζb=0.5%) for 
increasing levels of rotational restriction of the secondary beam. 

In order to measure these levels, instead of using the frequency parameter γ, the increase 
experimented by the auxiliary beam fundamental frequency with respect to the simply-
supported case is employed defining to this end the following ratio: 
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,
,

b
b ss

b ss

ω γ⎛ ⎞η = = ⎜ ⎟ω π⎝ ⎠
 (37) 

Values of ηb,ss increase from unity when the beam is simply supported towards 2.267 in the 
ideal case of a perfectly clamped beam. In order to be conservative it is considered that with 
nowadays constructive technologies and materials the maximum increase in the secondary 
beam frequency that can be attained clamping it is 1.5 times. In Fig. 7a AB(Ω) has been plot-
ted in the unretrofitted case for comparison purposes. The remaining curves correspond to the 
minimum response of the main beam at resonance (for optimal damping values ,D A

∗ζ ) for a 
particular pair of beams and increasing values of γ (and therefore ηb,ss). The amplification at 
resonance is reduced from 25 to 16.3 when the auxiliary beam is simply supported, which en-
tails a 34.8% reduction with respect to the unretrofitted case. This reduction increases with the 
restriction of the beam end rotations achieving 73.4% for ηb,ss=1.5. In other words, the main 
beam response is reduced in more than twice when, due to the auxiliary beam rotational 
springs stiffenning, the fundamental frequency of this element increases 50%. As we move 
towards the ideal case of a doubly clamped beam, this reduction tends to 88.6%. The interest-
ing side of this alternative when compared to the simply-supported case previously analysed 
by the authors, is that the auxiliary beam size if partially clamped can be drastically reduced 
for the same main beam dynamic performance. If the beams are to be installed under the 
bridge deck in a practical application this is a crucial issue in order to minimise the free space 
occupied with the retrofit. Fig. 7b is similar to Fig. 7a but in this case the natural frequency of 
the secondary beam without restraining the ends rotations is higher (ηss,B = 1.6). 

 

 
Figure 7: Main beam amplification AB associated to the optimal damping ratio versus Ω for different clamping 

states of the auxiliary beam. 

In order to visualize how the main beam response at resonance evolves with a particular 
auxiliary beam, always combined with the optimal equivalent damper, as the end rotational 
stiffness increases for different values of ηss,B the ratio Rmax is defined measuring the reduction 
of the main beam maximum response achieved with the retrofit when compared to the unre-
trofitted case: 

 ( )
( )max max

, ,

max
,

% 100B unret B D D A
max

B unret

A A
R

A

∗− ζ = ζ
= ⋅  (38) 

where max
,B unretA  is the amplification of the main beam at resonance in the unretrofitted case and 

( )max
,B D D AA ∗ζ = ζ  is the amplification of the main beam retrofitted with a particular auxiliary 
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beam in the optimal case. In other words, ( )max
,B D D AA ∗ζ = ζ  is the minimum response of the main 

beam at resonance that can be obtained with a particular auxiliary beam. This variable is cal-
culated fixing the value of ηss,B, i.e. for a particular auxiliary beam with a particular natural 
frequency and lineal mass and recalculated as the rotational restriction at the beam ends in-
creases towards the fully clamped case. Therefore only the degree of clamping of the auxiliary 
beam is modified. In Fig. 8, plots (a), (b), (c) and (d) correspond to values of ηss,B {1, 1.2, 1.4, 
1.6}and in each graph each curve has been calculated with a different level of the main beam 
structural damping. 

 

Figure 8: Maximum reduction with respect to the unretrofitted case vs. auxiliary beam frequency increase ηb,ss 
due to supports rotational restriction. 

