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Abstract. This work deals with the extension of the Partition of Unity Finite Element Method
(PUFEM) to solve wave problems involving propagation, transmission and reflection in layered
elastic media. Problems dealing with wave reflection at a free surface and propagation of pure
Rayleigh waves are also considered. The proposed method consist to apply the plane wave basis
decomposition to the elastic wave equation in each layer of the elastic medium and then enforce
necessary continuity conditions at the interfaces through the use of Lagrange multipliers. The
accuracy and effectiveness of the proposed technique is determined by comparing results for
selected problems with known analytical solutions.
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1 INTRODUCTION

Plane wave basis finite elements capable of containing many wavelengths per nodal spacing
were developed and implemented to solve wave scattering problems in homogeneous elastic
media [1, 2, 3]. These elements allow us to relax the traditional requirement of around ten
nodal points per wavelength and therefore lead to huge savings in computing effort. Many
other techniques were developed for the same objective, such as the Discontinuous Enrichment
Method [4], the Ultra Weak Variational Formulation [5] and the Partition of Unity Boundary
Element Method [6], for example.
In this work, problems of practical interest such as those encountered in soil wave propagation
and scattering are considered. For a layered elastic medium, the displacement field is expressed
as a combination of propagating planar pressure and shear waves within each homogeneous
layer. At the interface between two layers, necessary continuity conditions are enforced through
the use of Lagrange multipliers, which are also approximated using the plane wave decomposi-
tion approach [7].
After presenting relevant theory, some preliminary numerical tests are carried out. The first
problem deals with elastic waves propagating in a homogeneous medium and hitting a plane
free surface, for angles of incidence above and below the critical angle. The second test prob-
lem concerns the propagation of pure Rayleigh waves, which are known to propagate with a
specific wave number different from the pressure and shear wave numbers. Last, reflection and
transmission of elastic waves at a plane interface between two elastic media will be considered.
For the first two problems, there is no need to incorporate the Lagrange multipliers as no inho-
mogeneity is involved in the problems unlike in the third one where they are necessary to ensure
compatibility conditions at the interface.

2 MATHEMATICAL FORMULATIONS

Let Ω be a space domain in R2 occupied by an elastic inhomogeneous medium whose elastic
properties are piecewise constant such as, for example, a multilayered soil medium where each
layer is homogenous. It is then adequate to assume that the domain Ω is composed of multiple
homogeneous linear and isotropic subdomains Ωj with the Lamé coefficients λj and µj , and
density ρj . In this paper, for simplicity, the two-subdomain problem shown in Figure 1 is
considered where Ω = Ω1 ∪ Ω2 bounded by Γ = Γ1 ∪ Γ2 with the boundary Γint being the
interface between Ω1 and Ω2. We will denote by (i, j) the cartesian vector system and by
x = xi + yj a generic point in R2. We will also assume a harmonic steady state problem and
hence the time variable is omitted in the formulation.

2.1 Problem formulation

Let us first consider the subdomain Ω1 bounded by Γ1∪Γint. The time independent displace-
ment field u1 satisfies the Navier’s equation

−ρ1ω
2u1 −∇ · σ(u1) = ρ1f1, (1)

where ω is the circular frequency, ρ1 is the density and f1 is the body force. The stress tensor σ
is defined via the classical Hooke’s law

σ(u1) = λ1∇ · u1 I + µ1(∇u1 +∇u>1 ), (2)

where I denotes the identity matrix, λ1 and µ1 are the Lamé coefficients, and∇u1 = (∇u1,∇v1)
>,

with u1 and v1 being the horizontal and vertical components of the displacement field u1. The
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notation ‘>’ stands for the transpose of a given vector or tensor. The dot product ‘·’ of ∇ and
the tensor field σ = (σx,σy)

> in C2 × C2 is defined by

∇ · σ =

( ∇ · σx

∇ · σy

)
, (3)

with ∇ being the gradient operator. In addition to expressions (1) and (2), the formulation of
the problem is completed by the boundary conditions imposed on Γ1. Here we consider a Robin
type boundary conditions such that

σ(u1)n1 = i
[
(λ1 + 2µ1)k

P
1 (u1 · n1)n1 + µ1k

S
1 (u1 · t1)t1

]
+ g1. (4)

In the above expression, i represents the imaginary number such that i2 = −1, n1 and t1 are

2n
1n
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2Γ

1Γ
21

ΩΩ

Figure 1: A two-subdomain example.

