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Abstract. Wind excited vibrations of slender structures such as towers, masts or
certain types of bridges can be reduced using passive or active vibration absorbers.
If there is available only a limited vertical space to install such a device, a ball type
of absorber can be recommended. In general, it is a semi-spherical horizontal dish
in which a ball of a smaller diameter is rolling. Ratio of both diameters, mass of the
rolling ball, quality of contact surfaces and other parameters should correspond with
characteristics of the structure. The ball absorber is modeled as a holonomous system.
Using Lagrange equations of the second type, governing non-linear differential system
is derived. The solution procedure combines analytical and numerical processes. As
the main tool for dynamic stability investigation the 2nd Lyapunov method is used. The
function and effectiveness of the absorber identical with those installed at the existing
TV towers was examined in the laboratory of the Institute of Theoretical and Applied
Mechanics. The response spectrum demonstrates a strongly non-linear character of the
absorber. The response amplitudes at the top of a TV tower with ball absorber were
reduced to 15÷ 40% of their original values.
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1 INTRODUCTION

Passive vibration absorbers of various types are very widely used in civil engineering, espe-
cially when wind induced vibration should be suppressed. TV towers, masts and other slender
structures exposed to wind excitation are usually equipped by such devices. Conventional pas-
sive absorbers are of the pendulum type. Although they are very effective and reliable, they have
several disadvantages limiting their application. First of all, they have certain requirements to
space, particularly in a vertical direction. These requirements cannot be satisfied any time when
an absorber should be installed as a supplementary equipment. Also horizontal construction,
like foot bridges, cannot accept any absorber of the pendulum type. Another disadvantage rep-
resents a need of a regular maintenance.

Both above shortcomings can be avoided using the absorber of ball type. The basic principle
comes out of a rolling movement of a metallic ball of a radius r inside of a metallic rubber
coated dish of a radius R > r. This system is closed in an airtight case. Such a device is
practically maintenance free. Its vertical dimension is relatively very small and can be used
also in such cases where a pendulum absorber is inapplicable due to lack of vertical space or
difficult maintenance. First papers dealing with the theory and practical aspects of ball absorbers
have been published during the last decade, see [1] and [2].

Dynamics of the ball absorber is more complicated in comparison with the pendulum one.
Its movement can be hardly described in a linear state although for the first view its behavior is
similar to the pendulum absorber type. A number of problems are still open being related with
movement stability, bifurcations, auto-parametric resonances and at least but not last with dish
and ball surface imperfections. This paper presents basic mathematical model in 2D together
with its numerical evaluation and practical application as far as to the state of the realization
including some results of long-term measurements.

2 MATHEMATICAL MODEL IN TWO DIMENSIONS

The dish is fixed to a vibrating structure. Their
dynamic character is represented by a linear SDOF
system represented by a mass M . Inside of a dish
an internal ball m in a vertical plane is moving,
i.e. 2DOF system should be investigated, as it is
outlined in the Fig. 1. It follows from geometric
relations:

R · ϕ = r(ψ + ϕ)⇒ rψ = %ϕ (1)

where % = R−r. It holds for vertical, or horizontal
components of a displacement and velocity of the
internal ball centre:

horiz.: u+ % · sinϕ ⇒ u̇+ %ϕ̇ cosϕ
vert.: % · cosϕ ⇒ −%ϕ̇ sinϕ

}
(2)
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Figure 1: Basic scheme of a system

Kinetic energy of a moving system of balls m,M can be written in a form:

T =
1

2
m[(u̇+%ϕ̇ cosϕ)2+%2ϕ̇2 sin2 ϕ]+

1

2
Jψ̇2+

1

2
Mu̇2 =

1

2
(m+M)u̇2+m%u̇ϕ̇ cosϕ+

m

2κ
%2ϕ̇2

(3)
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m/κ = m+ J/r2 ⇒ κ = 5/7, while the potential energy is given by an expression:

V = mg%(1− cosϕ) +
1

2
Cu2 (4)

The damping should be introduced in a form of a simple Rayleigh function:

B =
1

2
(Mbuu̇

2 +mbϕ%
2ϕ̇2) (5)

m – mass of the ball m;
J – inertia moment of the ball m;
bu, bϕ – damping coefficients (logarithmic decrements);

Expressions (3), (4), (5) should be put into the Lagrange equations of the second type, see e.g.
[3]:

n∑
r=1

{
d

dt

(
∂T

∂q̇r

)
− ∂T

∂qr
+
∂V

∂qr
+
∂B

∂q̇r

}
δqr = Pr(t) (6)

q1 = u = ζ · % ; q2 = ϕ ; Pu(t) = p(t) ·M% ; Pϕ(t) = 0

which give the governing equations of the system:

ϕ̈+ κbϕϕ̇+ κω2
m sinϕ+ κζ̈ · cosϕ = 0 (a)

µϕ̈ cosϕ− µϕ̇2 sinϕ+ (1 + µ)ζ̈ + buζ̇ + ω2
Mζ = p(t) (b)

µ = m/M ; ω2
M = C/M ; ω2

m = g/% (c)

(7)

Eq. (7) describes 2D movement of a ball absorber under excitation by the force P (t) at any
arbitrary deviation amplitudes including incidental transition through a limit cycle towards an
open regime.

3 THEORETICAL ANALYSIS OF THE ABSORBER

Theoretical efficiency of the absorber will be assessed using its frequency characteristics for
excitation of the mass M by harmonic force p(t) = p0 · sinωt simulating influence of external
loading or for kinematic excitation of the same mass M . In the later case the movement of the
ball m rolling inside of the dish is fully described by Eq. (7a). Should we solve the deviation
ϕ(t), Eq. (7b) can serve us subsequently for an evaluation of the force p(t), which is necessary
when the deviation u(t) = % · ζ(t) should be achieved. To obtain frequency characteristics the
harmonic excitation ζ(t) = ζo cos(ωt) should be introduced into Eq. (7), which yields:

ϕ̈+ κbϕϕ̇+ κω2
m sinϕ− κω2 cosϕ · ζo cosωt = 0 (a)

µϕ̈ cosϕ− µϕ̇2 sinϕ+ (−(1 + µ)ω2 + ω2
M)ζo cosωt− buω · ζo sinωt = p(t) (b)

(8)

Eq. (8a). corresponds to the equation of a mathematical pendulum excited in a point of sus-
pension. Its effective mass is increased due to a moment of inertia of the ball m by the factor
1/κ = 7/5. Even in practice the movement amplitudes of this ball do not admit to linearize the
Eq. (8a). At least a simple Duffing non-linear form should be retained:

ϕ̈+ κbϕϕ̇+ κω2
m(ϕ− 1

6
ϕ3)− κω2(1− 1

2
ϕ2) · ζo cosωt = 0 (9)
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Let us concentrate in this paper to the prior case when the excitation of a harmonic force is
taken into account. As the resulting system is auto-parametric, the corresponding methods can
be applied, see e.g. [4]. Expecting a single mode response, following approximate expressions
for excitation and response can be written (c.f. e.g. [5]):

p(t) = p0 sin(tω)
ϕ(t) = α sin(tω) + β cos(tω)
ζ(t) = γ sin(tω) + δ cos(tω)}

(10)

Having four new variables α = α(t), β = β(t), γ = γ(t), δ = δ(t) instead of two original
unknowns ϕ(t), ζ(t), two additional conditions can be freely chosen:

α̇ sin(tω) + β̇ cos(tω) = 0, γ̇ sin(tω) + δ̇ cos(tω) = 0 (11)

After substitution (10) and (11) into (7) and substituting the sin and cos functions by two terms
of Taylor expansion, the harmonic balance procedure gives differential system for unknown
amplitudes X = (α, β, γ, δ)T , see e.g. [6] or [7].