In graph (a) ηss,B=1, therefore prior to starting to clamp the secondary beam both beams 
have the same natural frequency. Due to this fact the retrofitting system efficiency is practi-
cally inexistent (see Fig. 5c) and the reduction of the main beam response is almost null. That 
is why for ηb,ss=1 (auxiliary beam simply-supported) all the curves tend to Rmax=0. As the ro-
tational restriction at the ends increases and therefore ηb,ss raises from 1 towards 2.267 (per-
fectly clamped case) the reduction of the main beam maximum response with respect to the 
unretrofitted situation drastically increases, especially for low levels of structural damping of 
the super-structure. In fact if ζB=0.5% Rmax increases from zero reduction in the simply-
supported case to approximately 87% for ηb,ss=1.5, that is, when the natural frequency of the 
auxiliary beam is increased 1.5 times its initial value thanks to restraining the end rotations. In 
the remaining three cases a similar tendency is observed although the results are less impres-
sive as the retrofitting system effect on the main beam is already better in the simply-
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supported case. 

5 INTRODUCTION OF RAILWAY TRAFFIC EXCITATION 
In the present section the effectiveness of the proposed solution and the adequacy of ex-

pressions (35) which provide the optimal dampers for a particular auxiliary beam are eva-
luated under railway traffic. To this end the dynamic performance of a single track bridge 
retrofitted with the partially clamped auxiliary beam system is investigated under the circula-
tion of trains of moving loads which excite resonance situations in the superstructure. 

In what follows the dynamic performance of a 15 m bridge is investigated using a planar 
FE model as the one shown in Fig. 2. The upper beam, which represents the deck, has a fun-
damental frequency fB1=8.92 Hz and a linear mass mB=10000 kg/m. The auxiliary beam is 
considered a steel element with a hollow rectangular cross-section, having LB=Lb=L and 
Eb=2.1·1011 N/m2. The external dimensions of the auxiliary beam are b × h (width × height) 
and its constant thickness is e. Thus, the second moment of area is I=(bh3-(b-2e)(h-2e)3)/12. 
The mass per unit length is mb=ρb(bh-(b-2e)(h-2e)), where ρb=7850 kg/m3 is the mass density 
of steel. Respectively, linear and quadratic variations of b and e in terms of h are adopted 

 ( ) for 0.6b h a h a= × =  (39) 

 ( ) 2 2 3 2 1
0 1 2 0 1 2+ +  for 2.14 10 m, 7.86 10 , 1.07 10 me h e e h e h e e e− − − −= × × = × = × = ×  (40) 

The dynamic response of the bridge retrofitted with a particular auxiliary beam with 
h=0.80 m is evaluated under the circulation of the eighth train of the High Speed Load Model 
–A (HSLM-A8) defined in Eurocode [35] using a moving load model. The degree of partial 
restriction of the auxiliary beam end section rotations is considered to be such that the funda-
mental frequency of the element is increased 1.5 times with respect to the simply-supported 
case. This corresponds to a rotational stiffness of K=4.5·108 Nm leading to a fundamental fre-
quency of the auxiliary beam fb1=15.87 Hz. Three dampers are introduced linking the vertical 
motion of corresponding sections of the main and auxiliary beams. The response of the sys-
tem is computed by Modal Superposition of the first three modes of the bridge and the first 
three modes of the auxiliary beam. Structural damping ratios of ζBi=1.35% and ζbi=0.5% for 
i=1,2,3 are assumed for each element. 

In first place the adequacy of the expressions derived in the harmonic case for the external 
optimal damping ratios (35) is evaluated. To this end the maximum vertical acceleration at the 
mid-span section of the bridge is calculated under the HSLM-A8 train for circulating veloci-
ties in the range [40, 125] m/s in steps of 0.5 m/s ([144, 450] km/h in steps of 1.8 km/h). The 
maximum response of the bridge retrofitted with the previously described beam is computed 
for several values of the dampers constants and plotted in terms of accelerations in Fig. 9. The 
bridge in the bare case (ζD=0%) experiments a second and a third resonance of its fundamen-
tal mode at the theoretical velocities 

 1
1, 2

18 8.923.6 3.6 401.4 km h
2

RES k B
m n

d f
V

n= =

⋅ ⋅
= ⋅ = ⋅ =  (41) 