the normal and tangential vectors to the boundary. The wave numbers kP
1 and kS

1 correspond to
the pressure (P) and shear (S) waves, respectively. They are defined by

kP
1 =

ω

cP
1

and kS
1 =

ω

cS
1

. (5)

The P-wave and S-wave speeds are given by

cP
1 =

(
λ1 + 2µ1

ρ1

) 1
2

and cS
1 =

(
µ1

ρ1

) 1
2

. (6)

In expression 4, the source term g1 will involve analytical solutions of elastic wave problems.
This approach is adopted with the aim to validate the proposed method and assess its perfor-
mance. But in practice absorbing boundary conditions would rather be used and would therefore
involve extra numerical errors.

2.2 Weighted residual scheme

Let us multiply equation (1) by the complex conjugate of a test function w1∫

Ω1

(−ρ1ω
2u1 −∇ · σ(u1)

) · w̄1 dΩ =

∫

Ω1

ρ1f1 · w̄1 dΩ. (7)

Integrating by parts over Ω1, the following weak form is obtained

−ω2ρ1

∫

Ω1

u1 · w̄1 dΩ−
∫

Γ1

σ(u1)n1 · w̄1 dΓ−
∫

Γint

σ(u1)n1 · w̄1 dΓ +

∫

Ω1

σ(u1) · ∇w̄1 dΩ

= ρ1

∫

Ω1

f1 · w̄1 dΩ.

(8)
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For practicality let us express the stress tensor in terms of the displacement field by using the
following expression

σ(u1) = λ1∇ · u1 I + µ1∇× u1 J + 2µ1∇u1, (9)

where the matrix J is defined by

J =

(
0 1
−1 0

)
, (10)

and also re-write σ(u1) · ∇w̄1 in expression (8) under the following form

σ(u1) · ∇w̄1 = λ1(∇ · u1)(∇ · w̄1) + 2µ1∇u1 · ∇w̄1 − µ1(∇× u1)(∇× w̄1). (11)

Now using the boundary condition (4), the above variational formulation becomes

−ω2ρ1

∫

Ω1

u1 · w̄1 dΩ + 2µ1

∫

Ω1

∇u1 · ∇w̄1 dΩ− µ1

∫

Ω1

(∇× u1)(∇× w̄1) dΩ

+λ1

∫

Ω1

(∇ · u1)(∇ · w̄1) dΩ− i

∫

Γ1

[
(λ1 + 2µ1)k

P
1 (u1 · n1)(w̄1 · n1) + µ1k

S
1 (u1 · t1)(w̄1 · t1)

]
dΓ

−
∫

Γint

σ(u1)n1 · w̄1 dΓ = ρ1

∫

Ω1

f · w̄1 dΩ +

∫

Γ1

g1 · w̄1 dΓ.

(12)
Following the same approach, a similar weak form is obtained for the subdomain Ω2 bounded
by Γ2 ∪ Γint such that

−ω2ρ2

∫

Ω2

u2 · w̄2 dΩ + 2µ2

∫

Ω2

∇u2 · ∇w̄2 dΩ− µ2

∫

Ω2

(∇× u2)(∇× w̄2) dΩ

+λ

∫

Ω2

(∇ · u2)(∇ · w̄2) dΩ− i

∫

Γ2

[
(λ2 + 2µ2)k

P
2 (u2 · n2)(w̄2 · n2) + µ2k

S
2 (u2 · t2)(w̄2 · t2)

]
dΓ

−
∫

Γint

σ(u2)n2 · w̄2 dΓ = ρ2

∫

Ω2

f · w̄2 dΩ +

∫

Γ2

g2 · w̄2 dΓ,

(13)
where all functions and parameters are defined in a similar way as for the weak form (12)
replacing the subscript 1 by 2.

2.3 Compatibility conditions

At the interface Γint, between Ω1 and Ω2, continuity of displacements and stresses must be
satisfied

u1 = u2, (14)

σ(u1)n1 = −σ(u2)n2. (15)

Let us introduce the Lagrange multiplier ν defined by

ν = σ(u1)n1 = −σ(u2)n2. (16)
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The weak forms (12) and (13) become then

−ω2ρ1

∫

Ω1

u1 · w̄1 dΩ + 2µ1

∫

Ω1

∇u1 · ∇w̄1 dΩ− µ1

∫

Ω1

(∇× u1)(∇× w̄1) dΩ

+λ1

∫

Ω1

(∇ · u1)(∇ · w̄1) dΩ− i

∫

Γ1

[
(λ1 + 2µ1)k

P
1 (u1 · n1)(w̄1 · n1) + µ1k

S
1 (u1 · t1)(w̄1 · t1)