M(X)Ẋ = F(X) (12)

The system (12) for amplitudes X(t) is meaningful if they are functions of a ”slow time”, in
other words if their changes within one period 2π/ω are small or vanishing and individual steps
of the harmonic balance operation are acceptable. The matrix M and right hand side vector F
have the following form

M =


0 −ω −1

4
αβκω 1

8
κωAα

ω 0 −1
8
κωAβ

1
4
αβκω

−1
8
µωAβ

1
4
αβµω (µ+ 1)ω 0

−1
4
αβµω 1

8
µωAα 0 −(µ+ 1)ω

 (13)

F =
1

48


6A0κ (3γω2 − αω2

m) + 12ω2 (κ (αβδ + (8− β2) γ)− 4α)− 48βκωbϕ
6A0κ (δω2 − βω2

m) + 12ω2(αγκ+ βδκ− 4)β + 48ακωbϕ
ω2 (A0 (A0 + 22) βµ− 16(3δ(µ+ 1)− 4βµ)) + 48 (γωbu + δω2

M)

ω2 (A0 (A0 + 22)αµ− 16(3γ(µ+ 1)− 4αµ))− 48 (δωbu − γω2
M + p0)

 (14)

where
A0 = α2 + β2 − 8, Aα = 3α2 + β2 − 8, Aβ = α2 + 3β2 − 8

Determinant of the system matrix M can be easily evaluated:

det(M) = − ω4

4096

(
64(κ− 1)µ+ κµ∆1R

2 − 64
) (

64(κ− 1)µ+ κµ∆3R
2 − 64

)
(15)

∆1 =
(
R2 − 16

)
, ∆3 = 3

(
3R2 − 16

)
where R2 = R2(t) = α2 +β2 is the amplitude of ϕ. Polynomial (15) has four roots R2

1, . . . , R
2
4:

3R2
1 = R2

2 = 8

(
1− µ+ 1√

κµ(µ+ 1)

)
, 3R2

3 = R2
4 = 8

(
1 +

µ+ 1√
κµ(µ+ 1)

)
(16)
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Figure 2: Stabilized numerical solution Eq. (12) . Values of the amplitude R =
√
α2 + β2 (variable ϕ, first row)

and S =
√
γ2 + δ2 (variable ζ, second row) are shown for three selected excitation amplitudes p0 = 1, 1.5, 2.5.

The excitation frequency ω is on the horizontal axis. Greyed areas correspond to the frequency region of non-
stationary response.

For positive µ and 0 < κ < 1 are the first two roots negative, the last two roots are positive.
The negative roots have not any physical meaning, whereas the positive roots form strictly
decreasing functions of parameter µ. For κ = 5/7 (see (3)) it holds:

lim
µ→∞

R2
3 =

8

15

(
5 +
√

35
)
≈ 5.82191, lim

µ→∞
R2

4 = 8

(
1 +

√
7

5

)
≈ 17.4657 (17)

With respect to the meaning of variable ϕ, even the lower value should not be reached in any
real case.

Knowing the exact form and regularity properties of the system matrix M, its inverse could
be easily derived and then the normal form of the differential equation (12) can be established.
However, as long as the matrix M is regular, the original right hand side F can be studied
equivalently.

Let us consider stationary response of the system. In this case, the derivatives dX/dt vanish
and the right hand side M has to vanish too. Eq. (12) degenerates to the form of:

F(X) = 0 (18)

Thus, to identify the stationary solutions, the zero solution points of F, depending on the ex-
citation frequency and amplitude, should be traced. In the same time, the signum and the zero
points of the Jacobian det(JF) have to be checked. Negative value of the Jacobian for a partic-
ular point indicates that the corresponding solution is stable, whereas when Jacobian vanishes a
bifurcation could occur.

The curve F(α, β, γ, δ, ω) = 0, projected into the planes (ω,R) or (ω, S) (for S2 = γ2 + δ2),
forms the resonance curves known from the analysis of linear oscillators. However, correspon-
dence of this curve to the original equation (7) is limited to the case of stationary response. It
is necessary to remind, that limits of stationarity of the response cannot be determined from
properties of Eq. (18) itself. The complete Eq. (12) has to be take into account for this purpose.

