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Abstract. Numerous structures exhibit rocking behavior during earthquakes and there is a 
continuing need to retrofit these structures to prevent collapse. The behavior of stand-alone 
rocking structures has been thoroughly investigated, but there are relatively few theoretical 
studies on the response of retrofitted rocking structures. In practice, despite the benefits of 
allowing rocking motion, rocking behavior is typically prevented instead of optimized. This 
paper characterizes the fundamental behavior of damped rocking motion through analytical 
modeling. A single rocking block analytical model is utilized to determine the optimal viscous 
damping characteristics which exploit the beneficial aspects of rocking motion while dissipat-
ing energy and preventing overturning collapse. To clarify the benefits of damping, overturn-
ing envelopes for the damped rocking block are presented and compared with the pertinent 
envelopes of the free rocking block. Finally, the same principles of controlling rocking behav-
ior with damping are extended to a particular class of rocking problems, the dynamics of ma-
sonry arches. A pilot application of the proposed approach to masonry arches is presented. 

 

 



Elias G. Dimitrakopoulos and Matthew J. DeJong 

1 INTRODUCTION 

Numerous heritage structures exhibit rocking behaviour when loaded dynamically, includ-
ing monuments, towers, bridge piers, sculptures, etc. Recent earthquakes (e.g. Chile and Italy) 
have increased world-wide incentive to retrofit such structures to avoid collapse during dy-
namic loading.  

The rocking dynamical response is highly nonlinear and extremely complex; the block dis-
plays numerous ways to overturn [1, 2] with respect to the number of the preceding impacts, 
and its response is highly sensitive on the characteristics of the dynamic loading. Most studies 
assume an idealized ground excitation in the form of a primary impulse [3] or harmonic load-
ing [1]. The significant amount of research assuming harmonic loading originates from the 
concept that a constant frequency excitation can cause resonance. However, one main advan-
tage of the rocking system is that constant frequency rocking resonance is impossible because 
the natural frequency changes with rocking amplitude. Further, harmonic ground motions 
which could cause rocking resonance would have to have a precise time-varying frequency, 
and are thus extremely unlikely [4]. Rocking behaviour is mostly affected by the distinct time-
dependent characteristics of the ground excitation that are less relevant to the response of 
elastically deformable structures.  

In contrast to the significant amount of research on the response of stand-alone rocking 
structures, there are only a handful of theoretical studies on the response of retrofitted rocking 
structures [5, 6]. In practice, rocking behaviour is typically prevented instead of limited or 
confined. Prevention is achieved by tying structures down, reinforcing them internally by 
drilling through or externally by wrapping with Fibre-Reinforce Polymers (FRP) [7].  

While these methods can be effective, they can over-stiffen structures, add stress, and be 
destructive. More particular, Makris & Zhang [5] showed that the response of the anchored 
rocking block can be worse of that of the pertinent stand-alone rocking block. In addition, 
when earthquake loading is rare and relatively minimal, as in the UK, extensive reinforcing of 
a vast number of structures may be economically infeasible and too invasive for heritage 
structures. Hence, application of intelligent less invasive intervention methods is sought, 
through confinement of the rocking response instead of prevention. This research aims to lay 
the foundation for the development of a new class of retrofit solutions which exploit damping 
systems. 

2 DAMPED ROCKING MOTION 

Motivated by the inverse effects of adding strength to the rocking block, this research takes 
an alternative approach and investigates the benefits of additional damping. Consider first the 
free standing rocking block of Figure 1 (without dampers) subjected to a pulse-type base exci-
tation with acceleration amplitude  ag  and  frequency  ωg. Assuming the coefficient of friction 
is high enough to prevent sliding, the rocking motion initiates when the ground acceleration  
üg  exceeds the critical value: üg ≥ ag, min   = g tanα  where  α  is the angle of slenderness and  g  
the gravity acceleration.  

The moment equilibrium, during rocking, with respect to the pivot points Ο (or Ο’ accord-
ingly in Figure 1) gives: 

    0 sin sgn( ) cos sgn( )gI mgR mu R             (1) 

where  θ  is the rocking rotation, I0  the moment of inertia with respect to the pivot point, m  
the mass of the block,  R  the half-diagonal and  sgn() the standard sign function. The slender-
ness angle is defined by tan /b h  , where  2b  is the width and  2h  the height of the block.  
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Τo complete the description of the problem, the equation of motion is complemented with 
a coefficient of restitution  η, defined as the ratio of the pre and post impact velocities, which 
ranges between  0  (for perfectly plastic)  and  1  (for perfectly elastic impact): 

      (2) 
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Figure 1: The rocking block retrofitted with viscous dampers at its edges. 
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Figure 2: Overturning envelopes of the stand-alone rocking block for different coefficients of restitution  η. 
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The present description of rocking (Equations 1 and 2), is valid under the assumption that 
the block is slender enough to prevent other impact behaviors to arise such as bouncing. 