]
dΓ

−
∫

Γint

ν · w̄1 dΓ = ρ1

∫

Ω1

f · w̄1 dΩ +

∫

Γ1

g1 · w̄1 dΓ,

(17)
and

−ω2ρ2

∫

Ω2

u2 · w̄2 dΩ + 2µ2

∫

Ω2

∇u2 · ∇w̄2 dΩ− µ2

∫

Ω2

(∇× u2)(∇× w̄2) dΩ

+λ2

∫

Ω2

(∇ · u2)(∇ · w̄2) dΩ− i

∫

Γ2

[(λ2 + 2µ2)kP (u2 · n2)(w̄2 · n2) + µ2kS(u2 · t2)(w̄2 · t2)] dΓ

+

∫

Γint

ν · w̄2 dΓ = ρ2

∫

Ω2

f · w̄2 dΩ +

∫

Γ2

g2 · w̄2 dΓ.

(18)
It is clear from the above weak forms, (17) and (18), that the problem is augmented as the
Lagrange multiplier ν is introduced as an extra unknown in the problem. The integration of
the two weak forms leads to a rectangular system of equations, where the number of unknowns
exceeds the number of equations. Extra equations are therefore added by ensuring the continuity
of displacements such as in expression (14). This is done through the weak form

∫

Γint

(ū1 − ū2) · δ dΓ = 0, (19)

where δ is a test function in the space of the Lagrange multipliers.
In the following subsection both the displacement field and the Lagrange multiplier will be
approximated via plane wave basis finite elements.

2.4 Plane wave approximation

The computational domain Ω is meshed into finite elements with n nodal points in total. We
denote by N z, z = 1, n, the partition of unity by polynomial finite element shape functions, and
respectively by mp and ms the number of approximating P and S plane waves. The displacement
uj in a subdomain Ωj is approximated as follows [1, 2]

uj =
n∑

z=1

mP∑

l=1

N zAP
z,l exp(ikP

j x · dl
P )dl

P +
n∑

z=1

mS∑

l=1

N zAS
z,l exp(ikS

j x · dl
S)dl

S,⊥. (20)

The amplitudes AP
z,l and AS

z,l, at a given node z and corresponding to P and S plane waves
travelling in the directions dl

P and dl
S , respectively, are now the unknowns of the problem. The

orthogonal of a vector d denoted by d⊥ is defined by d⊥ = −Jd, where the rotation matrix
J, with the angle π

2
, is given in expression (10). The directions dl

P and dl
S are taken uniformly

distributed on the unit circle such that

dl
P =

(
cos θl

P , sin θl
P

)>
, θl

P = 2πl
mP

dl
S =

(
cos θl

S, sin θl
Sp

)>
, θl

S = 2πl
mS

.
(21)
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It is obvious from the above expression (20) of the displacement field that the pair of wave
numbers (kP

j , kS
j ) will take different values depending to which subdomain, Ω1 or Ω2, the con-

sidered finite element belongs to.
For the approximation of the Lagrange multiplier ν, the approach is inspired from previous
work [7], which consists to write

ν =
n∑

z=1

mP∑

l=1

N zBP
z,l exp(ikPx · dl

P )dl
P +

n∑
z=1

mS∑

l=1

N zBS
z,l exp(ikSx · dl

S)dl
S,⊥. (22)

In other words, the lagrange multiplier is also approximated by sets of P and S plane waves,
and the unknowns BP

z,l and BS
z,l are in a sense the amplitudes of the approximating plane waves.

At the interface between Ω1 and Ω2, the pair of wave numbers (kP , kS) is chosen, for example,
such that

kP = max(kP
1 , kP

2 ) and kS = max(kS
1 , kS

2 ) (23)

The numbers mP and mS of approximating plane waves may be constant or may vary depending
whether the approximation is applied to the displacements fields u1 and u2 or to the Lagrange
multiplier ν. Expressions (17), (18) and (19) lead to square system matrix, where the solution
is obtained through a direct solver which uses a factorization of the form LDLH where D is a
real diagonal matrix, L is a lower triangular matrix with diagonal entries equal to 1 and LH is
the transpose conjugate of L [8]. It is worth mentioning that the element matrices are obtained
via an exact integration developed in reference [2] and hence the computations are significantly
faster compared to past work [1] where high order Gauss-Legendre quadrature schemes were
used involving thousands of integration points per finite element.
In the next section, some preliminary numerical results validating the proposed model are pre-
sented.