5
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Figure 3: Non-linear resonance curves describing the stationary response of the system computed as zero solutions
of Eq. (18) for excitation amplitudes p0 = 0.25, 0.5, 1, 1.5, 2.5. Stable branches are shown as solid blue curves,
unstable parts are indicated as the red dashed curves. Amplitudes R =

√
α2 + β2 are shown in the left part of the

figure, amplitudes S =
√
γ2 + δ2 are on the right.

4 NUMERICAL ANALYSIS

The aim of this study is a basic engineering approach demonstrating the problem as a whole
from the theoretical background until realization in practice. Thus, the numerical analysis has
been selected as it leads the most quickly to a basic overview about dynamic properties of a ball
absorber.

With respect to actual experiences regarding passive vibration absorbers and some interesting
properties of the system (7), following reference input data have been introduced:

M = 10.0 ; m = 2.0 ; % = 0.71 ; bϕ = 0.1 ; bu = 0.2 ;C = 140 ; po = 0.5÷ 2.5 (19)

Several analysis procedures have been performed:
(a) Numerical integration of Eq. (7) shows the response characteristics of the system.
(b) Numerical solution of Eq. (12) can help to decide if the response is stable or unstable.
(c) Analysis of the term F(X) given by Eq. (18) gives the resonance curve including the unsta-
ble branches.

Frequency response characteristics of the Eq. (12) for the particular data is shown in the
Fig. 2. This non-linear equation has to be solved numerically. Starting from non-trivial initial
conditions solution α(t), β(t), γ(t), δ(t) stabilizes after certain time. Mean value and standard
deviation of the stabilized amplitudesR =

√
α2 + β2 (variable ϕ, first row) and S =

√
γ2 + δ2

(variable ζ , second row) depending on the excitation frequency ω are shown in Fig. 2. The
variance of the amplitudes is shown as greyed area around the mean curve. Thus, the greyed
areas indicate regions where a non-stationary solution should be expected (amplitudes R and S
are not constant). It should be emphasized here, that validity of the Eq. (12) in non-stationary
case is limited, as it was derived with an assumption of slow time change of the amplitudes.

Utilizing the Eqs. (18) and (14), the non-linear resonance curves describing the stationary
response of the system (7) can be obtained. A set of such curves for excitation amplitudes
p0 = 0.25, 0.5, 1, 1.5, 2.5 is shown in the Fig. 3. It is obvious for the first view the non-linear

6
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Figure 4: Selected non-linear resonance curve for p0 = 1 and p0 = 1.5. (a) The case for R =
√
α2 + β2 is on

the left, (b) case for S =
√
γ2 + δ2 is in the right part of the figure. Points d1, ...,d6 correspond to zero points of

Jacobian JF and indicate change of stability properties of the curve.

character manifesting oneself by a dependence of a position of extreme points on an amplitude
of excitation force. This effect is visible predominantly in a neighbourhood of a conventional
”linear” natural frequency of the absorber although also the second natural frequency corre-
sponding to the original natural frequency of the structure is affected. The resonance curves are
typical for a system with ”softening” non-linearities. It turns out that the non-linear element
represented by a ball absorber can be more effective when broad band random response should
be reduced. Even better results can be expected in case of non-stationary excitation when am-
plitude spectrum is significantly variable in time. In such a case no doubt non-linear absorber
should be preferred, while the linear one works better in cases of strong narrow band excitation
mostly of deterministic character.
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Figure 5: Values of Jacobi determinant det(JF) corresponding to the stationary resonance curve for p0 = 1 (a)
and p0 = 1.5 (b). Negative values indicate stable branches of the resonance curve and vice versa. Closed curve in
the right part of fig. (b) correspond to the isolated part of the resonance curve, c.f. second row of Fig. 4.
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Figure 6: (a) Position of zeroes of the Jacobian in the (ω, p0) plane. (b) Zoomed view of the interesting area for
p0 ∈ (0, 2) of the figure (a). Points d1, ...,d6 are indicated on the level of p0 = 1 and p0 = b, c.f. figures 4 and 5.
Points x1 and x2 show the critical values of p0 computed using Eq. (20-21).