Figure 2 presents the overturning envelopes of the rocking block, subjected to simple 
trigonometric pulses, for different coefficients of restitution  η. As expected, the coefficient of 
restitution affects the overturning of the rocking block only when impacts precede overturning. 
In other words, the energy is damped out of the stand-alone rigid block only during impacts. 
This poses a theoretical limit to reducing rocking behaviour by increasing energy dissipation 
at impact, as immediate overturning is unaffected. 

2.1 Bilateral Viscous Dampers  

As a first approach, consider a rigid block retrofitted with bilateral viscous dampers as in 
Figure 1. The force  P  of a viscous linear damper is given by: 

 P Cv   (3) 

where  v   is the relative velocity between the ends of the damper and  C  the damping con-
stant.  



Moment equilibrium of the retrofitted block (Figure 1) during rocking gives: 

    0 sin sgn( ) cos sgn( )gI mgR P r mu R               (4) 

where  r  is the lever of the damping force  P.  
Equation (4) can be written using Eq.(3)and geometric properties: 

     2 sin sgn( ) cos sgn( ) 1 cosgu
p p

g
        

 
      

 

   (5) 

where  3 4p g R   is the frequency parameter of the block, and 23
sin

2

C

mp
   is a di-

mensionless parameter that relates the damping constant  C  to the mass  m, slenderness   α  
and  frequency  p. 

  

2.2 Unilateral Viscous Dampers  

Re-centering, i.e. limiting residual displacements despite large displacement during seismic 
loading, is an advantage of rocking motion. However, collapse must be prevented. Thus, to 
limit collapse while encouraging re-centering, unilateral viscous dampers, which are activated 
only during uplift, are also considered. The behaviour of such unilateral viscous dampers can 

be described with the help of an ad-hoc function   ,S     defined as follows: 

     11
, sgn 1

02

when uplifting
S

when restoring
   

       
   (6) 

The equation of motion for the linear unilateral viscous damper is: 

        2 sin sgn( ) cos sgn( ) 1 cos ,gu
p p

g
S          

 
       

 

    (7) 
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2.3 Response of the damped rocking block to pulse-type excitations 

Figure 3 presents the overturning envelopes for the bilateral damping, and Figure 4 pre-
sents the overturning envelopes for the equivalent unilateral (same  γ  parameter ) dampers. 
Both figures also contain the undamped (stand-alone) rocking block envelopes. The block is 
excited with simple trigonometric pulses and the response is calculated by numerically solv-
ing the nonlinear differential equations of motion (Eq. 5 and 7 respectively) assuming a con-
stant coefficient of restitution  η. The behaviour is described in the dimensionless terms:   

 23
, , , sin

tan 2
g ga C

g p mp


 


   (8) 

Similarly to the behavior of the stand-alone rocking block [3], the damped rocking block 
displays  two different modes of overturning under a sine and a cosine pulse-excitation (e.g. 
Figure 3): immediate overturning without impact and overturning with at least one impact 
(one in the case of a sine pulse excitation and up to 2 in the case of a cosine pulse excitation). 
In genera land as expected, the overturning-with-impact mode is more critical since it appears 
for lower excitation intensities. However, unlike the case of additional strength [5], the higher 
the additional damping (parameter  γ), the more the overturning envelopes shrink, regardless 
of the excitation type (sine or cosine). 
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Figure 3: Overturning envelopes for the rocking block with bilateral viscous dampers. Comparison with the 

stand-alone rocking block (thick grey line). 
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Figure 4: Overturning envelopes for the rocking block with unilateral viscous dampers. Comparison with the 

stand-alone rocking block (thick grey line). 
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Figure 5: Comparison of overturning envelopes for the rocking block retrofitted with bilateral and unilateral vis-

cous dampers. 

 6



Elias G. Dimitrakopoulos and Matthew J. DeJong 

In Figure 5, the overturning envelopes for bilateral and unilateral damping are directly 
compared. Both unilateral and bilateral dampers have a similar beneficial effect for overturn-
ing without impact. However, there is a brief change in velocity prior to overturning during 
which the block tries to recover. Bilateral dampers limit this recovery, while unilateral damp-
ers allow it, making them slightly more effective. 

For overturning with impact, both damping options cause a similar beneficial shift in the 
minimum impulses which cause overturning (the lower limit of the overturning area shifts up 
and left). However, bilateral dampers provide a larger decrease of the total overturning area 
through a larger downward shift in the upper limit of the overturning region. While may be 
beneficial, it should be noted that the intermediate safety area, between the two overturning 
basins, is a result of the highly nonlinear behavior of the rocking block and is very sensitive to 
the characteristics of the excitation [1, 2]. Thus, from a design perspective, it is unreliable to 
depend on this safety region, and the lower limit is more important. Hence, both options have 
a remarkably similar benefit. 
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Figure 6: Rocking rotation (top) and angular velocity (middle) time-history of the rocking block (ω/p = 2.75,  η = 
0.825) excited with a sine pulse (bottom). Left column point 1 of Figure 5 and right column point 2 of Figure 5. 