 1
1, 3

18 8.923.6 3.6 267.6 km h
3

RES k B
m n

d f
V

n= =

⋅ ⋅
= ⋅ = ⋅ =  (42) 

being dk=18 m the characteristic distance (or distance causing resonance) of train HSLM-
A8, m the mode number, n the resonance order (or number of oscillations completed by the 
upper beam between the passage of repetitive groups of axle loads separated dk). The response 
of the bridge has been recalculated for increasing values of the external damping ratio and, 
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therefore, of the individual dampers constants. If the three dampers are located at 0.25L, 0.5L 
and 0.75L the relation between the constants and ζD is given by 

 1
1 for 1,2,3
2Di B B B DC m L i= ω ζ =  (43) 

being ωB1 the circular frequency of the bridge fundamental mode. As ζD increases the 
bridge response decreases, especially at resonance, and the resonant or critical velocity 
slightly shifts towards higher values. This kind of behaviour was already detected in the har-
monic case (see Fig. 5a). When ζD reaches certain value the amplification at resonance starts 
to increase again. The theoretical optimal external damping ratio associated to the minimum 
acceleration at resonance has been calculated applying equation (35b) for η=1.779 and 
µ=0.066 (frequency and mass ratio for the particular case h=0.80 m and K=4.5·108 Nm) pro-
viding a value of , 6.1%D a

∗ζ = . In Fig. 9 the maximum acceleration of the bridge has been 
represented for this particular retrofitting level in red trace. 
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Figure 9: Maximum acceleration at bridge mid-span vs. velocity of train HSLM-A8 for different values of ζD. 

As it can be observed equation (35b) provides a good estimate of the dampers constants real 
optima under the circulation of moving loads, accounting for the contribution of three modes 
of each beam and considering structural damping. Regarding the difference between optimal 
damping ratios ,D A

∗ζ  and acceleration ,D a
∗ζ  provided by equations (35a) and (35b) respectively, 

the former provides better estimates for the optimal dampers minimising the bridge response 
in terms of displacements and the latter does the same in terms of accelerations. Nevertheless 
the difference between both values is very small. Finally, the real value of the optimal exter-
nal damping, ,

real
D a
∗ζ , has been obtained numerically as the one minimising the acceleration at 

the second resonance of the bridge fundamental mode being as , 5.5%real
D a
∗ζ = . The bridge acce-

leration at mid-span for the real optimal dampers has been represented as well in green trace 
in Fig. 9. Even though there is a difference of 0.6% between the real and the theoretical op-
timal damping the difference in the bridge response is practically negligible as it can be seen 
when comparing the red and green curves in Fig. 9. In particular the maximum response of 
the bridge at the second resonance when retrofitted with the theoretical optimal dampers 

( ) 2
,max , 6.1% 6.809B D aa m s∗ζ = =  and when retrofitted with the real optimal dampers 

( ) 2
,max , 5.5% 6.801real

B D aa m s∗ζ = = . 
Finally, the possibility of retrofitting the 15 m bridge so that the structure accomplishes the 

Serviceability Limit State of vertical acceleration (3.5 m/s2 for ballasted tracks) is envisaged. 
To this end two possibilities are considered and compared: (i) connecting to the bridge deck to 
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a simply-supported auxiliary beam with its corresponding optimal dampers located at 0.25 L, 
0.5 L and 0.75 L, and (ii) installing a partially clamped auxiliary beam with the same configu-
ration of dampers. The aim of this analysis is to determine what would be the minimum size 
of the auxiliary beam needed to reduce the maximum acceleration of the bridge below 3.5 
m/s2 in each case. In the unretrofitted case the maximum acceleration of the bridge under the 
circulation of the HSLM-A8 train in the range of velocities [144, 450] km/h reaches 18.4 m/s2. 
The steel box section beam previously described is considered for the retrofit. Beam section 
heights starting from 1.0 m and increasing in 10 cm increments are first considered in the 
simply-supported case. For each beam, nondimensional parameters µ and η are calculated and 
the theoretical optimal damping ratio ,D a

∗ζ  is obtained as per Eq. (35b). From this value the 
dampers constants are determined and the bridge dynamic response after the retrofit is com-
puted. In Table 1 a summary of the retrofitting system parameters along with the maximum 
response of the bridge that takes place for each particular retrofit has been included. 