Let us comment the isolated curves indicating high amplitudes of response for p0 = 2 and 3.
Limit value forR, as it results from the roots of the det(M) (Eq. (15)) is for data (19)R < 3.22.
This limit is for the high curves in Fig. 3 still not violated. However, these curves have not any
physical meaning in this case: (i) such high amplitudes of R are unrealistic, (ii) Eq. (12) was
derived utilizing two terms of Taylor expansions for sin and cos functions and thus assuming
only ”small” amplitudes.

Let us study in more detail the stability of one particular curve from Fig. 3, the one for
p0 = 1. The both R and S (or ϕ and ζ respectively) resonance dependencies are shown in the
first row of Fig. 4. The solid parts of the curves correspond to the stable solution, whereas the
red dashed sections correspond to the unstable solution of Eq. (18). Second row of Fig. 4 shows
similar curves for higher excitation amplitude p0 = 1. The islolated part of the response curve
is present in this case.

Response of a real system cannot be expected to reach values of a unstable part of resonance
curve. The stability of the individual sections of the curves follows from the sign of the Jaco-
bian. Course of this value, corresponding to the curves in Fig. 4 is shown in Fig. 5a for p0 = 1
and in Fig. 5b for p0 = 1.5. Here the points d1, ...,d4 or d1, ...,d6 correspond to zero points
of Jacobian JF and indicate change of stability properties of the curve, c.f. all parts of Fig. 4.
Closed curve in the right part of Fig.5b correspond to the isolated part of the resonance curve.

Existence of the unstable branches could serve as a characteristic of the system from the
engineering point of view. It can be stated, that until the system properties (structural param-
eters) and the expected excitation amplitude are such that no unstable part of the resonance
curve occurs, almost linear and stationary behaviour of the system can be expected. Positions
of the dangerous values of the excitation amplitude p0 depending on the excitation frequency
are shown in Fig. 6. The overall situation for the system defined by values (19) is shown in
the left part of the figure (a), whereas the part of realistic expected amplitudes is shown in the
part (b). Positions of points d1, ...,d4 corresponding to the excitation amplitude p0 = 1 and
d1, ...,d6 for p0 = 1.5 are shown in the both parts of the Fig. 6.
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The curves from the Fig. 6 can be relatively easily computed from the algebraic system

det(JF(X, ω) = 0
F(X, ω, p0) = 0

(20)

Having a solution of (20) for any particular value of ω and p0 the curves can be considered as
parameter dependent ω(s) and p0(s) and traced e.g. using the arc-length method. The extremal
values are then such points (ω(s), p0(s)) that

∂sω(s0) = ∂sp0(s0) = 0 (21)

To cover all the extremes, the relation (21) has to be used for all interesting solutions obtained
from the system (20). For data defined by (19) are the critical values of the amplitude p0 shown
in the Fig. 6 as points x1 and x2. Corresponding critical values of p0 are p0,x1 = 0.421 and
p0,x2 = 0.472 for ωx1 = 2.77 and ωx2 = 3.87.

For sake of comparison, the non-linear resonance curve for p0 = 1 is shown together with
result of the frequency response relation, which has been obtained using numerical integration
of the original system (7) for excitation amplitude p0 = 1. As it can be seen from the Fig. 7, the
agreement is rather good. Relatively low non-stationarity can be seen as the greyed areas of the
curve for ω just above points d2 and d4. For other excitation amplitudes the graphs resemble
the Fig. 3 and thus are not shown here.

It appears, that increasing the excitation amplitude over a certain limit a domain of unstable
chaotic response to deterministic excitation emerges. It does not reveal that this domain in-
creases significantly when random instead of deterministic excitation is applied. Nevertheless
a presence of chaotic response domain is for the sake of the structure, as the effective response
amplitudes are decreasing under these circumstances due to the rapid increase of the entropy of
the response probability density.