3 PRELIMINARY RESULTS

The model presented above is validated by solving typical problems of practical interest such
as those encountered in soil wave propagation, which involve interfaces between the soil layers
and a free surface. First, SV elastic waves propagating in a homogeneous medium and hitting a
plane free surface is considered. Then, a problem with pure Rayleigh waves is dealt with, where
the displacement field approximation involves P and S plane waves, rather than plane waves
with the Rayleigh wave number. Last, a test problem involving reflection and transmission of
elastic waves at a plane interface between two semi-infinite elastic media is carried out. All
considered problems have analytical solutions presented in various textbooks, such as reference
[9]. To assess the accuracy of the numerical solution in percentage the following L2 error

ε2 =
||u− ũ||L2(Ω)

||ũ||L2(Ω)

× 100% (24)

6



O. Laghrouche, A. El Kacimi and J. Trevelyan

x

y

0 1

0

1

Figure 2: Mesh of the computational domain.

is used where u is the numerical solution and ũ is the analytical solution of the considered
problem. The chosen computational domain is a square of unit length. It is meshed into 3-node
triangular finite elements with 32 elements and 25 nodes (Figure 2).

3.1 SV plane wave hitting a free surface

This is a common situation occurring at the soil free surface, for example. Let us consider a
shear wave, SV, of unit amplitude incident with an angle β (Figure 3). In general, this leads to
both reflected compression and shear waves. The compression wave potential is therefore given
only by the reflected wave

φ = RP eik(−x−y tan α), (25)

and the shear wave potential is the sum of the incident and the reflected waves

ψ = 1 eik(−x+y tan β) + RS eik(−x−y tan β), (26)

where k is the wave number such that k = kP cos α = kS cos β, with α being the angle of the
reflected P-wave. The reflection coefficients RP and RS are computed by ensuring zero-stress
boundary conditions at the free surface [9]. The displacements are computed via the following
derivatives of the potentials

u =
∂φ

∂x
− ∂ψ

∂y
and v =

∂φ

∂y
+

∂ψ

∂x
. (27)

Snell’s law states that cP / cos α = cS/ cos β and hence tan α = (1/3 cos2 β − 1)1/2 for this
elastic medium, with λ = µ = ρ = 1. Consequently, the reflected compression wave exists
only if the angle of incidence β reaches the critical angle βc = cos−1(1/

√
3) and that for all

angles 0 < β < cos−1(1/
√

3) there is no reflected compression wave. In this latter case, tan α
becomes a complex number and the motion corresponding to the P-wave potential propagates
along the free surface, as an edge wave, and decreases exponentially with depth, an an evanes-
cent mode.
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y
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Figure 3: SV-plane wave hitting a free surface of a semi-infinite elastic medium.

Figure 7 shows, for ω = 30, contour plots of the real part of the displacement for two cases
of incidence. In the first case (left), the angle of incidence β < βc, which means both P and S
waves are reflected. In the second one, β > βc and hence only an S wave is reflected while there
is an edge P-wave wave decaying exponentially with depth. In both cases, a total of 32 plane
waves are used in the approximation of the displacement field u, with mP = mS = 16. The
L2 errors, in both cases ε2 = 0.6%,show that the numerical solution is good agreement with the
analytical solution of the problem.
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Figure 4: Real part of the displacement due to an SV-plane wave hitting a free surface of a semi-infinite elastic
medium, ω = 30, mP = mS = 16, (left) β = 60◦, ε2 = 0.6%, (right) β = 50◦, ε2 = 0.6%.

3.2 Pure Rayleigh waves

Rayleigh waves are present near the soil free surface and they decay exponentially with
depth. They appear when body waves are reflected at the free surface. Part of their energy is
converted into Rayleigh waves which propagate with their own wave number kR given by the
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approximate expression kR ≈ kS/0.9194, for the same considered material (λ = µ = ρ = 1).
The horizontal and vertical components of the displacement field caused by the Rayleigh waves
are given by the following expressions [10]

u =
√

k2
R − k2

S

[
e−
√

k2
R−k2

Sy − 2k2
R

2k2
R−k2

S
e−
√

k2
R−k2

P y
]
eikRx,

v = ikR

[
e−
√

k2
R−k2

Sy − 2
√

(k2
R−k2

P )(k2
R−k2

S)

2k2
R−k2

S
e−
√

k2
R−k2

P y

]
eikRx.