h (m) BC K (Nm) f
b1

(Hz) � � �
D,a

(%)
�

a
B,max

(m/s )2

1.3 SS --- 17.20 1.928 0.155 14.21% 3.52

1.2 SS --- 15.87 1.779 0.155 10.61% 4.41

1.1 SS --- 14.54 1.630 0.155 7.45% 5.99

1.0 SS --- 13.20 1.480 0.155 4.80% 7.72

1.3 EC 2.80E+09 25.90 2.904 0.155 28.38% 2.59

1.2 EC 2.00E+09 23.80 2.668 0.155 23.23% 2.85

1.1 EC 1.47E+09 21.91 2.457 0.155 18.43% 3.17

1.0 EC 1.02E+09 19.90 2.231 0.155 13.72% 3.56  

Table 1: Retrofit parameters. 

In Table 1 BC, SS and EC stand for Boundary Conditions, Simply-Supported and Elasti-
cally-Clamped, respectively. 

In Fig. (10a) the maximum acceleration of the bridge at mid-span for a simply-supported 
auxiliary beam of section heights varying from 1.0 m to 1.3 m has been represented. 

It is important to stress that each auxiliary beam is combined with the dampers that lead to 
the super-structure minimum response, that is, with the optimal dampers. As it is shown a 
minimum height of 1.3 m is needed for the maximum acceleration to reduce until the limit 3.5 
m/s2 if the beam is simply-supported. The same calculations are repeated considering that the 
beam is partially clamped. The rotational stiffness is supposed to be the same at both ends and 
such that the fundamental frequency of the auxiliary beam increases 1.5 times its correspond-
ing value in the simply-supported case. In Fig. (10b) the maximum acceleration of the bridge 
is plotted for each particular beam size in the elastically-clamped case. The response of the 
bridge drastically reduces for a particular retrofit if the auxiliary beam ends rotations are re-
strained. It can be observed that if the beam is partially clamped a beam with a section height 
of 1 m would be sufficient for the bridge to accomplish the Serviceability State of vertical ac-
celeration, while in the simply-supported case a 1.3 m beam was needed. 
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Figure 10: Maximum acceleration at bridge mid-span vs. velocity of train HSLM-A8 for different auxiliary beam 
sizes in the (a) simply-supported and (b) elastically clamped cases. 

 

6 CONCLUSIONS 
The dynamic performance of simply supported beams retrofitted with FVDs and subjected 

to moving loads has been evaluated. The main beam, which supports the passage of the loads, 
is connected to an auxiliary beam placed parallel to the former through a set of dampers link-
ing the vertical motion of corresponding sections of the elements. The auxiliary beam is con-
sidered to be partially clamped at both ends. From the results obtained herein, the following 
conclusions can be derived: 

• (i) The resonant vibrations that may appear in simply supported beams when subjected to 
moving loads can be drastically reduced with the damping system proposed herein. 

• (ii) For a particular auxiliary beam, there exists an optimum value of the FVD constants 
that minimise the main beam response. 

• (iii) The main beam response monotonically reduces with the auxiliary beam mass and 
natural frequency, but, in order for the dampers to effectively dissipate energy, the aux-
iliary beam fundamental frequency must exceed the main beam modal frequency which 
contribution is to be reduced. 

• (iv) The design strategy should be to select the smallest auxiliary beam such that when 
associated with its corresponding optimal FVDs leads to the desired system performance. 

• (v) Partially restraining the rotation of the auxiliary beam supports leads to an important 
reduction of the main beam response at resonance when compared to the simply-
supported case. This permits to reduce the size of these elements which are to be installed 
underneath the deck in general applications. 

• (vi) Analytical expressions for the optimal damper constants are provided which provide 
very accurate results as long as the maximum response of the main beam in the range of 
evaluated velocities occurs at resonance. 
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• (vii) With the system proposed in this article the FVDs need not interact with the upper 
side of the bridge. This allows existing railway bridges to be retrofitted while keeping the 
line in operation.  

• (viii) The damping system and optimal damper expressions presented here may apply to 
other situations where simply supported beams vibrate at resonance due to different 
causes. 
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