On the other hand it is necessary to remain realistic. During testing in laboratory many
effects corresponding to various critical and post-critical effects have been observed which are
not yet described and quantified theoretically.
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Figure 7: Example of correspondence between stationary resonance curves computed using (14) (blue curves)
and response characteristics obtained via numerical integration of Eq. (7) (show in red). Absolute values of the
maximum, minimum and mean peak responses of ϕ are shown on the left and for ζ on the right. Greyed area
between minima and maxima curves shows the regions of non-stationary response.
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5 APPLICATION OF BASIC THEORY AND EXPERIMENT

First of all two practical knowledge resulting from laboratory experiments and in situ mea-
surements should be mentioned.

As regards the damping, the use of the logarithmic decrement as the measure of damping
does not correspond very well to the non-linear nature of the phenomenon. However, a com-
parison of the behaviour of different physical models which were examined is very useful. Fig.
8 shows the value of the logarithmic decrement bϕ of the model plotted against the absorber -
mass ratio µ, see Eq. (7c). The model was put into vibration by initial deflection from its equi-
librium position. In this figure diagrams for several values of initial displacement have been
plotted. It can be seen that the model without ball (µ = 0) has the damping nearly 0.02 (the
point on the horizontal axis µ = 0), while adding ball the damping reaches 0.17-0.25 (the points
on the horizontal axis µ = 0.2, curves valid for simple motion) i.e. nearly 8 times more. Similar
effect appears also on conventional pendulum absorbers. For details, see [1].

The influence of inclination was also tested on the model, involving the case when the dish
of the absorber exercises the rotation about the horizontal axis, coupled with its horizontal
translation. The most unfavourable case was tested, i.e. when the frequency of dish inclination
approaches the natural frequency of the ball rolling inside the dish (ωm). No unfavourable
increase of the amplitudes of the ball was observed.

The function and effectiveness of vibration ball absorber was described in detail in [2]. Now
we shall describe the experiments made in the laboratory. The dish was fastened to a table
supported by nine steel balls enabling the excitation of its movement by one, possibly two
mutually perpendicular forces. The forces were supplied by one (uniaxial excitation) or two
(biaxial excitation) MTS cylinders (jacks) via arms. The ”position control” regime was selected
in which the excited movement displacement was constant within a frequency range ω ∈ (4.40÷
9.40s−1). Excitation force amplitude was variable being a function of excitation frequency. Two
series of experiments have been done. The first one with the internal side of the dish with rubber
covering layer and the second one without this covering.

During the excitation by one harmonic force, the excitation frequency was varied within the
range ω ∈ (4.40 ÷ 9.40s−1) in steps of ∆ω = 0.5, and in the resonance domain in steps of
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Figure 8: Logarithmic decrement bϕ plotted against the mass-ratio µ for different initial amplitudes
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Figure 9: Experimental resonance curves of exciting force and of ball m response

∆ω = 0.25. The duration of one step was 30 seconds, the transition from one step to another
15 seconds. Seven amplitudes of table displacements ranging from 1mm to 7mm were applied.
As an example (table displacement amplitude uo = 4mm), Fig. 9 shows the resonance curves
of the ball m and dish movement depending on frequency of the excitation force, when the
dish is without rubber coating (another plot applies for the state with coating). Fig. 9 shows
also the phase shift of the ball and the dish displacement in the excitation direction, once again
for the increasing as well as decreasing excitation frequency, see the bottom part in the Fig. 9.
Two jumps of phase shift (increase or decrease) within the range (0− 2π) can be observed in a
neighborhood of the frequency corresponding with the biggest excitation force values.

The ball, although subjected to uniaxial excitation, performed a movement which comprised
also a component deviating from the direction of excitation. This complex 3D ball movement
appeared in the dish without rubber lining. The response spectrum contains peaks different
from excitation frequency, particularly outside the resonance domain and corresponding rather
with multiples of the natural frequency of the linearized system. It is another evidence of
significant non-linear character of the system, which manifests this time by super-harmonics of
the response.