(28)

For the same computational domain of Figure 2, the Rayleigh induced displacements are im-
posed on its boundary and the model developed above is used to recover the displacement field
inside the domain. It is worth pointing out again to the fact that Rayleigh waves propagate with
the wave number kR, while the plane wave approximation of expression (19) of the displace-
ment field uses the pressure and shear wave numbers kP and kS , rather than kR. Figure 5 shows
two examples of numerical tests involving the Rayleigh wave problem for frequencies ω = 10
and ω = 20. Both figures show the displacement profile which displays ellipses with major
axes normal to the free surface. Moreover, the displacements occur mainly near the free surface
and decay rapidly with depth. For ω = 10, only 16 plane waves are used to approximate the
displacement field with mP = mS = 8, leading to an error of 0.5%. In the case of ω = 20,
28 plane waves are used such that mP = mS = 14 and the L2-error remains low as well,
ε2 = 0.8%. This clearly indicates the good performance of the proposed approximation and its
ability to capture Rayleigh waves in spite of the model not explicitly including the wave number
kR in the plane wave approximation (20).
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Figure 5: Real part of the displacement due to Rayleigh waves, (left) ω = 10, mP = mS = 8, ε2 = 0.5%, (right)
ω = 20, mP = mS = 14, ε2 = 0.8%.

3.3 SV plane wave hitting a plane interface

In multilayered soils, for example, wave transmission and reflection occur at interfaces. In
this sub-section, an incident elastic wave hitting a plane interface between two semi-infinite
elastic media is considered. In general, this produces compression and shear waves in both
media. Figure 6 shows a schematic diagram of an incident SV-plane wave hitting such interface.
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For this case, the compression wave potential is therefore given by the reflected and transmitted
waves

φ = RP eik(−x−y tan α) + TP eik(−x−y tan γ), (29)

while the shear wave potential is the sum of the incident, reflected and transmitted waves

ψ = 1 eik(−x+y tan β) + RS eik(−x−y tan β) + TS eik(−x−y tan θ), (30)

The wave number k is now given by k = kP
1 cos α = kS

1 cos β = kP
2 cos γ = kS

2 cos θ. The
coefficients RP , RS , TP and TS are obtained by ensuring continuity of the displacement and
stress fields at the interface [9]. The horizontal and vertical components of the displacement
field, deduced from expressions (27), are imposed on the boundary of the computational domain
of Figure 2 representing now two semi-infinite media in contact at the horizontal interface y =
0.5. Two cases are considered where a soft layer overlies a hard layer and vice versa with a
ratio of densities of 1/3. In both cases, the SV plane wave is incident in the lower layer with
β = 60◦ and ω = 10. A total of 24 plane waves are chosen such that mP = 10 and mS = 14.
Figure 7 shows the numerical results of the real part of the displacement for both cases. The low
L2 errors, 0.8% and 0.7%, show the ability of the developed model to simulate such problems
while ensuring continuity at the interface thanks to the Lagrange multipliers.

SV SV(Rs)

P(Rp)

αβ x

y

Interface O

P(Tp)

γ

SV(Ts)

θ

Figure 6: SV-plane wave hitting a plane interface between two semi-infinite elastic media.
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Figure 7: Real part of the displacement due to an SV-plane wave hitting a plane interface between two semi-infinite
elastic media, ω = 10, mP = 10, mS = 14, β = 60◦, (left) hard layer overlying soft layer ε2 = 0.8%, (right) soft
layer overlying hard layer ε2 = 0.7%.

4 CONCLUSIONS

In this work, the PUFEM is extended to deal with wave problems in elastic layered media by
incorporating Lagrange multipliers to ensure compatibility conditions at the interfaces between
the layers. The model is validated by considering a simple example of an SV plane wave trans-
mitted at the plane interface between two semi-infinite elastic media. The model is also shown
to deal with Rayleigh wave propagation without explicitly including its wave number in the
displacement approximation. It also simulates elastic wave problems in presence of evanescent
modes.
The results presented above are preliminary. They provide an indication of the ability of the
PUFEM model to deal with various elastic wave problems in homogeneous and inhomoge-
neous media. Robustness and Accuracy of this model are currently being assessed through
the consideration of different parameters such as the mesh size, the number of plane wave ba-
sis in the approximation of the displacement field and in the Lagrange multiplier, the problem
frequency and the significant variations in material properties between layers.
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