 
To further investigate the effects of adding damping and the sensitivity of the rocking re-

sponse, Figure 6 plots the time-history response (rotation and angular velocity) of the rocking 
block that corresponds to the points 1 to 3 in the overturning diagram (Figure 5). For  
ag/(gtanα) = 1.8 and 4.6 (points 1 and 3) the stand-alone and the bilaterally damped rocking 
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block overturn, while the unilaterally damper rocking block survives. On the contrary, for  
ag/(g tanα) = 3.2 (point 2) the opposite is true: the stand-alone and the bilaterally damped 
block survive, while the unilaterally damped block overturns. The response is clearly highly 
nonlinear, and numerous instances where either the bilateral or the unilateral damper performs 
better can be found. As a general rule, for a given damping parameter  γ  the performance of 
the two types of damper are comparable. 
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Figure 7: Rocking rotation (top) and angular velocity (middle) time-history of the rocking block (ω/p = 2.75,  η = 

0.825) excited with a sine pulse (bottom). Point 3 of Figure 5. 

 

3  DAMPING OF MASONRY ARCH ROCKING 

The dynamics of masonry arches is a particular class of rocking problems. Under specific 
conditions outlined in DeJong et al. [8], Oppenheim [9] and Sinopoli [10], the dynamics of 
the masonry arch can be captured with a single degree of freedom model (SDOF). For single 
pulse dominated earthquake motions, an SDOF arch model was effective in predicting ex-
perimental collapse results for dry-stone masonry arches [8]. Further, arches are prolific in 
historic structures which stand vulnerable to seismic loading. Retrofit solutions which incor-
porate damping could potentially provide a viable solution for improving seismic safety.  
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As a first approach, the damping formulation presented in section 2 is here extended to ma-
sonry arches. It is assumed that linear viscous damping is added at hinging locations in the 
masonry arch, without considering a specific geometrical damper configuration.  

The SDOF equation of motion can be derived from Hamilton’s principle and Lagrange’s 
equation: 

 
T T V

Q
t   
            

 (9) 

The kinetic energy T  and the potential energy  V  can be found in [9]. The generalized 
force expression is comprised of two parts:  the inertial terms due to base excitation  Qg  [9] 
and the additional damping forces  Qd. The total generalized force becomes Q = Qg +  Qd . 
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Figure 8: The four-link kinematical mechanism of a masonry arch, during rocking under base excitation. Addi-

tional linear viscous damping is assumed at hinging locations.  

The damping force Qd can be determined after calculating the work of the non-conservative 
forces  δWnc as: 

  nc g dW Q Q Q      (10) 

In particular: 

 
     
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Q c c c c

Q c t
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          

        
   

      
   

         

                                
                               

   



  t


 (11) 

where  θAB,  θABC,  θBCD,  θCD  are  the angles depicted in  Figure 8, and  c  is the damping con-
stant. After extensive algebra, the equation of motion can be written in the form: 

          3 3 2 2 2 2
gM R L R F R g D R P R x               (12) 
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where  D(θ)  is the term introduced due to damping. 
Figure 9 plots the time-history response of the masonry arch described in Oppenheim [9], 

to a simple sine ground motion with acceleration amplitude  ag = 0.75 g  and duration  Τg = 
1.0 sec (Figure 9 bottom). The coefficient of restitution is taken as  η = 0.93. Τhe free ma-
sonry arch fails during rocking, while the addition of (linear) viscous damping at the hinging 
locations prevents failure. 
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Figure 9: Rocking of the masonry arch under a sine pulse excitation (bottom). Rotation (top) and angular veloc-
ity (middle) about left hinge. While the free (c = 0) arch fails, the addition of damping (c = 75, 100 m sec kN).  

 

4 CONCLUSIONS  

In this paper the consequences of adding damping to rocking structures are investigated. 
Interestingly, while additional damping is already implemented in practice, to retrofit rocking 
structures, there is a lack of theoretical research on the subject.  

The overturning envelopes of a rocking block retrofitted with bilateral and unilateral (acti-
vated only during uplift) linear viscous dampers, show a substantial enhancement of the be-
haviour. As a general rule, for a given damping level, the performance of the two types of 
damper are comparable. However, the unilateral damper delays the first appearance of over-
turning with impact and the first appearance of overturning without impact mode, but the area 
of overturning with impact is larger, compared to the pertinent bilateral damped block. Com-
paring with the alternative of anchoring the rocking system, the additional damping does not 
lead to counter effects where the behaviour of the retrofitted rocking system is actually worse 
than that of the stand-alone system. 
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The masonry arch exemplifies an alternate type of rocking structure for which added 
damping might be appropriate. 
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