Relation of logarithmic decrement of the damping and the amplitude ϕo · % of the dish is
presented in the Fig.10a,b, while the relationship of the natural frequency of the ball (moving
on steel and on rubber coating respectively) on the amplitude ϕo · % has been outlined in the
Fig. 10c.
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Figure 10: (a) and (b): Relation of logarithmic decrement bϕ and amplitude ϕo · % of the ball m,
(c) Relation of natural frequency ωϕ and amplitude ϕo · % of the ball m

6 PRACTICAL REALIZATION

The ball absorber was used recently on two TV towers in the Czech Republic to suppress
wind excited vibration (Figs 11a, 11b) . Both towers under observation showed two dominant
natural frequencies before absorber has been installed ω(1) = 7.98s−1, ω(2) = 10.68s−1 (nearly
identical for both towers). Corresponding natural modes and the amplitude of vibration in wind
of mean velocity 8−15m/s are plotted in the Fig. 11c. The response amplitude at the top of the
tower is 10.65mm, while that at the RC platform level 0.273mm. Four legs of the steel lattice
part were recently strengthened.

The ball absorber before the mounting on the top of the tower presents the photo at the
Fig. 12. The most important numerical results demonstrating the absorber efficiency in dimension-
less values are outlined in the Tab. 1. The efficiency has been evaluated for the most important

Figure 11: TV towers, their two lowest natural modes and amplitudes of wind induced vibrations
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Figure 12: Ball absorber intended for a TV tower

Table 1: Ball absorber efficiency

without absorber with absorber ratio with/without absorber

Frequency [Hz/s−1] X Y X Y X Y

0.90/5.65 0 0.0948 0 0.2031 - 2.14

1.27/7.98 19.064 3.279 0.271 0 0.0142 -

1.70/10.68 0 7.382 0 0.466 - 0.0632

X = f ·Gx(f)/σ2
x ; Y = f ·Gy(f)/σ2

y

frequencies using records of the long term measurements. For evaluation of absorber efficiency
the following parameters has been introduced:

εx =
f ·Gx(f)

σ2
x

; εy =
f ·Gy(f)

σ2
y

(f = ω/2π)

Gx(f), or Gy(f) – power spectral density of the tower top displacement in directions x,
or y;

σ2
x, or σ2

y – RMS of the tower top displacement in respective directions x, or y;

The scale of the response is presented in a form of a comparison of the values εx, εy valid for the
state without absorber (columns 2 and 3) and with absorber (columns 4 and 5), while columns
6 and 7 represent ratio of with/without absorber for respective directions. In particular, both
columns 6 and 7 demonstrate high efficiency of the installed vibration absorber of ball type.

7 CONCLUSIONS

The vibration absorber of a ball type has been introduced. The basic Lagrangian analytical
theory of non-linear behaviour has been done. Very wide numerical investigation reveals that the
non-linear character of this device is an important factor influencing significantly its dynamic
properties and practical efficiency. It turns out, that the non-linear character making the form of
resonance curves dependent on the excitation amplitude leads to better efficiency in comparison
with linear mechanism. For the same reason also chaotic component of the response can occur
in certain frequency domains which increases significantly the efficiency of this device due to
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higher energy loss. Laboratory tests of a ball vibration absorber with the dish without and
with rubber coating have demonstrated several aspects of real operation of the damper . They
have also proved the effectiveness of the damper and the influence of the rubber coating. With
respect to laboratory tests and long-term in situ measurements can be concluded that the ball
vibration absorber is a simple nearly maintenance free low cost device with very small vertical
dimensions. For these properties it is very convenient for application especially in cases when
broad band excitation of random character prevails and when very limited space is available.

The same experiments gave many results demonstrating various processes of stability loss
and transition into various post-critical states under certain conditions. These phenomena re-
mained without adequate theoretical explanation and without any assessment of influence onto
damping properties. Therefore an intensive theoretical investigation should be provided. De-
tailed stability analysis is necessary to enable a reliable description of post-critical regimes,
bifurcation points and corresponding transition effects involving the damping process. Also
random parametric excitation and stochastic imperfection influence should be carefully studied.
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